
GOOD MEMORY AND NEURAL NETS

MACHINE LEARNING IN THE 
(L1) TRIGGER

Darin Acosta, University of Florida

(on behalf of the UF and Rice Endcap Muon Trigger groups)

1/16/2018 ML in Trigger -- D. Acosta 1



Context: L1 Endcap Muon Track-Finder(s)

 A standalone muon tracking trigger (w/o inner tracker)
 Link CSC, RPC, (+GEM) track segments into 3D tracks

 Measure track pT in the nonuniform fringe field of the endcap

l Extracted from φ and η deflections from detector to 
detector when traversing the disks
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PT Calculation by Memory

 The PT is calculated from a memory look-up  table
 A “cheat” to do the calculation quickly (~50ns) in the L1 trigger.

l Also must be fast for random addressing…
 Don’t really calculate it online at all (no CPU)
 Instead, pre-calculate offline the muon momentum using 

whatever algorithm you want and with however much computing 
resources you have!

l But you must do this for every possible input to the memory

 The challenge:
 You must squeeze all the data for your track fit into the 

address for your memory
l N bits of of data requires a memory of 2N addresses
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Version 1: CSC Track-Finder, 2005-2015

 12 VME processors
 Xilinx Virtex-5 FPGAs and memory

 PT calculated from an SRAM 
memory look-up table
 Largest available at time to do the job:

4MB  22 bit address space

 Algorithm
 Likelihood-based fit using Δφ bending

between at most 3 detector stations 
to assign pT

 Multiple scattering in iron carries 
momentum information in addition to
magnetic bending

 Data compression
 Introduced nonlinear scales to 

“shoe-horn” in as much data as possible
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Version 2: Endcap Muon Track-Finder, 
(Phase-1 Upgrade of Previous, 2016+)

 12 μTCA double-module processors
 Xilinx Virtex-7 FPGA and memory

 PT calculated from Reduced
Latency DRAM 
 1 GB  30 bit address space

 +8 bits (only) over previous CSCTF

 Algorithm
 Machine Learning: Boosted Decision Trees (BDTs) used for 

regression to assign PT

 Can use Δφ bending between 4 detector stations, and Δη, and 
bend angle in first station

 But note, as before, algorithm is run offline and stored in 
memory 
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Version 3: Endcap Muon Track-Finder
(Phase-2 Upgrade of Previous, 2026+)
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Xilinx evaluation card

 12 ATCA processors
 Xilinx Ultrascale+ FPGA and memory

 PT calculated from DDR4
 ~256 GB  38 bit address space

 +8 bits (only) over previous EMTF

 Algorithm
 In development! But starting from current EMTF as 

conservative baseline

 Expand PT assignment with more angular measurements from 
new HLLHC muon detectors

 Continuing ML as PT assignment algorithm



EMTF PT Assignment Scheme

 Squeeze in all angular differences from all detectors 
without sacrificing precision
 A data science project in itself!

 Nonlinear binning, and address fields that are context driven

l Provide the most data bits to the tracks that can be 
measured best

 Even larger address space for Phase-2 Upgrade allows 
additional information such as GEM-CSC bend angles
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 30 bits to encode data 



ML/BDTs for Regression

 Trigger application is somewhere between a classification 
problem and a regression
 pT above or below a threshold, but for multiple thresholds

 We use a transformation + loss function to focus on low pT

events (whose mismeasurement to high pT drives the rate)
 Target 1/pT makes differences in low pT count more in loss

 Loss = |1/pT,meas – 1/pT,true|
2 , but studied other loss functions

l Focus on low pT more  lower rate (good), lower effic. (bad)

l Focus on low pT less  higher rate (bad), higher effic. (good)

 With redundant measurements (4 detector stations), ML can 
identify outliers (e.g. TeV muon bremsstrahlung) and reject 
them to keep efficiency high
 We used to have to introduce ad hoc algorithms to recover effic.

 See also ACAT2017 talk by A.Carnes on use of ML in 
L1Trigger (CMS CR -2017/357)
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Current Endcap Muon L1 Trigger Results

 Efficiency is high even to highest 
pT (TeV-scale)

 Rate suppressed 3X in forward 
region relative to previous 
trigger, and comparable to barrel 
rate despite much less magnetic 
bending and high backgrounds
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Future Training

 Currently studying improvements possible using Deep 
Neural Nets (DNNs) to improve performance beyond 
BDTs
 RiceU taking lead on this

 Convolutional Neural Nets (CNNs) are already heavily 
used for image recognition, and tools readily available to 
process and train on images

 Interesting side project: translating a tracking problem 
to an image recognition problem!
 UF and Rice groups are actively pursuing this possibility

 Stay tuned!
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Training on Data?

 The current PT assignment training is based on MC 
simulation samples
 Simple muon gun without any pileup…
 Essentially concentrating on the “track fit” aspects of the 

problem, assuming perfect track building

 But with pileup and radiation-induced backgrounds in 
data, we can have wrong stubtrack associations
 See evidence for that in pileup dependence of trigger rate

 Also more complex algorithms, like Deep Neural Nets, 
require huge datasets, which becomes computationally 
expensive to generate

Need to investigate training based on data
 Real experimental conditions and real backgrounds!
 But would need a rather large minimum bias data sample…

l Need a pilot study
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Training on Data in Situ?

 Going beyond running on logged minbias data, how about 
running ML training on the HLT processor nodes?
 HLT gets 10s of kHz of muons from L1

 HLT has inner tracking information, with % resolution which is 
as good as perfect compared to standalone muon reco (20%)

l CPU impact? How to collect and store training results?

 Phase-2: Self-train Muon Trigger entirely within L1?
 For Phase-2, the L1 trigger also will have inner tracking info!

 Access to MHz of muons!

 Run L1 muon trigger in “training mode” first during a special run?

l Or run training parasitically and asynchronously with more 
processors? Even a small fraction is still a high rate of muons

 Does FPGA have enough resources for the training step?
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Running Machine Learning on the FPGA?

 Avoid the address-space bottleneck of a LUT entirely 
and deploy the ML inference on the FPGA fabric

 This is big focus of computer engineering in industry and 
academics
 Especially for the more computing intensive training step, which 

also is interesting for in situ training

 FPGAs are becoming coprocessors for computing, and 
available commercially
 Amazon F1 instance, Microsoft catapult, Intel Xeon+FPGA, …

 Can we leverage? (or even lead?)

l Collaboration with UF ECE Dept, and ECE student (D.Ojika) 
to explore this option for us at UF.

l Have an image classification example working on Altera FPGA 
and Amazon F1 (Xilinx)
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Other Signatures

 Current ML application applies to reconstructing muons

 But there are other unique signatures:
 Displaced muon-like particles

l Identify tracks that do not project to IP, and measure 
momentum without beam constraint

è Already in plans for HL LHC muon trigger

è Also can come for free from Kalman filter approaches

 τ  3μ

l Muons are collimated (in η) and soft in pT.
May not penetrate full muon spectrometer

è e.g. Planning to deploy a 2μ + stub trigger at L1 soon

l Train to identify this signature within (HL)LHC environment

l Access full luminosity with near zero pT thresholds? 

 Muon (Lepton) jets, possibly displaced

l Generalized collimated muons signature
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Summary/Outlook

Obviously can generalize beyond muon signatures
 Calorimetric energy clustering, jet finding, etc.

 Started with a muon tracking trigger using a very large 
LUT for flexible calculations

Machine learning algorithms are improving upon our  
“human learning” (likelihoods) methods 

Meanwhile electronics (FPGAs) and computing platforms 
are becoming blended, offering potentially novel and 
powerful architectures for implementation and training 

 Perhaps start a Trigger ML forum if there is broad 
interest?
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