

COMPUTING & SOFTWARE

Durga Rajaram

MICE CM 50 March 1, 2018

COMPUTING & SOFTWARE

- Offline
 - Reconstruction, simulation, globals
 - Geometry
 - Processing
- Infrastructure
 - Data curation, processing, database, networking
- Online, C&M
 - In a standby, backup, decommissioning mode
- Overall computing and software performance was very stable during the data-taking campaign
 - Many thanks to all who have contributed to the DAQ, C&M, infrastructure, reconstruction, processing
- Staffing change
 - Adam Dobbs has moved on..Paolo Franchini heads MAUS

OFFLINE: SOFTWARE

Reconstruction

- Currently @ MAUS v3.1.2
- Several improvements since the Dec data-taking
- Detectors:
 - Tracker PR fixes and improvements to address efficiency. Need to formally closeout the rolling review.
 - TOF review initiated to address efficiency. Lot of progress
- Globals:
 - Global (track matching) in MAUS production
 - Performance (speed) is a resource issue
 - Performance (efficiency) needs to be studied
- Framework:
 - New framework being developed for standardizing cuts in analyses
- Geometry:
 - more later..
- More on MAUS from Paolo...

OFFLINE: GEOMETRY

- Geometry & Fields:
 - LH2 endcaps incorrectly filled fixed
 - LiH extraneous material fixed
 - LH2 windows and support structure were in the LiH geometry
 - Incorrect diffuser description fixed
 - Composition of Brass and Tungsten inconsistent with actual diffuser materials
 - Maybe explains some of the energy loss 'features'?
 - Interpretation of alignment corrections fixed
 - Note: above fixes done for all geometries since 2016/03
 - Last week, found bug in TOF survey interpretation to be fixed
 - Wedge geometry to do
 - Do not have a GDML wedge geometry: TM's analysis uses CAD model with G4BL
 - PS & DR discussing steps to creating a wedge geometry for MAUS
 - Field model discrepancy between hall probes and MAUS model
 - Could be positions of hall probes, or coil positions to loop back after survey
 - Geometry infrastructure:
 - Virtual planes needed at various locations/apertures to store global tracking: Added in GDML so they move with the survey

OFFLINE: DATA PROCESSING

- Offline reconstruction was being done in MLCR
 - Worked very well during data-taking
 - In addition to the quick "no-globals" output, a globals-version was running as a parallel production task
 - All 2017/x data reconstructed with previous MAUS version
- Since the end of data-taking
 - Globals issues were fixed in MAUS
 - Decided that there should be only one production with globals
- Processing resources
 - With globals, the processing time increases by x3-5
 - As a result, require additional computing resources to keep processing time reasonable
 - Attempted adding "idle" onrec machines to processing chain: x3 cores
 - Discovered memory leaks: ~ fixed.
 - Despite that, would take > 1 month to process entire Step4 data clearly unacceptable
 - Decided we should use resources meant for farming data, i.e. GRID

DATA PROCESSING...GRID

- Resurrecting the GRID for batch processing required several changes:
 - Old grid submission system defunct, adapted DIRAC framework
 - The reco-mover machine & software for copying reconstructed data to tape
 adapted to pick up files from GRID cache.
- Production status
 - Started testing a few days ago. Seems OK so far. First production on GRID started Tuesday night
 - Meanwhile DR started processing LiH data with MLCR resources
 - Note: default production is with Globals, but only with μ pid hypothesis
 - Will have to see if memory issues crop up
 - GRID processing means extra bureaucracy & less direct control patching code, cards. But it's the only sustainable path in the long-term.
- Staffing: currently DM is the only one who can submit batch & MC jobs

MC PROCESSING

- Dimitrije pushes MC requests to the Grid & turn around time is ~ < 1 day
- Status & issues:
 - Have generated beam libraries for the now-standard pion-beam currents & have run MC against those
 - Some discrepancies still noted between generated beam & data
 - CR has tweaked PF's dipole currents for emittance analysis should this be standard? If so, need to generate libraries with those currents
 - Waiting to generate MC with latest MAUS & geometry fixes
 - Need to check framework for running non-standard MC

DECOMMISSIONING

- Developing plan for decommissioning
 - Core services needed for >= duration of analysis
 - Micemine, CDB, Archive viewer, Reconstruction mover, elog..
 - Computing infrastructure in RR, RR2
 - RR2 services need to be maintained until mapping is done
 - Various equipment DAQ, Online, C&M servers, Target some owned by collaborating institutions
 - Need to ensure data & software backed up & backups work
 - E.g. calibration data, scripts, software
 - Data curation, data handling infrastructure
 - Need to keep reco-mover alive
- See Paolo's and Henry's talks for more details

DECOMMISSIONING...CDB

- CDB needed for reconstruction, simulation, analysis
- Currently CDB master in MLCR writable only from here
- Post-MLCR still want ability to write to CDB
 - Calibrations, MC cards
- Plan:
 - Have the CDB master & slave in PPD
 - Requires a new (virtual)machine in the process of setting one up, thanks to Chris Brew
 - Those who need write-access to CDB (currently DM, DR)
 will need RAL PPD accounts to access CDB master

PUBLICATIONS

- MICE Software publication:
 - Covers MAUS framework, simulation & reconstruction software
 - More progress recently thanks to help from AD
 - DR cleaning up 1st draft
 - Will have it done for second pass by end of next week.
- Does not cover DAQ, C&M, CDB, Data-handling

Contents

1.	Intr	roduction	2
	1.1	The MICE Experiment	2
	1.2	Software Requirements	2
2.	MAUS		3
	2.1	Code Design	3
	2.2	Data Structure	6
		2.2.1 Physics Data	6
		2.2.2 Top Level Data Organisation	10
	2.3	Data Flow	10
	2.4	Testing	10
3.	Moi	nte Carlo	11
	3.1	Beam generation	12
	3.2	GEANT4	12
	3.3	Geometry	12
	3.4	Tracking, Field Maps and Beam Optics	13
	3.5	Detector response and digitization	13
4.	Reconstruction		14
	4.1	Time of flight	14
	4.2	Scintillating fiber trackers	14
	4.3	KL calorimeter	15
	4.4	Electron-muon ranger	15
	4.5	Cherenkov	15
	4.6	Global reconstruction	15
		4.6.1 Global Track Matching	16
		4.6.2 Global PID	16
	4.7	Online reconstruction	19
_	G		20

-1-

SUMMARY

- Lots of improvements and fixes since end of data-taking
 - Tracker PR, geometry descriptions
- Issues continue to be addressed:
 - TOF efficiency, remaining geometry issues
- Primary processing moving to the GRID
 - Submission & copying framework modified & tested
- Plans being developed for transitioning & decommissioning of computing infrastructure