

TOP-QUARK MASS DETERMINATION USING NEW NLO+PS GENERATORS

Silvia Ferrario Ravasio*

Milan Christmas Meeting, 20^{th} December 2017

*In collaboration with T. Ježo, P. Nason and C. Oleari [1712.XXXX]

• Standard methods to infer m_t are based on the use of MC event generators to mimic top-pair production process.

- Standard methods to infer m_t are based on the use of MC event generators to mimic top-pair production process.
- Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

- Standard methods to infer m_t are based on the use of MC event generators to mimic top-pair production process.
- Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

• POWHEG BOX is an NLO event generator, based on the POWHEG method. It generates the hardest emission. The event is then completed by standard SMC that implements the PS. [arXiv: hep-ph/0409146]

- Standard methods to infer m_t are based on the use of MC event generators to mimic top-pair production process.
- Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

- POWHEG BOX is an NLO event generator, based on the POWHEG method. It generates the hardest emission. The event is then completed by standard SMC that implements the PS. [arXiv: hep-ph/0409146]
- Vetoed shower: emissions harder than the first one are vetoed.

- Standard methods to infer m_t are based on the use of MC event generators to mimic top-pair production process.
- Current standard NLO+PS: hard process described with NLO accuracy, further emissions handled by the PS in the soft and collinear limit.

- POWHEG BOX is an NLO event generator, based on the POWHEG method. It generates the hardest emission. The event is then completed by standard SMC that implements the PS. [arXiv: hep-ph/0409146]
- Vetoed shower: emissions harder than the first one are vetoed.
- The SMC Pythia and Herwig offer the possibility to complete events generated with POWHEG BOX (LHIUP).

Top pair production in POWHEG BOX

Three current implementation of top pair production in ${\tt POWHEG}~{\tt BOX}$

• *hvq* [arXiv:0707.3088]

- \Rightarrow NLO corrections in production.
- \Rightarrow Decay performed at LO using reweighting.
- \Rightarrow Approximate spin correlation and offshell effects.

Top pair production in POWHEG BOX

Three current implementation of top pair production in ${\tt POWHEG}~{\tt BOX}$

• *hvq* [arXiv:0707.3088]

- \Rightarrow NLO corrections in production.
- \Rightarrow Decay performed at LO using reweighting.
- \Rightarrow Approximate spin correlation and offshell effects.

- \Rightarrow NLO corrections in production and decay using NWA.
- \Rightarrow Spin correlation and offshell effects exact at LO.
- \Rightarrow Interference with process sharing the same final state at LO.

Top pair production in POWHEG BOX

Three current implementation of top pair production in ${\tt POWHEG}\ {\tt BOX}$

• *hvq* [arXiv:0707.3088]

- \Rightarrow NLO corrections in production.
- \Rightarrow Decay performed at LO using reweighting.
- \Rightarrow Approximate spin correlation and offshell effects.
- ttdec [arXiv:1412.1828]
 - \Rightarrow NLO corrections in production and decay using NWA.
 - \Rightarrow Spin correlation and offshell effects exact at LO.
 - \Rightarrow Interference with process sharing the same final state at LO.

 $\textcircled{0} \ b\bar{b}4\ell \ [arXiv:1607.04538]$

 $\Rightarrow pp \rightarrow b\bar{b}\ell\bar{\nu}_{\ell}\bar{l}\nu_{l}$ at NLO.

- \Rightarrow Exact spin correlation and offshell effects at NLO
- \Rightarrow Interference with process sharing the same final state at NLO.
- \Rightarrow Interference of radiation in production and decay.

• New resonance-aware formalism that generates emissions preserving the virtuality of the intermediate resonances. This new formalism also offers the opportunity to generate multiple emissions.

• New resonance-aware formalism that generates emissions preserving the virtuality of the intermediate resonances. This new formalism also offers the opportunity to generate multiple emissions.

• The SMC programs Pythia8 and Herwig7 veto radiation in production harder than the POWHEG one. Radiation from resonances is left, by default, unrestricted.

• New resonance-aware formalism that generates emissions preserving the virtuality of the intermediate resonances. This new formalism also offers the opportunity to generate multiple emissions.

- The SMC programs Pythia8 and Herwig7 veto radiation in production harder than the POWHEG one. Radiation from resonances is left, by default, unrestricted.
- We implemented the **PowhegHooksBB4L** and **bb41ShowerVeto** classes to perform the veto also in the resonances decay.

Our strategy

Experimental analyses based on hvq: we want to show it is obsolete and it should be replaced with $b\bar{b}4\ell$ (or with $t\bar{t}dec$ for semileptonic or hadronic top decay). In order to do this, we employed a simplified version of the **template method**.

• We generate samples $pp \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$ for $m_t = m_{t,c} = 172.5 \text{ GeV}$ with the hvq, $t\bar{t}dec$ and $b\bar{b}4\ell$ generators and we shower them with Pythia 8 and Herwig 7.

Our strategy

Experimental analyses based on hvq: we want to show it is obsolete and it should be replaced with $b\bar{b}4\ell$ (or with $t\bar{t}dec$ for semileptonic or hadronic top decay). In order to do this, we employed a simplified version of the **template method**.

- We generate samples $pp \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$ for $m_t = m_{t,c} = 172.5$ GeV with the hvq, $t\bar{t}dec$ and $b\bar{b}4\ell$ generators and we shower them with Pythia 8 and Herwig 7.
- We consider a generic observable that can be written as $O = O_c + B(m_t - m_{t,c}) + \mathcal{O}(m_t - m_{t,c})^2.$ The O value we measure for the generated with m

The *O* value we measure for the sample generated with $m_{t,c}$ is the O_c value associated to that given NLO+PS generator.

Our strategy

Experimental analyses based on hvq: we want to show it is obsolete and it should be replaced with $b\bar{b}4\ell$ (or with $t\bar{t}dec$ for semileptonic or hadronic top decay). In order to do this, we employed a simplified version of the **template method**.

- We generate samples $pp \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$ for $m_t = m_{t,c} = 172.5$ GeV with the hvq, $t\bar{t}dec$ and $b\bar{b}4\ell$ generators and we shower them with Pythia 8 and Herwig 7.
- **②** We consider a generic observable that can be written as $O = O_c + B(m_t - m_{t,c}) + O(m_t - m_{t,c})^2.$ The O value we measure for the sample generated with m

The O value we measure for the sample generated with $m_{t,c}$ is the O_c value associated to that given NLO+PS generator.

⁽³⁾ We generate samples for several m_t values for hvq that we shower with Pythia 8 in order to extract the *B* coefficient of a given observable. We choose the value $b\bar{b}4\ell$ +Pythia 8 as reference sample, the mass extracted using another generator is given by

$$m_t = m_{t,c} - \frac{O_c - O_c^{\text{ref}}}{B}$$

- We take m_{Wbj} as a proxy for all top-mass sensitive observables that rely upon the mass of the decay products.
 ⇒ W[±] = hardest ℓ[±] + corresponding hardest (anti-)neutrino;
 ⇒ B-jet: jet containing the hardest B (B) hadron;
 - \Rightarrow We assume to know the b flavour in the B-jet to match it with the W.

- We take m_{Wb_j} as a proxy for all top-mass sensitive observables that rely upon the mass of the decay products.
- Experimental resolution effects are simply represented as a Gaussian smearing ($\sigma = 15 \text{ GeV}$)

$$\tilde{f}(x) = \mathcal{N} \int \mathrm{d}y \, f(y) \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right)$$

- We take m_{Wb_j} as a proxy for all top-mass sensitive observables that rely upon the mass of the decay products.
- Experimental resolution effects are simply represented as a Gaussian smearing ($\sigma = 15 \text{ GeV}$)

$$\tilde{f}(x) = \mathcal{N} \int \mathrm{d}y \, f(y) \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right)$$

• We fit the smeared distribution using a skewed Lorentzian

$$\tilde{f}(m_{Wb_j}) = \frac{b \left[1 + d \left(m_{Wb_j} - a\right)\right]}{\left(m_{Wb_j} - a\right)^2 + b^2} + e, \quad m_{Wb_j}^{\max} = a + \frac{\sqrt{1 + d^2 b^2} - 1}{2d}$$

- $m_{Wb_i}^{\max}$ is assigned to the bin with highest y value;
- **2** We set Δ equal to the FWHM.
- **(a)** We find the values of the parameters that minimize the χ^2 in the range $[m_{Wb_i}^{\max} \Delta, m_{Wb_i}^{\max} + \Delta]$.
- (a) From the fitted function we extract $m_{Wb_i}^{\max}$
- If $\tilde{\chi}^2 < 2$ we stop; otherwise $\Delta \to 0.95 \times \Delta$ and we go to step 3.

- We take m_{Wb_j} as a proxy for all top-mass sensitive observables that rely upon the mass of the decay products.
- Experimental resolution effects are simply represented as a Gaussian smearing ($\sigma = 15 \text{ GeV}$)

$$\tilde{f}(x) = \mathcal{N} \int \mathrm{d}y \, f(y) \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right)$$

• We fit the smeared distribution using a skewed Lorentzian

$$\tilde{f}(m_{Wb_j}) = \frac{b\left[1 + d\left(m_{Wb_j} - a\right)\right]}{\left(m_{Wb_j} - a\right)^2 + b^2} + e, \quad m_{Wb_j}^{\max} = a + \frac{\sqrt{1 + d^2 b^2} - 1}{2d}$$

• We can assume $B \simeq 1$, thus

$$\Delta m_t \simeq -\Delta m_{Wb_j}^{\max}$$

Reconstructed top mass: which NLO generator?

Brief look without smearing:

Large shape differences with hvq if MEC are off. With MEC, differences among the generators of the order of 10-20 MeV.

Reconstructed top mass: which NLO generator?

Scale: envelope of 7 scale choices PDF: rwgt members of PDF4LHC15_nlo_30_pdfas (hvq only) α_{s} : NNPDF30_nlo_as115, NNPDF30_nlo_as121

$b\bar{b}4\ell$ +0 MeV $^{+86}_{-53}$ MeV - ± 64 MeV $t\bar{t}dec$ +140 MeV $^{+6}_{-6}$ MeV - ± 54 MeV hvq -147 MeV $^{+7}_{-7}$ MeV ± 5 MeV ± 9 MeV		$\% - bb4\ell$	$(\mu_{ m R},\mu_{ m F})$	PDF	$\alpha_{ m S}$
$t\bar{t}dec$ +140 MeV $^{+6}_{-6}$ MeV - ± 54 MeV hvq -147 MeV $^{+7}_{-7}$ MeV ± 5 MeV ± 9 MeV	$b\bar{b}4\ell$	$+0 {\rm ~MeV}$	$^{+86}_{-53} {\rm ~MeV}$	-	$\pm 64 \ {\rm MeV}$
hvq -147 MeV $\stackrel{+7}{_{-7}}$ MeV ± 5 MeV ± 9 MeV	$t\bar{t}dec$	$+140 {\rm ~MeV}$	$^{+6}_{-6} {\rm MeV}$	-	$\pm 54 \text{ MeV}$
	hvq	$-147 \mathrm{MeV}$	$^{+7}_{-7}~{\rm MeV}$	$\pm 5 \text{ MeV}$	$\pm 9 \text{ MeV}$

Silvia Ferrario Ravasio — DEC 20th, 2017

 m_t determination using new NLO+PS generators

Reconstructed top mass: which SMC generator?

• Based on arXiv: 1603.03445.

э

-

・ 「「」 ト ・ 「 」 ト ・ ・

- Based on arXiv: 1603.03445.
- If we do not vary m_t too much, we can write

$$E_{b_j}^{\max} = O_{c} + B(m_t - m_{t,c})$$

- Based on arXiv: 1603.03445.
- If we do not vary m_t too much, we can write

$$E_{b_j}^{\max} = O_{c} + B(m_t - m_{t,c})$$

- Based on arXiv: 1603.03445.
- If we do not vary m_t too much, we can write

$$E_{b_j}^{\max} = O_{c} + B(m_t - m_{t,c})$$

B-jet energy peaks: which NLO generator?

Large differences between $b\bar{b}4\ell$ and hvq that does not contain radiative correction in decays and the Wt contribution. $(+456 \pm 103 \text{ MeV})$ Small differences between $b\bar{b}4\ell$ and $t\bar{t}dec$ that has radiative correction in decays, implemented using NWA, and the Wt at LO. $(-161 \pm 102 \text{ MeV})$

B-jet energy peaks: which SMC generator?

• Based on arXiv:1407.2763.

э

- Based on arXiv:1407.2763.
- $\bullet\,$ Measure $\langle O\rangle$ for

$$O_{i} = \left\{ p_{\perp}^{j}(\ell^{+}), p_{\perp}^{j}(\ell^{+}\ell^{-}), m^{j}(\ell^{+}\ell^{-}), (E(\ell^{+}) + E(\ell^{-}))^{j}, (p_{\perp}(\ell^{+}) + p_{\perp}(\ell^{-}))^{j} \right\}$$

with $j = 1, 2, 3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Based on arXiv:1407.2763.
- Measure $\langle O \rangle$ for

$$O_{i} = \left\{ p_{\perp}^{j}(\ell^{+}), \, p_{\perp}^{j}(\ell^{+}\ell^{-}), \, m^{j}(\ell^{+}\ell^{-}), \, (E(\ell^{+}) + E(\ell^{-}))^{j}, \, (p_{\perp}(\ell^{+}) + p_{\perp}(\ell^{-}))^{j} \right\}$$

with j = 1, 2, 3.

• Assume $\langle O_i \rangle = O_{c,i} + B_i \left(m_t^j - m_{t,c}^j \right)$, thus the extracted mass corresponding to the observable *i* is given by

$$m_{t,i} = \left[m_{t,c}^{j} - \frac{O_{c,i} - O_{c,i}^{\text{ref}}}{B_{i}}\right]^{1/j}$$

- Based on arXiv:1407.2763.
- Measure $\langle O \rangle$ for

$$O_{i} = \left\{ p_{\perp}^{j}(\ell^{+}), \, p_{\perp}^{j}(\ell^{+}\ell^{-}), \, m^{j}(\ell^{+}\ell^{-}), \, (E(\ell^{+}) + E(\ell^{-}))^{j}, \, (p_{\perp}(\ell^{+}) + p_{\perp}(\ell^{-}))^{j} \right\}$$

with j = 1, 2, 3.

• Assume $\langle O_i \rangle = O_{c,i} + B_i \left(m_t^j - m_{t,c}^j \right)$, thus the extracted mass corresponding to the observable *i* is given by

$$m_{t,i} = \left[m_{t,c}^{j} - \frac{O_{c,i} - O_{c,i}^{\text{ref}}}{B_{i}}\right]^{1/j}$$

• Obtain $O_{c,i}$ and its uncertainty due to PDF and scale variations. Combine all the errors in quadrature and $m_{t,i}$ and $\Delta m_{t,i}$.

- Based on arXiv:1407.2763.
- $\bullet\,$ Measure $\langle O\rangle$ for

$$O_{i} = \left\{ p_{\perp}^{j}(\ell^{+}), \, p_{\perp}^{j}(\ell^{+}\ell^{-}), \, m^{j}(\ell^{+}\ell^{-}), \, (E(\ell^{+}) + E(\ell^{-}))^{j}, \, (p_{\perp}(\ell^{+}) + p_{\perp}(\ell^{-}))^{j} \right\}$$

with j = 1, 2, 3.

• Assume $\langle O_i \rangle = O_{c,i} + B_i \left(m_t^j - m_{t,c}^j \right)$, thus the extracted mass corresponding to the observable *i* is given by

$$m_{t,i} = \left[m_{t,c}^j - rac{O_{\mathrm{c},i} - O_{\mathrm{c},i}^{\mathrm{ref}}}{B_i}
ight]^{1/j}$$

- Obtain $O_{c,i}$ and its uncertainty due to PDF and scale variations. Combine all the errors in quadrature and $m_{t,i}$ and $\Delta m_{t,i}$.
- Average all the measurements using as covariance matrix

$$V_{ik} = \Delta m_{t,i}^{2} \delta_{ik} + (1 - \delta_{ik}) \min \left(\Delta m_{t,i}^{2}, \Delta m_{t,k}^{2}, \rho_{ik} \Delta m_{t,i} \Delta m_{t,k} \right)$$

where ρ_{ik} is the statistical correlation between O_i and O_k .

・日・ 《田・ 《日・

Silvia Ferrario Ravasio — Dec 20th, 2017

Summary and Outlooks

• Which Observable?

- smeared m_{Wb_j} : oversimplification; small sensitivity to the production mechanism (small pdf/scale variations);
- E_{b_j} : small sensitivity to the production mechanism, large shower uncertainties.
- leptonic observables: sensitivity to the production mechanism, large shower uncertainties.

A B F A B F

Summary and Outlooks

• Which Observable?

- smeared m_{Wb_j} : oversimplification; small sensitivity to the production mechanism (small pdf/scale variations);
- E_{b_j} : small sensitivity to the production mechanism, large shower uncertainties.
- leptonic observables: sensitivity to the production mechanism, large shower uncertainties.

• Which NLO generator (using Pythia8+MEC)?

- $b\bar{b}4\ell$ generator is the most accurate one and should be preferred if possible.
- smeared m_{Wb_j} : hvq and $t\bar{t}dec$ lead to a systematic uncertainty of roughly 150 MeV.
- $E_{b_i}^{\text{max}}$: $t\bar{t}dec \ \Delta m_t \simeq 0.3 \pm 0.2 \text{ GeV}, \ hvq \ \Delta m_t \simeq 0.9 \pm 0.2 \text{ GeV}.$
- leptonic observables: $t\bar{t}dec \ m_t$ 700 MeV smaller than the nominal value, hvq not accurate for observables depending on spin correlations although better average ($m_t = 172.2 \text{ GeV}$).

(1日) (日) (日)

• Pythia8 or Herwig7?

- hvq must be showered with both showers, the difference leads to a systematic uncertainty of **250 MeV** when using m_{Wb_j} , **2 GeV** when using E_{b_j} /leptonic observables.
- when using $b\bar{b}4\ell$ (or $t\bar{t}dec$), the difference between Pythia8 and Herwig7 is greater than 1 GeV even for m_{Wb_j} , 4 GeV E_{b_j} , 3 GeV leptonic observables.
- matching procedure in Herwig7 introduces new systematic errors and requires further investigation.

• Many ways to infer m_t , the most precise is the template method

Many ways to infer m_t, the most precise is the template method
 Top momentum reconstruction from its decay products.

- $\Rightarrow B$ -jet;
- $\Rightarrow W$ decay products:
 - \rightarrow charged lepton + neutrino
 - \rightarrow two light jets

- Many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - (a) Given a MC event generator, produce several templates varying the input mass m_t .

- Many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - **(a)** Extract the parametric dependence on the input mass m_t .

- Many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - **(3)** Extract the parametric dependence on the input mass m_t .
 - **9** The m_t value that fits the data the best is the extracted mass.

- Many ways to infer m_t , the most precise is the template method
 - Top momentum reconstruction from its decay products.
 - **②** Given a MC event generator, produce several templates varying the input mass m_t .
 - **(a)** Extract the parametric dependence on the input mass m_t .
 -) The m_t value that fits the data the best is the extracted mass.
 - m_t can depend on the MC used

⇒ if A is more accurate than B, use A; ⇒ otherwise $|m_t^A - m_t^B|$ contributes to the systematic uncertanty;

Phenomenological setup

- Process: $pp \to b \bar{b} e^+ \mu^- \nu_e \bar{\nu}_{\mu}$, dominated by top pair production plus leptonic decay, at $\sqrt{s} = 8$ TeV.
- Central PDF: MSTW2008.
- Dynamic scale choice

$$t\bar{t}$$
 events: $\mu = \left[(E_t^2 - p_{z,t}^2) (E_{\bar{t}}^2 - p_{z,\bar{t}}^2) \right]^{1/4} \quad Z\bar{b}b$ events: $\mu = \frac{p_Z^2}{2}$

- Scale variations

 (K_F, K_R) = (1, 1), (2, 2), (¹/₂, ¹/₂), (1, 2), (1, ¹/₂), (2, 1), (¹/₂, 1)

 PDF
 - Rwgt using several sets: PDF4LHC15, NNPDF3.0, CT14nlo, MMHT2014.
 - Rwgt 30 pdf inside the set PDF4LHC15_nlo_30_pdfas, Gaussian symmetric error, for *hvq* only.
- α_s : Use NNPDF30_nlo_as_0115 and NNPDF30_nlo_as_0121; half difference.

- $\bullet~B$ hadrons are considered as stable.
- Jets reconstructed using anti- k_{\perp} algorithm for R = 0.5.
- Impose selection cuts to suppress the Wt background: \Rightarrow 2 opposite charged leptons with: $p_{\perp}(\ell) > 20$ GeV, $|\eta(\ell)| < 2.4$ \Rightarrow 2 B-jet with opposite b flavour with: $p_{\perp}(j_{\rm B}) > 30$ GeV, $|\eta(j_{\rm B})| < 2.5$
- We assume to know neutrinos momentum. W^+ reconstructed merging the hardest ℓ^+ and the hardest neutrino; $W^$ reconstructed merging the hardest ℓ^- and the hardest anti-neutrino.
- Reconstructed t: W^+ and jet containing the hardest *b*-flavoured hadron; reconstructed \bar{t} : W^- and jet containing the hardest \bar{b} -flavoured hadron.

m_{Wb_i} : backup material

 m_{Wb_i} extracted peak (with smearing): difference between Pythia8

Silvia Ferrario Ravasio — DEC 20th, 2017 mt determination using new NLO+PS generators $E_{b_j}^{\max}$: difference with $b\bar{b}4\ell$ (left) for all generators showered with Pythia8, and difference between Pythia8 and Herwig7 (right) for all generators for several values of the jet radius.

 $E_{b_j}\colon$ independent from the production mechanism, indeed small dependence on scale/PDF.

	$\% - b\bar{b}4\ell$	$(\mu_{ m \scriptscriptstyle R},\mu_{ m \scriptscriptstyle F})$	PDF	$lpha_{ m s}$	stat
$b\bar{b}4\ell$	$+0 {\rm MeV}$	$^{+22}_{-15} { m MeV}$	-	$\pm 35~{\rm MeV}$	$\pm 81 \ {\rm MeV}$
$t\bar{t}dec$	$+161 { m MeV}$	$^{+22}_{-24} { m MeV}$	-	$\pm 17~{\rm MeV}$	$\pm 62 \ {\rm MeV}$
hvq	$-456 { m ~MeV}$	$^{+32}_{-47} { m MeV}$	$\pm 30 \ {\rm MeV}$	$\pm 25 \text{ MeV}$	$\pm 64 \text{ MeV}$

- イヨト イヨト

First Mellin moment for $m_t = m_{t,c}$ for all generators showered with Pythia8. The angular coefficients have been obtained by considering three m_t values: 169.5, 172.5, 175.5 GeV.

Obs	gen	В	$\langle O_c \rangle$	$\% - b\bar{b}4\ell$	$(\mu_{\rm F},\mu_{\rm R})$	PDF	$\alpha_{ m s}$
			[GeV]	[MeV]	[MeV]	[MeV]	[MeV]
	$b\bar{b}4\ell$	0.17 ± 0.04	56.653 ± 0.050	-	$^{+79}_{-86}$	-	$\pm 26~(\pm 92)$
$\langle p_{\scriptscriptstyle \mathrm{T}}(\ell^+) \rangle$	$t\bar{t}dec$	0.19 ± 0.02	56.804 ± 0.033	$+151\pm60$	$^{+84}_{-86}$	-	± 41 (± 23)
	hvq	0.19 ± 0.02	56.738 ± 0.032	$+85\pm59$	$^{+82}_{-86}$	± 130	$\pm 49~(\pm 23)$
	$b\bar{b}4\ell$	0.30 ± 0.05	69.759 ± 0.059	-	$^{+710}_{-444}$	-	$\pm 85~(\pm 110)$
$\langle p_{\rm T}(\ell^+\ell^-) \rangle$	$t\bar{t}dec$	0.30 ± 0.02	69.660 ± 0.040	-100 ± 71	$^{+538}_{-361}$	-	$\pm 78 \ (\pm 28)$
	hvq	0.29 ± 0.02	69.201 ± 0.038	-558 ± 71	$^{+553}_{-367}$	± 95	$\pm 95~(\pm 27)$
	$b\bar{b}4\ell$	0.31 ± 0.08	108.685 ± 0.099	-	$^{+234}_{-341}$	-	$\pm 57 \ (\pm 191)$
$\langle m(\ell^+\ell^-) \rangle$	$t\bar{t}dec$	0.31 ± 0.03	108.812 ± 0.065	$+127\pm119$	$^{+244}_{-259}$	-	$\pm 33 \ (\pm 46)$
	hvq	0.33 ± 0.03	109.200 ± 0.064	$+515\pm118$	$^{+247}_{-265}$	± 395	$\pm 68 (\pm 45)$
	$b\bar{b}4\ell$	0.55 ± 0.14	186.803 ± 0.163	-	$^{+342}_{-385}$	-	$\pm 540~(\pm 305)$
$\langle E(\ell^+\ell^-) \rangle$	$t\bar{t}dec$	0.56 ± 0.05	187.005 ± 0.107	$+201\pm195$	$^{+448}_{-434}$	-	$\pm 474~(\pm 76)$
	hvq	0.56 ± 0.05	186.809 ± 0.105	$+6\pm194$	$^{+441}_{-427}$	± 1068	$\pm 559~(\pm 74)$
	$b\bar{b}4\ell$	0.38 ± 0.08	113.322 ± 0.095	-	$^{+165}_{-184}$	-	$\pm 93~(\pm 178)$
$\langle p_{\rm T}(\ell^+) + p_{\rm T}(\ell^-) \rangle$	$t\bar{t}dec$	0.39 ± 0.03	113.598 ± 0.063	$+276\pm114$	$^{+165}_{-174}$	-	$\pm 72~(\pm 44)$
	hvq	0.39 ± 0.03	113.425 ± 0.062	$+104\pm113$	$^{+165}_{-174}$	± 259	$\pm 101~(\pm 43)$

Silvia Ferrario Ravasio — Dec 20th, 2017

 m_t determination using new NLO+PS generators

Radiation scale in POWHEG BOX

 $\bullet\,$ In the POWHEG formalism, the emission probability at a scale μ is given by the Sudakow form factor

$$\Delta(\mu) = \exp\left[-\int d\phi^{\rm rad}\theta \left(k_{\perp}(\mu') - k_{\perp}(\mu)\right) \frac{\alpha_{\rm S}(\mu')}{2\pi} \frac{R_s \left(k_{\perp}(\mu')\right)}{B}\right] \,,$$

where $k_{\perp}(\mu)$ is the transverse momentum of the emitted particle corresponding to the scale μ .

• In the Fortran code POWHEG BOX $\mu = k_{\perp}$ and there is no way to change the definition of the scale of the emission.

• Since
$$\alpha_{\rm S}(\mu) = \alpha_{\rm S}(\mu; \alpha_{\rm S}(m_Z)) = \frac{\alpha_{\rm S}(m_Z)}{1 + \beta_0 \alpha_{\rm S}(m_Z) \log\left(\frac{\mu^2}{m_Z^2}\right)}$$
 instead of

changing μ , is possible to change the reference value of $\alpha_{\rm S}(m_Z)$.

- For an average k_{\perp} =30 GeV, we get: $\alpha_{\rm S}(k_{\perp}; 0.118) = 0.1402$ $\alpha_{\rm S}(2k_{\perp}; 0.118) = 0.1253 \quad \alpha_{\rm S}(0.5k_{\perp}; 0.118) = 0.1590$ $\alpha_{\rm S}(k_{\perp}; 0.115) = 0.1360 \quad \alpha_{\rm S}(k_{\perp}; 0.121) = 0.1444$
- α_{s} variations should be enhanced by a factor 4 to get the corresponding uncertainty on the scale of the emission.

• The radiation provided by the SMC with transverse momentum larger than $scalup = k_{\perp}^{POWHEG}$ must be vetoed: vetoed showers.

It is desiderable that the SMC employs the POWHEG BOX definition of k_{\perp} to perform the veto.

• The radiation provided by the SMC with transverse momentum larger than $scalup = k_{\perp}^{POWHEG}$ must be vetoed: vetoed showers.

It is desiderable that the SMC employs the POWHEG BOX definition of k_{\perp} to perform the veto.

• Problems have been observed e.g. in dijet production, a solution was proposed in Ref. [arXiV:1303.3922]. For FSR, in case of massless emitter, scalup is computed by new with the definition

$$\left(k_{\perp}^{\rm powheg}\right)^2 = d_{12} = 2p_1 \cdot p_2 \frac{E_1 \, E_2}{(E_1 + E_2)^2}$$

• The radiation provided by the SMC with transverse momentum larger than $scalup = k_{\perp}^{POWHEG}$ must be vetoed: vetoed showers.

It is desiderable that the SMC employs the POWHEG BOX definition of k_{\perp} to perform the veto.

• Problems have been observed e.g. in dijet production, a solution was proposed in Ref. [arXiV:1303.3922]. For FSR, in case of massless emitter, scalup is computed by new with the definition

$$\left(k_{\perp}^{\rm powheg}\right)^2 = d_{12} = 2p_1 \cdot p_2 \frac{E_1 \, E_2}{(E_1 + E_2)^2}$$

• In Pythia8, it is possible to veto using this "improved" definition: PowhegHooks.

• Pythia8 is a k_{\perp} -ordered shower and the hadronization model employed is the Lund string fragmentation one.

 \Rightarrow Natural matching with POWHEG radiation.

• Pythia8 is a k_{\perp} -ordered shower and the hadronization model employed is the Lund string fragmentation one.

 \Rightarrow Natural matching with POWHEG radiation.

• Herwig7 is an angular-ordered shower and it employs the cluster model.

 \Rightarrow Truncated-vetoed showers often give rise to little contribution; so only a vetoed shower is implemented.

POWHEG BOX RES

- Technical problems of processes containing resonances whose decay products can radiate:
 - NLO computation: we need a subtraction scheme that constructs the counterterms to real diagrams preserving the virtuality of the resonances, in order not to spoil the cancellation of the infra-red poles. This simply results in poor convergence.
 - **2** Hardest emission generation (more severe): in POWHEG formalism, the emission probability is described by R/B. If R contains an onshell resonance, while B does not, the ratio R/B is large, also for high transverse momentum radiation. Moreover it does not approach the Altarelli-Parisi splitting function in the infrared limit, as it is required by the POWHEG method, giving rise to unphysical distortions of the distributions.

イロト イポト イヨト イヨト

POWHEG BOX RES

- Technical problems of processes containing resonances whose decay products can radiate:
 - NLO computation: we need a subtraction scheme that constructs the counterterms to real diagrams preserving the virtuality of the resonances, in order not to spoil the cancellation of the infra-red poles. This simply results in poor convergence.
 - **2** Hardest emission generation (more severe): in POWHEG formalism, the emission probability is described by R/B. If R contains an onshell resonance, while B does not, the ratio R/B is large, also for high transverse momentum radiation. Moreover it does not approach the Altarelli-Parisi splitting function in the infrared limit, as it is required by the POWHEG method, giving rise to unphysical distortions of the distributions.

 $\bullet~$ If we can separate the resonances in different singular regions (e.g. $pp \to t\bar{t}),$ we can write

$$d\sigma = \tilde{B}d\Phi_b \prod_{\alpha_{\rm ISR}, \alpha_b, \alpha_{\overline{b}}} \left[\Delta_\alpha(k_{\perp}^{\rm min}) + \Delta_\alpha(k_{\perp}^{\alpha}) \frac{R_\alpha(\Phi_b, \Phi_{\rm rad}^{\alpha})}{B(\Phi_b)} d\Phi_{\rm rad} \right]$$

The multi-emission formalism is crucial for process where ISR is much more likely: in this way the first emission is generated by POWHEG BOX RES instead of the PS.

イロト イポト イヨト イヨト

POWHEG BOX RES and SMC: general algorithm

• When a LH event is read we get

- Production process (ISR): Read scalup from the file. For remnant we set scalup = $\sqrt{\hat{s}}/2$.
- **2** t (ot \bar{t}) resonance: If an emission is present,

$$\mu_t^2 = 2p_b \cdot p_g \frac{E_g}{E_b}$$

in the top frame. Otherwise $\mu_t^2 = 0.8 \text{ GeV}^2$.*

Oneck that the PS generates emissions off the top decay products with a k_⊥ smaller than μ_t.

^{*}For hvq and remnant events in $b\bar{b}4\ell$ emissions in decay are not generated, thus no veto is performed.

POWHEG BOX RES and PYHTIA 8 and HERWIG 7

We implemented subroutines to veto radiation in the t resonance:

- **PYTHIA 8**: It is possible to use **PowhegHooks** to veto radiation in production. We implemented **PowhegHooksBB4L** for emissions in decay:
 - FSREmissionVeto (default):
 - After each emission, we decide if keeping or rejecting it.
 - It employs the POWHEG BOX definition of k_{\perp} .

ScaleResonance:

- μ_t is used as starting scale for the shower off the t (\bar{t}) resonance.
- The shower scale is the PYHTIA transverse momentum.

POWHEG BOX RES and PYHTIA 8 and HERWIG 7

We implemented subroutines to veto radiation in the t resonance:

- **PYTHIA 8**: It is possible to use **PowhegHooks** to veto radiation in production. We implemented **PowhegHooksBB4L** for emissions in decay:
 - FSREmissionVeto (default):
 - After each emission, we decide if keeping or rejecting it.
 - It employs the POWHEG BOX definition of k_{\perp} .

ScaleResonance:

- μ_t is used as starting scale for the shower off the $t(\bar{t})$ resonance.
- $\bullet~$ The shower scale is the <code>PYHTIA</code> transverse momentum.
- HERWIG 7: we implemented two alternatives
 - **bb4lShowerVeto** (default):
 - After each emission, we decide if keeping or rejecting it.
 - Herwig7 provides us the k_{\perp} and the momenta of the emitted particles are not known yet.

2 bb4lFullShowerVeto:

- before the hadronization phase, we look at the emissions originated from the t decay chain, if every emission is softer than the POWHEG one the event is accepted, otherwise it is reshowered.
- k_{\perp} is computed using the "improved" POWHEG BOX definition.
- Partons have been reshuffled and the k_{\perp} computed contains ambiguity due to this procedure.

Matching procedures

• We now compare the results obtained with <u>bb4l+Pythia8</u> using the different matching procedures. Results are expressed in GeV.

Observable	FSREmission	FSR+PowhegHooks	ScaleResonance
$m_{Wb_i}^{\max}$	172.793 ± 0.004	172.828 ± 0.005	172.816 ± 0.004
$m_{Wb_j}^{\max}$ (smear)	172.717 ± 0.002	172.794 ± 0.002	172.737 ± 0.002
$E_{b_j}^{\max}$	71.200 ± 0.081	71.204 ± 0.082	71.179 ± 0.082

• We now compare the results obtained with $b\bar{b}4\ell$ +Herwig7 using the different matching procedures. Results are expressed in GeV.

Observable	bb41ShowerVeto	bb41FullShowerVeto
$m_{Wb_j}^{\max}$	172.727 ± 0.005	172.776 ± 0.005
$m_{Wb_j}^{\max}$ (smear)	171.626 ± 0.002	171.829 ± 0.002
$E_{b_i}^{\max}$	69.050 ± 0.081	69.190 ± 0.082