GOOD MEMORY AND NEURAL NETS

MACHINE LEARNING IN THE
(L1) TRIGGER

Darin Acosta, University of Florida
(on behalf of the UF and Rice Endcap Muon Trigger groups)
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Context: L1 Endcap Muon Tra-

% A standalone muon tracking trigger (w/o inner tracker)
> Link CSC, RPC, (+GEM) track segments into 3D tracks
> Measure track p; in the nonuniform fringe field of the endcap

| Extracted from ¢ and n deflections from detector to
detector when ftraversing the disks
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P, Calculation by Memory -

% The P+ is calculated from a memory look-up table
> A "cheat” to do the calculation quickly (~50ns) in the L1 trigger.
| Also must be fast for random addressing...
> Don't really calculate it online at all (no CPU)

> Instead, pre-calculate offline the muon momentum using
whatever algorithm you want and with however much computing
resources you havel

| But you must do this for every possible input to the memory

% The challenge:

> You must squeeze all the data for your track fit into the
address for your memory

I N bits of of data requires a memory of 2N addresses

A
v Q12 > N
v | Pt LUT
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7;1 Version 1: CSC Track-Finder, 2-

% 12 VME processors
> Xilinx Virtex-5 FPGAs and memory

%* P calculated from an SRAM
memory look-up table

> Largest available at time to do the job:
4MB > 22 bit address space

% Algorithm

> Likelihood-based fit using Ag bending
between at most 3 detector stations
to assign pt

> Multiple scattering in iron carries
momentum information in addition to
magnetic bending

* Data compression

> Introduced nonlinear scales to
“shoe-horn"” in as much data as possible
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Version 2: Endcap Muon Track-

(Phase-1 Upgrade of Previous,

% 12 uTCA double-module processors [H P
> Xilinx Virtex-7 FPGA and memory

% P+ calculated from Reduced
Latency DRAM
> 1 GB > 30 bit address space
> +8 bits (only) over previous CSCTF

* Algorithm

> Machine Learning: Boosted Decision Trees (BDTs) used for
regression to assign Pt

> Can use Ag bending between 4 detector stations, and An, and
bend angle in first station

> But note, as before, algorithm is run offline and stored in
memory
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‘1 Version 3: Endcap Muon Track-
o\ (Phase-2 Upgrade of Previous

* 12 ATCA processors - =
> Xilinx Ultrascale+ FPGA and memory ~

% P calculated from DDR4 Fol | maw |
> ~256 GB > 38 bit address space .

vvvvvvvvvvvv

> +8 bits (only) over previous EMTF ™™™ | ponasoomees
#* Algorithm Xilinx evaluation card

> In development! But starting from current EMTF as
conservative baseline

> Expand P+ assignment with more angular measurements from
new HLLHC muon detectors

> Continuing ML as P+ assignment algorithm
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Appendix B - Schematic of 2017 PT LUT address bits

& 30 bits to encode data =

EMTF PT Assignment Scheme -

PT LUT address bits | 22 | 28 | 27 | 26 25‘24|13 n‘21‘2u|19|1a 1?‘16|15 14|13‘12 11|1u 9‘3‘? E|4|4‘3‘2|1|0
Two-station tracks o|(o|0|o0 mode2 5b_theta 3b clctB 3b clctA | frB/A | 3b_dThAB 7b_dPhAB
Station2-3-4tracks |0 |0 |0 1 5b_theta | 2b_rpe | clct2 | fr | 3b dTh24 | s Sb_dPh34 7b_dPh23
Three-station tracks | 0 | mod3 S5b_theta ‘ 2b rpc | cletA | frB/A | 3b_dThAC | s 5b_dPhBC 7b_dPhAB
Four-station tracks | 1 8b_theta_rpc_clctl ‘ fr | dTh1a | 534-23 4b dPh34 5b_dPh23 7b_dPh12

*®#* Some names truncated for space. Two-station: [frB/A] = [frB][frA]. Station 2-3-4: [fr] = [fr2], [s] = [sph34].
Three-station: [mod3] = [mode3], [frB/A] = [frB][frA], [s] = [sphBC]. Four-station: [fr] = [fr1], [s34-23] = [sph34][sph23], [dTh14] = [2b_dTh14].

% Squeeze in all angular differences from all detectors
without sacrificing precision

> A data science project in itself!

> Nonlinear binning, and address fields that are context driven
| Provide the most data bits to the tracks that can be
measured best
% Even larger address space for Phase-2 Upgrade allows
additional information such as GEM-CSC bend angles
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ML/BDTs for Regression -

% Trigger application is somewhere between a classification
problem and a regression
> pr above or below a threshold, but for multiple thresholds

#* We use a transformation + loss function to focus on low p+
events (whose mismeasurement to high p; drives the rate)
> Target 1/p; makes differences in low p; count more in loss
> Loss = |1/P1 meas l/pT,True@ but studied other loss functions
| Focus on low pr more = lower rate (good), lower effic. (bad)
| Focus on low pt less = higher rate (bad), higher effic. (good)
#* With redundant measurements (4 detector stations), ML can
identify outliers (e.g. TeV muon bremsstrahlung) and reject
them to keep efficiency high
> We used to have to introduce ad hoc algorithms to recover effic.

% See also ACAT2017 talk by A.Carnes on use of ML in

L1Trigger (CMS CR -2017/357)
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(25 GeV threshold)

% Efficiency is high even to highest
pr (TeV-scale)

% Rate suppressed 3X in forward
region relative to previous
trigger, and comparable to barrel
rate despite much less magnetic
bending and high backgrounds

Current Endcap Muon L1 Triggeli-

CMS preliminary 2017 data 8.5 fb" (13 TeV)
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Future Training

% Currently studying improvements possible using Deep
Neural Nets (DNNs) to improve performance beyond
BDTs

> RiceU taking lead on this

% Convolutional Neural Nets (CNNs) are already heavily
used for image recognition, and tools readily available to
process and train on images

% Interesting side project: translating a tracking problem
to an image recognition problem!
> UF and Rice groups are actively pursuing this possibility
> Stay tuned!
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Training on Data? -

% The current P+ assignment training is based on MC
simulation samples
> Simple muon gun without any pileup...
> Essentially concentrating on the "track fit" aspects of the
problem, assuming perfect track building
% But with pileup and radiation-induced backgrounds in
data, we can have wrong stub—>track associations
> See evidence for that in pileup dependence of trigger rate

% Also more complex algorithms, like Deep Neural Nets,
require huge datasets, which becomes computationally
expensive to generate

% Need to investigate training based on data
> Real experimental conditions and real backgrounds!

> But would need a rather large minimum bias data sample...
I Need a pilot study
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Training on Data in Situ? _

% (Going beyond running on logged minbias data, how about
running ML training on the HLT processor nodes?
> HLT gets 10s of kHz of muons from L1

> HLT has inner tracking information, with % resolution which is
as good as perfect compared to standalone muon reco (20%)

| CPU impact? How to collect and store training results?

% Phase-2: Self-train Muon Trigger entirely within L1?
> For Phase-2, the L1 trigger also will have inner tracking info!
> Access to MHz of muons!
> Run L1 muon trigger in "training mode" first during a special run?

I Or run training parasitically and asynchronously with more
processors? Even a small fraction is still a high rate of muons

> Does FPGA have enough resources for the training step?
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Running Machine Learning on the-

% Avoid the address-space bottleneck of a LUT entirely
and deploy the ML inference on the FPGA fabric

% This is big focus of computer engineering in industry and
academics
> Especially for the more computing intensive training step, which
also is interesting for in situ training
% FPGAs are becoming coprocessors for computing, and
available commercially
> Amazon F1 instance, Microsoft catapult, Intel Xeon+FPGA, ..

> Can we leverage? (or even lead?)

| Collaboration with UF ECE Dept, and ECE student (D.Ojika)
to explore this option for us at UF.

I Have an image classification example working on Altera FPGA
and Amazon F1 (Xilinx)
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Other Signatures -

% Current ML application applies to reconstructing muons

% But there are other unique signatures:
> Displaced muon-like particles

| Identify tracks that do not project to IP, and measure
momentum without beam constraint

¢ Already in plans for HL LHC muon trigger
e Also can come for free from Kalman filter approaches
> T > 31

I Muons are collimated (in n) and soft in pr. _JJ

May not penetrate full muon spectrometer
¢ e.g. Planning to deploy a 2u + stub trigger at L1 soon
I Train to identify this signature within (HL)LHC environment
| Access full luminosity with near zero p; thresholds?
> Muon (Lepton) jets, possibly displaced

| Generalized collimated muons signature
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Summary/Outlook _

% Obviously can generalize beyond muon signatures
> Calorimetric energy clustering, jet finding, etc.

% Started with a muon tracking trigger using a very large
LUT for flexible calculations

% Machine learning algorithms are improving upon our
"human learning” (likelihoods) methods

% Meanwhile electronics (FPGAs) and computing platforms
are becoming blended, offering potentially novel and
powerful architectures for implementation and training

% Perhaps start a Trigger ML forum if there is broad
Interest?
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