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Monte Carlo Event generators

Standard methods to infer mt are based on the use of MC event
generators to mimic top-pair production process.

Current standard NLO+PS: hard process described with NLO
accuracy, further emissions handled by the PS in the soft and
collinear limit.

POWHEG BOX is an NLO event generator, based on the POWHEG
method. It generates the hardest emission. The event is then
completed by standard SMC that implements the PS.
[arXiv: hep-ph/0409146]

Vetoed shower: emissions harder than the first one are vetoed.

The SMC Pythia and Herwig offer the possibility to complete
events generated with POWHEG BOX (LHIUP).
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Top pair production in POWHEG BOX

Three current implementation of top pair production in POWHEG BOX

1 hvq [arXiv:0707.3088]

⇒ NLO corrections in production.
⇒ Decay performed at LO using reweighting.
⇒ Approximate spin correlation and offshell effects.

2 tt̄dec [arXiv:1412.1828]

3 bb̄4` [arXiv:1607.04538]
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⇒ Decay performed at LO using reweighting.
⇒ Approximate spin correlation and offshell effects.

2 tt̄dec [arXiv:1412.1828]
⇒ NLO corrections in production and decay using NWA.
⇒ Spin correlation and offshell effects exact at LO.
⇒ Interference with process sharing the same final state at LO.

3 bb̄4` [arXiv:1607.04538]

⇒ pp→ bb̄`ν̄` l̄νl at NLO.
⇒ Exact spin correlation and offshell effects at NLO
⇒ Interference with process sharing the same final state at NLO.
⇒ Interference of radiation in production and decay.
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Interface between POWHEG BOX RES and SMC

New resonance-aware formalism that generates emissions preserving
the virtuality of the intermediate resonances. This new formalism also
offers the opportunity to generate multiple emissions.

Production (ISR)

t

t̄

dσ = B̃ dΦb
∏

αISR,αb,αb̄

[
∆α(kmin

⊥ ) + ∆α(kα⊥)
Rα(Φb,Φ

α
rad)

B(Φb)
dΦrad

]
.

The SMC programs Pythia8 and Herwig7 veto radiation in production
harder than the POWHEG one. Radiation from resonances is left, by
default, unrestricted.

We implemented the PowhegHooksBB4L and bb4lShowerVeto classes to
perform the veto also in the resonances decay.
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Our strategy

Experimental analyses based on hvq: we want to show it is obsolete and it
should be replaced with bb̄4` (or with tt̄dec for semileptonic or hadronic top
decay). In order to do this, we employed a simplified version of the
template method.

1 We generate samples pp→ bb̄e+νeµ
−ν̄µ for mt =mt,c = 172.5 GeV

with the hvq, tt̄dec and bb̄4` generators and we shower them with
Pythia 8 and Herwig 7.

2 We consider a generic observable that can be written as
O = Oc +B(mt −mt,c) +O(mt −mt,c)

2.
The O value we measure for the sample generated with mt,c is the Oc
value associated to that given NLO+PS generator.

3 We generate samples for several mt values for hvq that we shower with
Pythia 8 in order to extract the B coefficient of a given observable.
We choose the value bb̄4`+Pythia 8 as reference sample, the mass
extracted using another generator is given by

mt = mt,c −
Oc −Oref

c

B
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Reconstructed top mass

We take mWbj as a proxy for all top-mass sensitive observables that
rely upon the mass of the decay products.
⇒ W± = hardest `± + corresponding hardest (anti-)neutrino;
⇒ B-jet: jet containing the hardest B̄ (B) hadron;
⇒ We assume to know the b flavour in the B-jet to match it with the
W .

Experimental resolution effects are simply represented as a Gaussian
smearing (σ =15 GeV)

f̃(x) = N
∫

dy f(y) exp

(
−(x− y)2

2σ2

)
We fit the smeared distribution using a skewed Lorentzian

f̃(mWbj ) =
b
[
1 + d

(
mWbj − a

)](
mWbj − a

)2
+ b2

+ e , mmax
Wbj = a+

√
1 + d2 b2 − 1

2d

Silvia Ferrario Ravasio — Dec 20th , 2017 mt determination using new NLO+PS generators 6/16



Reconstructed top mass

We take mWbj as a proxy for all top-mass sensitive observables that
rely upon the mass of the decay products.

Experimental resolution effects are simply represented as a Gaussian
smearing (σ =15 GeV)

f̃(x) = N
∫

dy f(y) exp

(
−(x− y)2

2σ2

)

We fit the smeared distribution using a skewed Lorentzian

f̃(mWbj ) =
b
[
1 + d

(
mWbj − a

)](
mWbj − a

)2
+ b2

+ e , mmax
Wbj = a+

√
1 + d2 b2 − 1

2d

Silvia Ferrario Ravasio — Dec 20th , 2017 mt determination using new NLO+PS generators 6/16



Reconstructed top mass

We take mWbj as a proxy for all top-mass sensitive observables that
rely upon the mass of the decay products.

Experimental resolution effects are simply represented as a Gaussian
smearing (σ =15 GeV)

f̃(x) = N
∫

dy f(y) exp

(
−(x− y)2

2σ2

)
We fit the smeared distribution using a skewed Lorentzian

f̃(mWbj ) =
b
[
1 + d

(
mWbj − a

)](
mWbj − a
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Wbj = a+

√
1 + d2 b2 − 1

2d

1 mmax
Wbj

is assigned to the bin with highest y value;
2 We set ∆ equal to the FWHM.
3 We find the values of the parameters that minimize the χ2in the

range [mmax
Wbj
−∆,mmax

Wbj
+ ∆].

4 From the fitted function we extract mmax
Wbj

5 If χ̃2 < 2 we stop; otherwise ∆→ 0.95×∆ and we go to step 3.
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)
We fit the smeared distribution using a skewed Lorentzian
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[
1 + d

(
mWbj − a

)](
mWbj − a

)2
+ b2

+ e , mmax
Wbj = a+

√
1 + d2 b2 − 1

2d

We can assume B ' 1, thus

∆mt ' −∆mmax
Wbj
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Reconstructed top mass: which NLO generator?

Brief look without smearing:
Large shape differences with hvq if MEC are off.
With MEC, differences among the generators of the order of
10-20 MeV.
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Reconstructed top mass: which NLO generator?
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Reconstructed top mass: which SMC generator?
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B-jet energy peaks

Based on arXiv: 1603.03445.

If we do not vary mt too much, we can write

Emax
bj = Oc +B(mt −mt, c) .

We fit
d σ

d logEbj

1

Ebj
to a fourth order polynomial.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

3.5 4 4.5 5 5.5 6 6.5

d
σ
/d

lo
g
(E
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E
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We find B ' 1

2
⇒ ∆mt ' −2∆Emax

bj .
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B-jet energy peaks: which NLO generator?

Large differences between bb̄4` and hvq that does not contain radiative
correction in decays and the Wt contribution. (+456± 103 MeV)

Small differences between bb̄4` and tt̄dec that has radiative correction in
decays, implemented using NWA, and the Wt at LO. (−161± 102 MeV)
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B-jet energy peaks: which SMC generator?

bb̄4`
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Leptonic observables

Based on arXiv:1407.2763.

Measure 〈O〉 for

Oi =
{
pj⊥(`+), pj⊥(`+`−), mj(`+`−), (E(`+) + E(`−))j , (p⊥(`+) + p⊥(`−))j

}
with j = 1, 2, 3.

Assume 〈Oi〉 = Oc,i +Bi
(
mj
t −m

j
t, c

)
, thus the extracted mass

corresponding to the observable i is given by

mt,i =

[
mj
t, c −

Oc,i −Oref
c,i

Bi

]1/j
.

Obtain Oc,i and its uncertainty due to PDF and scale variations.
Combine all the errors in quadrature and mt,i and ∆mt,i.

Average all the measurements using as covariance matrix

Vik = ∆mt,i
2δik + (1− δik) min

(
∆mt,i

2, ∆mt,k
2, ρik∆mt,i∆mt,k

)
where ρik is the statistical correlation between Oi and Ok.
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Based on arXiv:1407.2763.
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with j = 1, 2, 3.

Assume 〈Oi〉 = Oc,i +Bi
(
mj
t −m

j
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)
, thus the extracted mass

corresponding to the observable i is given by

mt,i =
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mj
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Oc,i −Oref
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.

Obtain Oc,i and its uncertainty due to PDF and scale variations.
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Leptonic observables
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Summary and Outlooks

Which Observable?

smeared mWbj : oversimplification; small sensitivity to the
production mechanism (small pdf/scale variations);
Ebj : small sensitivity to the production mechanism, large shower
uncertainties.
leptonic observables: sensitivity to the production mechanism,
large shower uncertainties.

Which NLO generator (using Pythia8+MEC)?

bb̄4` generator is the most accurate one and should be preferred if
possible.
smeared mWbj : hvq and tt̄dec lead to a systematic uncertainty of
roughly 150 MeV.
Emax
bj

: tt̄dec ∆mt ' 0.3± 0.2 GeV, hvq ∆mt ' 0.9± 0.2 GeV.
leptonic observables: tt̄dec mt 700 MeV smaller than the nominal
value, hvq not accurate for observables depending on spin
correlations although better average (mt = 172.2 GeV).
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Summary and Outlooks

Pythia8 or Herwig7?

hvq must be showered with both showers, the difference leads to a
systematic uncertainty of 250 MeV when using mWbj , 2 GeV
when using Ebj/leptonic observables.
when using bb̄4` (or tt̄dec), the difference between Pythia8 and
Herwig7 is greater than 1 GeV even for mWbj , 4 GeV Ebj , 3
GeV leptonic observables.
matching procedure in Herwig7 introduces new systematic errors
and requires further investigation.
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“Measurement” of the top-quark mass

Many ways to infer mt, the most precise is the template method

1 Top momentum reconstruction from its decay products.
2 Given a MC event generator, produce several templates varying

the input mass mt.
3 Extract the parametric dependence on the input mass mt.
4 The mt value that fits the data the best is the extracted mass.
5 mt can depend on the MC used
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⇒ B-jet;
⇒ W decay products:
→ charged lepton + neutrino
→ two light jets

2 Given a MC event generator, produce several templates varying
the input mass mt.
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5 mt can depend on the MC used
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“Measurement” of the top-quark mass

Many ways to infer mt, the most precise is the template method
1 Top momentum reconstruction from its decay products.
2 Given a MC event generator, produce several templates varying

the input mass mt.
3 Extract the parametric dependence on the input mass mt.
4 The mt value that fits the data the best is the extracted mass.
5 mt can depend on the MC used

⇒ if A is more accurate
than B, use A;
⇒ otherwise |mA

t −mB
t |

contributes to the sys-
tematic uncertanty;
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Phenomenological setup

Process: pp→ b b̄ e+ µ− νe ν̄µ, dominated by top pair production
plus leptonic decay, at

√
s = 8 TeV.

Central PDF: MSTW2008.

Dynamic scale choice

tt̄ events: µ =
[
(E2

t − p2
z,t)(E

2
t̄ − p2

z,t̄)
]1/4

Zb̄b events: µ =
p2
Z

2

Scale variations
(KF,KR) = (1, 1) , (2, 2) ,

(
1
2 ,

1
2

)
, (1, 2) ,

(
1, 1

2

)
, (2, 1) ,

(
1
2 , 1
)

PDF

Rwgt using several sets: PDF4LHC15, NNPDF3.0, CT14nlo,
MMHT2014.
Rwgt 30 pdf inside the set PDF4LHC15 nlo 30 pdfas, Gaussian
symmetric error, for hvq only.

αS: Use NNPDF30 nlo as 0115 and NNPDF30 nlo as 0121; half
difference.
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Physics objetcs

B hadrons are considered as stable.

Jets reconstructed using anti-k⊥ algorithm for R = 0.5.

Impose selection cuts to suppress the Wt background:
⇒ 2 opposite charged leptons with: p⊥(`) > 20 GeV, |η(`)| < 2.4
⇒ 2 B-jet with opposite b flavour with: p⊥(jB) > 30 GeV,
|η(jB)| < 2.5

We assume to know neutrinos momentum. W+ reconstructed
merging the hardest `+ and the hardest neutrino; W−

reconstructed merging the hardest `− and the hardest
anti-neutrino.

Reconstructed t: W+ and jet containing the hardest b-flavoured
hadron; reconstructed t̄: W− and jet containing the hardest
b̄-flavoured hadron.
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mWbj : backup material

mWbj extracted peak (with smearing): difference between Pythia8

and Herwig7 for different jet radius values.
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Ebj : R dependence

Emax
bj

: difference with bb̄4` (left) for all generators showered with

Pythia8, and difference between Pythia8 and Herwig7 (right) for all
generators for several values of the jet radius.
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Ebj : scale, PDF and αS dependence

Ebj : independent from the production mechanism, indeed small
dependence on scale/PDF.

% − bb̄4` (µR, µF) PDF αS stat

bb̄4` +0 MeV +22
−15 MeV - ±35 MeV ±81 MeV

tt̄dec +161 MeV +22
−24 MeV - ±17 MeV ±62 MeV

hvq −456 MeV +32
−47 MeV ±30 MeV ±25 MeV ±64 MeV
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Leptonic observables

First Mellin moment for mt = mt, c for all generators showered with
Pythia8. The angular coefficients have been obtained by considering
three mt values: 169.5, 172.5, 175.5 GeV.

Obs gen B 〈Oc〉 % − bb̄4` (µF, µR) PDF αS

[GeV] [MeV] [MeV] [MeV] [MeV]

bb̄4` 0.17± 0.04 56.653± 0.050 - +79
−86 - ±26 (±92)

〈pT(`+)〉 tt̄dec 0.19± 0.02 56.804± 0.033 +151± 60 +84
−86 - ±41 (±23)

hvq 0.19± 0.02 56.738± 0.032 +85± 59 +82
−86 ±130 ±49 (±23)

bb̄4` 0.30± 0.05 69.759± 0.059 - +710
−444 - ±85 (±110)

〈pT(`+`−)〉 tt̄dec 0.30± 0.02 69.660± 0.040 −100± 71 +538
−361 - ±78 (±28)

hvq 0.29± 0.02 69.201± 0.038 −558± 71 +553
−367 ±95 ±95 (±27)

bb̄4` 0.31± 0.08 108.685± 0.099 - +234
−341 - ±57 (±191)

〈m(`+`−)〉 tt̄dec 0.31± 0.03 108.812± 0.065 +127± 119 +244
−259 - ±33 (±46)

hvq 0.33± 0.03 109.200± 0.064 +515± 118 +247
−265 ±395 ±68 (±45)

bb̄4` 0.55± 0.14 186.803± 0.163 - +342
−385 - ±540 (±305)

〈E(`+`−)〉 tt̄dec 0.56± 0.05 187.005± 0.107 +201± 195 +448
−434 - ±474 (±76)

hvq 0.56± 0.05 186.809± 0.105 +6± 194 +441
−427 ±1068 ±559 (±74)

bb̄4` 0.38± 0.08 113.322± 0.095 - +165
−184 - ±93 (±178)

〈pT(`+) + pT(`−)〉 tt̄dec 0.39± 0.03 113.598± 0.063 +276± 114 +165
−174 - ±72 (±44)

hvq 0.39± 0.03 113.425± 0.062 +104± 113 +165
−174 ±259 ±101 (±43)

Silvia Ferrario Ravasio — Dec 20th , 2017 mt determination using new NLO+PS generators 24/16



Radiation scale in POWHEG BOX

In the POWHEG formalism, the emission probability at a scale µ is given
by the Sudakow form factor

∆(µ) = exp

[
−
∫
dφradθ

(
k⊥(µ′)− k⊥(µ)

) αS(µ′)

2π

Rs (k⊥(µ′))

B

]
,

where k⊥(µ) is the transverse momentum of the emitted particle
corresponding to the scale µ.

In the Fortran code POWHEG BOX µ = k⊥ and there is no way to change
the definition of the scale of the emission.

Since αS(µ) = αS (µ;αS(mZ)) = αS(mZ)

1+β0αS(mZ) log

(
µ2

m2
Z

) instead of

changing µ, is possible to change the reference value of αS(mZ).

For an average k⊥=30 GeV, we get:
αS(k⊥; 0.118) = 0.1402

αS(2k⊥; 0.118) = 0.1253 αS(0.5k⊥; 0.118) = 0.1590

αS(k⊥; 0.115) = 0.1360 αS(k⊥; 0.121) = 0.1444

αS variations should be enhanced by a factor 4 to get the
corresponding uncertainty on the scale of the emission.
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Interface between POWHEG BOX and SMC

The radiation provided by the SMC with transverse momentum
larger than scalup = kPOWHEG⊥ must be vetoed: vetoed showers.

p⊥
ISR: (kPOWHEG⊥ )

2
= p2
⊥

p2

p1
FSR: (kPOWHEG⊥ )

2
= 2p1 · p2

E2

E1

It is desiderable that the SMC employs the POWHEG BOX

definition of k⊥ to perform the veto.

Problems have been observed e.g. in dijet production, a solution
was proposed in Ref. [arXiV:1303.3922]. For FSR, in case of
massless emitter, scalup is computed by new with the definition

(
kPOWHEG⊥

)2
= d12 = 2p1 · p2

E1E2

(E1 + E2)2

In Pythia8, it is possible to veto using this “improved”
definition: PowhegHooks.
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Interface between POWHEG BOX and SMC

Pythia8 is a k⊥-ordered shower and the hadronization model
employed is the Lund string fragmentation one.

Hardest emission
Vetoed shower

⇒ Natural matching with POWHEG radiation.

Herwig7 is an angular-ordered shower and it employs the cluster
model.

Vetoed-Truncated Shower
Hardest Emission Vetoed Shower

tI t0

pT , t

⇒ Truncated-vetoed showers often give rise to little contribution;
so only a vetoed shower is implemented.
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POWHEG BOX RES

Technical problems of processes containing resonances whose decay products can

radiate:

1 NLO computation: we need a subtraction scheme that constructs the
counterterms to real diagrams preserving the virtuality of the resonances, in
order not to spoil the cancellation of the infra-red poles. This simply results
in poor convergence.

2 Hardest emission generation (more severe): in POWHEG formalism, the
emission probability is described by R/B. If R contains an onshell
resonance, while B does not, the ratio R/B is large, also for high transverse
momentum radiation. Moreover it does not approach the Altarelli-Parisi
splitting function in the infrared limit, as it is required by the POWHEG
method, giving rise to unphysical distortions of the distributions.

If we can separate the resonances in different singular regions (e.g. pp→ tt̄), we
can write

dσ = B̃dΦb
∏

αISR,αb,αb̄

[
∆α(k

min
⊥ ) + ∆α(k

α
⊥)
Rα(Φb,Φ

α
rad)

B(Φb)
dΦrad

]
.

The multi-emission formalism is crucial for process where ISR is much more likely:
in this way the first emission is generated by POWHEG BOX RES instead of the PS.
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method, giving rise to unphysical distortions of the distributions.

If we can separate the resonances in different singular regions (e.g. pp→ tt̄), we
can write

dσ = B̃dΦb
∏

αISR,αb,αb̄

[
∆α(k

min
⊥ ) + ∆α(k

α
⊥)
Rα(Φb,Φ

α
rad)

B(Φb)
dΦrad

]
.

The multi-emission formalism is crucial for process where ISR is much more likely:
in this way the first emission is generated by POWHEG BOX RES instead of the PS.
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POWHEG BOX RES and SMC: general algorithm

When a LH event is read we get
1 Production process (ISR): Read scalup from the file. For

remnant we set scalup =
√
ŝ/2.

2 t (ot t̄) resonance: If an emission is present,

µ2
t = 2pb · pg

Eg
Eb

in the top frame. Otherwise µ2
t = 0.8 GeV2.*

3 Check that the PS generates emissions off the top decay products
with a k⊥ smaller than µt.

*For hvq and remnant events in bb̄4` emissions in decay are not generated, thus
no veto is performed.
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POWHEG BOX RES and PYHTIA 8 and HERWIG 7

We implemented subroutines to veto radiation in the t resonance:

PYTHIA 8: It is possible to use PowhegHooks to veto radiation in
production. We implemented PowhegHooksBB4L for emissions in
decay:

1 FSREmissionVeto (default):
After each emission, we decide if keeping or rejecting it.
It employs the POWHEG BOX definition of k⊥.

2 ScaleResonance:
µt is used as starting scale for the shower off the t (t̄) resonance.
The shower scale is the PYHTIA transverse momentum.

HERWIG 7: we implemented two alternatives

1 bb4lShowerVeto (default):

After each emission, we decide if keeping or rejecting it.
Herwig7 provides us the k⊥ and the momenta of the emitted
particles are not known yet.

2 bb4lFullShowerVeto:

before the hadronization phase, we look at the emissions
originated from the t decay chain, if every emission is softer than
the POWHEG one the event is accepted, otherwise it is reshowered.
k⊥ is computed using the “improved” POWHEG BOX definition.
Partons have been reshuffled and the k⊥ computed contains
ambiguity due to this procedure.
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Matching procedures

We now compare the results obtained with bb̄4`+Pythia8 using
the different matching procedures. Results are expressed in GeV.

Observable FSREmission FSR+PowhegHooks ScaleResonance

mmax
Wbj

172.793± 0.004 172.828± 0.005 172.816± 0.004

mmax
Wbj

(smear) 172.717± 0.002 172.794± 0.002 172.737± 0.002

Emax
bj

71.200± 0.081 71.204± 0.082 71.179± 0.082

We now compare the results obtained with bb̄4`+Herwig7 using
the different matching procedures. Results are expressed in GeV.

Observable bb4lShowerVeto bb4lFullShowerVeto

mmax
Wbj

172.727± 0.005 172.776± 0.005

mmax
Wbj

(smear) 171.626± 0.002 171.829± 0.002

Emax
bj

69.050± 0.081 69.190± 0.082

Silvia Ferrario Ravasio — Dec 20th , 2017 mt determination using new NLO+PS generators 31/16


