Field Off Scattering Studies: Current Status

John Nugent

University of Glasgow

john.nugent@glasgow.ac.uk

2/3/2018

2/3/2018

1 / 25

Job List

 Requested boost to MC statistics 	(\checkmark)
 Investigating fiducial selection 	(\checkmark)
• Rotating vector definitions to cross-check	(\checkmark)
• P correction by Bethe-Bloch	(\checkmark)
• Impact parameter plot	(\checkmark)
• Include tracker acceptance into analysis	(\checkmark)
 Update all plots and tables 	(\checkmark)
 Include MC Data comparison 	(√)

Number of comments at CM

Scattering Data

- Field off data sets were collected in ISIS run periods 2015/03 and 2015/04
- A momentum dependent multiple scattering measurement is made
 - Measure empty channel scattering
 - Convolved with physics model of scattering in absorber prediction.
 - ► Measure absorber scattering
 - A Bayesian deconvolution algorithm unfolds absorber scattering distribution
 - χ^2 comparison between data and prediction
 - Width of scattering distribution:⊕ as a function of P

Selection

Only minor changes to selection

- Require a US track. If a DS track not extant, statistics are set to overflow values.
- Analysis done in 200 ps bins, as shown in TOF plot
- Require projection of US tracks to appear, when 12 mrad radial angle is added, within central 140 mm radius of DS trkr plane 5
- Tracks are projected to the upstream face of the diffuser, if track crosses the diffuser it is rejected

Cut plot

Cut plot

Cut plot

Momentum Calculation

Momentum is measured with

$$\rho = \frac{m}{\sqrt{\frac{t_{\mu}^2}{t_e^2} - 1}} \tag{1}$$

- ② If there is a hit in TOF2 this is done with TOF1+2 information
- \bullet If there is no hit in TOF2 this is done with TOF0+1
- Only in the case of TOF0+1 is a correction applied to account for the energy loss in the channel.

Momentum Correction

- Developed analytic formula for momentum correction over the summer - works fine
- For greater transparency now use Bethe-Bloch most probable energy loss for known material budget in channel

$$\Delta_{p} = \xi \left[\ln \frac{2mc^{2}\beta^{2}\gamma^{2}}{I} + \ln \frac{\xi}{I} + j - \beta^{2} - \delta(\beta\gamma) \right]$$
 (2)

where

$$\xi = (K/2)\langle Z/A\rangle z^2(x/B^2)$$

$$I = \text{mean excitation energy}$$

$$i = 0.2$$
(3)

• Tracks crossing the diffuser ring are cut

Compare Before Correction with MC

Compare Bethe Bloch Correction with MC

Corrected P upstream vs MC Truth

Before After Correction Residuals

- 200 MeV/c case
- Compare MC recon and data

13 / 25

- 200 MeV/c case
- Compare MC recon and data

- 200 MeV/c case
- Compare MC recon and data

Graph

- 200 MeV/c case
- χ^2 between iterations

Fiducial Scan

- ullet Ultimately want bin by bin correction for acceptance in heta
- ... MC must be used, takes into account the efficiency, tracker resolution + selection. MC is treated in idential manner to data.

$$\text{acceptance} = \frac{\text{No. of tracks in } \theta \text{ bin MC Truth that are reconstructed}}{\text{No. of tracks in } \theta \text{ bin MC Truth}} \tag{4}$$

- Detector efficiency know to be $\sim 100\%$. selection acceptance must be $\sim 100\%$. If not then there is geometric acceptance effect which is a bias in scattering measurement
- Track upstream is propagated to most downstream plane in DSS, nominal scattering fixed 40 mrad.
- Scan cut applied to analysis and calculate track acceptance
- Justify cuts based on acceptance scan

Fiducial Scan

Forward convolution

• Discussed asymmetries on Monday - investigating geometries that were used for reconstruction

 John Nugent (UGlas)
 MCS Analysis
 2/3/2018
 19 / 25

Deconvolution of Raw Scattering Data

 Use a iterative algorithm that uses the conditional probability to characterize the response of the reconstructed scattering angle to the true scattering angle

Bayes Theorem

$$P(C_i|E_j) = \frac{P(E_j|C_i)P_0(C_i)}{\sum_{l=1}^{n_c} P(E_j|C_l)P_0(C_l)}$$

- We want $C_i = \Delta \theta_Y^{abs}$ the deflection angle in the absorber material.
- We measure $E_j = \Delta \theta_Y^{tracker}$ the deflection angle measured at the first tracker plane.

Tracker Acceptance

- 200 MeV/c case
- Match track upstream and downstream
- TOF selection
- ullet Calculate angle heta as per analysis
- Downstream acceptance is defined

No. of tracks in θ bin MC Truth that are reconstructed

No. of tracks in θ bin MC Truth

(5)

Systematic Errors

- Several sources have been considered
 - Material thickness uncertainties comments from referees on Monday about this cut
 - Alignment uncertainties
 - ▶ TOF uncertainties
 - Fiducial volume uncertainties
- TOF systematic affects the momentum scale and is the dominant systematic
- All systematics are combined and included in final result

Results - deconvolution

p (MeV/c)		Meas. (mrad)	G4 Pred.	$\chi^2/{\sf DoF}$	CC Pred.	$\chi^2/{\sf DoF}$
171.89±0.07	θ_X	22.82±0.33±0.54	19.27±0.1	1074.5 / 34	19.45±0.1	963.8 / 34
171.89 ± 0.07	θ_Y	$23.13\pm0.39\pm0.61$	19.05±0.1	1657.4 / 34	19.18±0.1	1475.5 / 34
199.3±0.06	θ_X	18.7±0.18±0.46	16.61±0.07	1306.3 / 34	16.21±0.07	1635.8 / 34
199.3 ± 0.06	θ_Y	$17.91 \pm 0.17 \pm 0.76$	16.39±0.07	1825.9 / 34	16.04±0.07	1885.4 / 34
243.73±0.08	θ_X	14.33±0.08±0.49	13.29±0.04	1327.3 / 34	13.06±0.03	1617.4 / 34
243.73±0.08	θ_Y	$14.4 \pm 0.09 \pm 0.5$	13.1±0.04	4064.4 / 34	13.03±0.03	3297.5 / 34
171.89±0.07	θ ² Scatt	32.92±1.23±0.25	26.91±0.23	2647.9 / 46	27.17±0.23	2744.9 / 46
199.3 ± 0.06	θ ² Scatt	25.34±0.52±0.69	23.19±0.15	1011.5 / 46	22.71±0.15	1154.8 / 46
243.73±0.08	θ ² Scatt	20.14±0.2±0.72	18.61±0.07	1338.1 / 46	18.42±0.07	1394.5 / 46

Θ as a Function of Momentum

- Scan across the entire momentum range and measure scattering in both projections in each bin
- Comparison with PDG formula is made and the fit is made for $a=\sqrt{\frac{z}{X_0}}(1+0.038\ln{\frac{z}{X_0}})$

Job List

- Note has been updated, draft of paper has been prepared
- Update plots colour scheme/format etc
- Comments from referees on Monday, list of actions that will incorporated over next 2-3 weeks

Selection

		μ Beams, LiH abs.		
Selection	Description	172	200	240
TOF1 trigger	At least two raw TOF slab hits exist	1.	1.	1.
	and at least one in each TOF plane.			
Upstream	There is one US track and at most	66.84 %	68.05 %	74.15%
track selection	one track in the DS tracker (If there			
	is no DS track $\theta_X = \theta_Y = 45^\circ$).			
TOF timing	Select muons from run at the target	4.1 %	5.42 %	7.77 %
selection	momentum.			
Fiducial selec-	For projected US tracks	0.09 %	0.19 %	0.41 %
tion	$\sqrt{x^2+y^2} < r_0$ at plane			
	5 of DS tracker, where			
	$x = x_0 + (\frac{dx}{dz} + a_0 \cos \phi) \Delta z,$			
	$y = y_0 + (\frac{dy}{dz} + a_0 \sin \phi) \Delta z$, and			
	$\phi = an^{-1} rac{dy/dz}{dx/dz}$. $r_0 = 150$ mm and			
	$a_0 = 0.012$ assumed.			
Diffuser cut	US tracks are projected to the dif-	0.07 %	0.16 %	0.36 %
	fuser position any track within the			
	radius of the diffuser annulus is re-			
	jected			

Selection

Transverse Distance at Absorber

Request to understand distance between projected tracks at absorber centre

Project tracks to centre of absorber and calculate transverse distance

Transverse Distance at Absorber

Request to understand distance between projected tracks at absorber centre

Project tracks to centre of absorber and calculate transverse distance

Rotate Angle Definitions

Definition of scattering angles comes from Cobb Note

$$\tan \theta_p = \frac{\vec{d} \cdot \vec{v'}}{\vec{d} \cdot \vec{u}} \tag{6}$$

where

$$\vec{\mathbf{v}} = \vec{\mathbf{s}} \times \vec{\mathbf{u}} \tag{7}$$

where \vec{s} is arbitrary defined as $\vec{s} = (0, -1, 0)$

Test that this definition is arbitrary by rotating around the z-axis and plot RMS of scattering distribution

Rotate Angle Definitions

Scattering Data

Scattering Angle Definitions

- In the top diagram both the solid vectors are in the plane of the square i.e. the plain of the board. The y-axis is coming out of the board
- If both the up- and downstream vector were in the same plane then the subtraction of the simple projected angle would be sufficient
- The bottom figure is a side on view of the top figure. If the up- and downstream vectors are in two different planes then a more consider apporach is required as detailed in http://www.ppe.gla.ac.uk/ ~jnugent/Projected-angles.pdf by John Cobb

7 / 8

MC Truth After Deconvolution

- \bullet Want to correct absorber scattering distribution bin by bin in the $\theta_{\rm scat}$
- Bin by bin correction can not be done in data, if the track is not measured down stream then we never measure the scattering angle
- Can only be done in MC truth
- correction must be done on final deconvolved distribution, raw distributions include tracker resolution + interstitial material
- We calculate the acceptance of the tracker system (Up+down)
- MC selection == data selection
- Apply acceptance correction to final deconvolved scattering distributions