

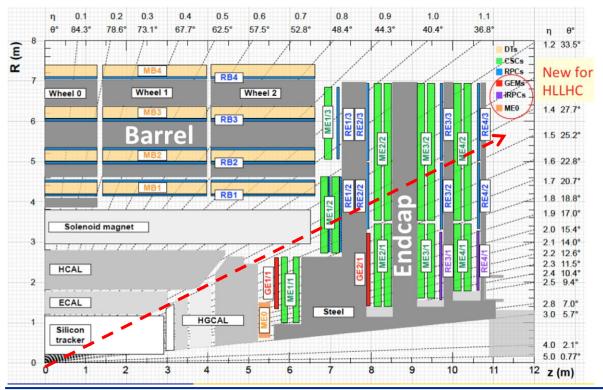
GOOD MEMORY AND NEURAL NETS MACHINE LEARNING IN THE (L1) TRIGGER

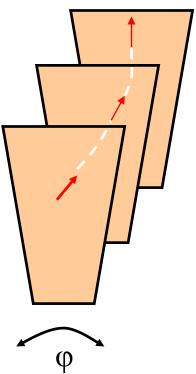
Darin Acosta, University of Florida (on behalf of the UF and Rice Endcap Muon Trigger groups)

Context: L1 Endcap Muon Track-Finder(s)

* A standalone muon tracking trigger (w/o inner tracker)

- > Link CSC, RPC, (+GEM) track segments into 3D tracks
- \succ Measure track p_{T} in the nonuniform fringe field of the endcap
 - $\,\,$ Extracted from ϕ and η deflections from detector to detector when traversing the disks





UF FLORIDA

1/16/2018 ML in Trigger -- D. Acosta

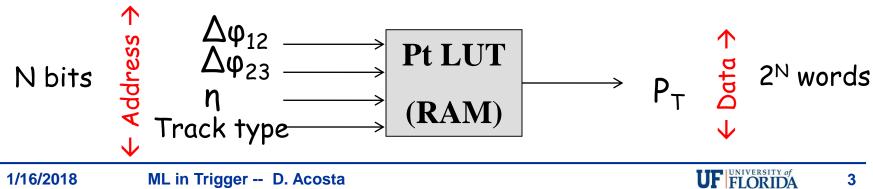
P_T Calculation by Memory

* The P_T is calculated from a memory look-up table

- > A "cheat" to do the calculation quickly (~50ns) in the L1 trigger.
 - Also must be fast for random addressing...
- > Don't really calculate it online at all (no CPU)
- > Instead, pre-calculate offline the muon momentum using whatever algorithm you want and with however much computing resources you have!
 - But you must do this for every possible input to the memory

* The challenge:

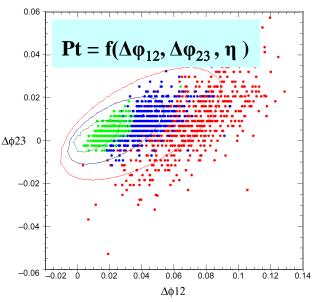
- > You must squeeze all the data for your track fit into the address for your memory
 - \square N bits of of data requires a memory of 2^{N} addresses



3

Version 1: CSC Track-Finder, 2005-2015

- * 12 VME processors
 - > Xilinx Virtex-5 FPGAs and memory
- ★ P_T calculated from an SRAM memory look-up table
 - > Largest available at time to do the job: $4MB \rightarrow 22$ bit address space
- * Algorithm
 - > Likelihood-based fit using $\Delta \phi$ bending between at most 3 detector stations to assign p_T
 - Multiple scattering in iron carries momentum information in addition to magnetic bending
- * Data compression
 - Introduced nonlinear scales to "shoe-horn" in as much data as possible



Version 2: Endcap Muon Track-Finder, (Phase-1 Upgrade of Previous, 2016+)

- * 12 µTCA double-module processors
 - > Xilinx Virtex-7 FPGA and memory
- * P_T calculated from Reduced Latency DRAM
 - > 1 GB \rightarrow 30 bit address space
 - > +8 bits (only) over previous CSCTF

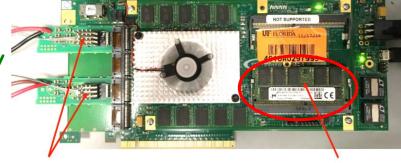
* Algorithm

- \succ Machine Learning: Boosted Decision Trees (BDTs) used for regression to assign P_{T}
- \succ Can use $\Delta\phi$ bending between 4 detector stations, and $\Delta\eta,$ and bend angle in first station
- But note, as before, algorithm is run offline and stored in memory

Version 3: Endcap Muon Track-Finder (Phase-2 Upgrade of Previous, 2026+)

- * 12 ATCA processors
 - > Xilinx Ultrascale+ FPGA and memory
- * P_T calculated from DDR4
 - > ~256 GB \rightarrow 38 bit address space
 - > +8 bits (only) over previous EMTF

* Algorithm



FireFly optical links

DDR4 SODIMM 16GB

Xilinx evaluation card

- In development! But starting from current EMTF as conservative baseline
- Expand P_T assignment with more angular measurements from new HLLHC muon detectors
- \succ Continuing ML as P_T assignment algorithm

EMTF PT Assignment Scheme

Appendix B - Schematic of 2017 PT LUT address bits \leftarrow 30 bits to encode data \rightarrow

PT LUT address bits	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	4	4	3	2	1	0
Two-station tracks	0	0	0	0	mode2				5b_theta				3b	_clc	tB	B 3b_clctA			frE	3/A	3b_dThAB			7b_dPhAB						
Station 2-3-4 tracks	0	0	0	1	5b_theta					2b_	rpc	clo	t2	fr	3b	_dTh	24	s		5b	dPh34			7b_dPh23						
Three-station tracks	0	mo	mod3 5b_thet						2b_	2b_rpc clctA			frB	A/	3b_	3b_dThAC s			5b_dPhBC				7b_dPhAB							
Four-station tracks	1	8b_theta_rpc_clct1							fr	dTh	14	s34	-23	4	lb_d	Ph34		5b_dPh23			7b_dPh12									

*** Some names truncated for space. **Two-station:** [frB/A] = [frB][frA]. **Station 2-3-4:** [fr] = [fr2], [s] = [sph34]. **Three-station:** [mod3] = [mode3], [frB/A] = [frB][frA], [s] = [sphBC]. **Four-station:** [fr] = [fr1], [s34-23] = [sph34][sph23], [dTh14] = [2b_dTh14].

Squeeze in all angular differences from all detectors without sacrificing precision

- > A data science project in itself!
- > Nonlinear binning, and address fields that are context driven
 - Provide the most data bits to the tracks that can be measured best
- * Even larger address space for Phase-2 Upgrade allows additional information such as GEM-CSC bend angles

ML/BDTs for Regression

* Trigger application is somewhere between a classification problem and a regression

 \succ p_T above or below a threshold, but for multiple thresholds

* We use a transformation + loss function to focus on low p_T events (whose mismeasurement to high p_T drives the rate)

> Target $1/p_T$ makes differences in low p_T count more in loss

> Loss = $|1/p_{T,meas} - 1/p_{T,true}|^2$, but studied other loss functions

Focus on low p_T more \rightarrow lower rate (good), lower effic. (bad)

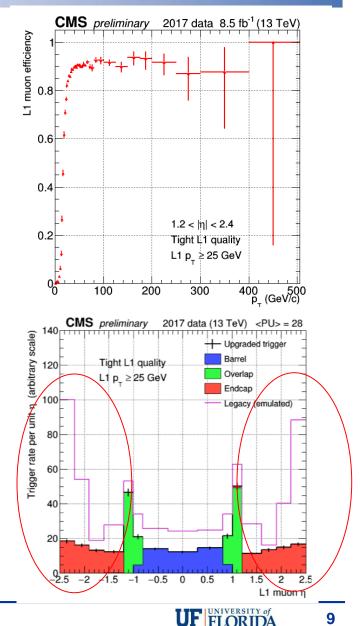
- Focus on low p_T less \rightarrow higher rate (bad), higher effic. (good)
- With redundant measurements (4 detector stations), ML can identify outliers (e.g. TeV muon bremsstrahlung) and reject them to keep efficiency high
 - > We used to have to introduce ad hoc algorithms to recover effic.
- See also ACAT2017 talk by A.Carnes on use of ML in L1Trigger (CMS CR -2017/357)

Current Endcap Muon L1 Trigger Results

(25 GeV threshold)

* Efficiency is high even to highest p_{T} (TeV-scale)

* Rate suppressed 3X in forward region relative to previous trigger, and comparable to barrel rate despite much less magnetic bending and high backgrounds



Future Training

- Currently studying improvements possible using Deep Neural Nets (DNNs) to improve performance beyond BDTs
 - > RiceU taking lead on this
- * Convolutional Neural Nets (CNNs) are already heavily used for image recognition, and tools readily available to process and train on images
- * Interesting side project: translating a tracking problem to an image recognition problem!
 - > UF and Rice groups are actively pursuing this possibility
 - > Stay tuned!

Training on Data?

- * The current $P_{\rm T}$ assignment training is based on MC simulation samples
 - > Simple muon gun without any pileup...
 - Essentially concentrating on the "track fit" aspects of the problem, assuming perfect track building
- ★ But with pileup and radiation-induced backgrounds in data, we can have wrong stub→track associations
 - > See evidence for that in pileup dependence of trigger rate
- * Also more complex algorithms, like Deep Neural Nets, require huge datasets, which becomes computationally expensive to generate
- * Need to investigate training based on data
 - > Real experimental conditions and real backgrounds!
 - > But would need a rather large minimum bias data sample...
 - Need a pilot study

Training on Data in Situ?

- * Going beyond running on logged minbias data, how about running ML training on the HLT processor nodes?
 - > HLT gets 10s of kHz of muons from L1
 - HLT has inner tracking information, with % resolution which is as good as perfect compared to standalone muon reco (20%)
 - CPU impact? How to collect and store training results?

* Phase-2: Self-train Muon Trigger entirely within L1?

- > For Phase-2, the L1 trigger also will have inner tracking info!
- Access to MHz of muons!
- > Run L1 muon trigger in "training mode" first during a special run?
 - Or run training parasitically and asynchronously with more processors? Even a small fraction is still a high rate of muons

> Does FPGA have enough resources for the training step?

Running Machine Learning on the FPGA?

- * Avoid the address-space bottleneck of a LUT entirely and deploy the ML inference on the FPGA fabric
- * This is big focus of computer engineering in industry and academics
 - Especially for the more computing intensive training step, which also is interesting for in situ training
- * FPGAs are becoming coprocessors for computing, and available commercially
 - > Amazon F1 instance, Microsoft catapult, Intel Xeon+FPGA, ...
 - > Can we leverage? (or even lead?)
 - Collaboration with UF ECE Dept, and ECE student (D.Ojika)
 to explore this option for us at UF.
 - Have an image classification example working on Altera FPGA and Amazon F1 (Xilinx)

Other Signatures

* Current ML application applies to reconstructing muons

* But there are other unique signatures:

- > Displaced muon-like particles
 - I Identify tracks that do not project to IP, and measure momentum without beam constraint
 - è Already in plans for HL LHC muon trigger
 - è Also can come for free from Kalman filter approaches
- ≻ т → 3µ
 - Muons are collimated (in n) and soft in $p_{\rm T}.$ May not penetrate full muon spectrometer

è e.g. Planning to deploy a 2µ + stub trigger at L1 soon

- Train to identify this signature within (HL)LHC environment
- ~~ Access full luminosity with near zero p_{T} thresholds?
- > Muon (Lepton) jets, possibly displaced
 - Generalized collimated muons signature

- * Obviously can generalize beyond muon signatures
 - > Calorimetric energy clustering, jet finding, etc.
- * Started with a muon tracking trigger using a very large LUT for flexible calculations
- * Machine learning algorithms are improving upon our "human learning" (likelihoods) methods
- * Meanwhile electronics (FPGAs) and computing platforms are becoming blended, offering potentially novel and powerful architectures for implementation and training
- * Perhaps start a Trigger ML forum if there is broad interest?

