

Vacuum Layout Integration LSS2 including TDIS for LS2

Christina Yin Vallgren On behalf of TE-VSC-BVO

Vacuum, Surfaces & Coatings Group Technology Department

Content:

- TDIS Layout
- TDIS Electron Cloud Simulation (Galina Skripka, Giovanni Iadarola)
- TDIS Vacuum Simulation
- Conclusion and suggestions for optimal operation
- Vacuum Layout Integration LSS2

TDIS Layout

Vacuum, Surfaces & Coatings Group Technology Department

TDIS: ST0724267_01

DELAN P.

Pumping wise:

For each TDIS tank x2 ion pumps

Agilent Ion Pump 75l/s*	[l/s]
H2	75
CH4	60
со	65
CO2	65

For each TDIS tank x2 HV2100

CapaciTorr	[l/s]
HV2100	
H2	2100
CH4	0
СО	625
CO2	880

For each TDIS tank

Total Pumping speed*	[l/s]
H2	4350
CH4	120
СО	1380
CO2	1890

Vacuum, Surfaces & Coatings Group Technology Department

Vacuum, Surfaces & Coatings Group Technology Department

Galina Skripka, Giovanni Iadarola

TDIS Electron Cloud Simulations

Vacuum, Surfaces & Coatings Group Technology Department

TDIS Electron Cloud Simulation e-cloud simulations in TDIS

We performed a first series of simulations to identify possible critical points:

- Assumed uniform SEY for the whole profile
- SEY=1.4-1.5 (Cu-like) can be considered as a worst case scenario
- We assume that no high SEY surfaces (e.g. aluminum) are exposed to the beam

Main simulation parameters

- Beam parameters: 450GeV, 25 ns spacing, 2.2e11 p/bunch, 1.2 ns bunch
- Two counter-rotating beams (simulated different transverse slices of the device)
- Half-gap scan: 1 50 mm
- SEY scan: 1.0 1.6

Galina Skripka Giovanni Iadarola

TDIS Electron Cloud Simulation Electron flux on the different surfaces

TDIS Electron Cloud Simulation

TDIS Vacuum Simulation

Vacuum, Surfaces & Coatings Group Technology Department

Vacuum simulation

Vacuum simulation (1) -simulation input

Total pumping speed inside TDI*

H2	CH4	со	CO2
4350	0	0	0
0	120	0	0
0	0	1380	0
0	0	0	1890

Electron stimulated desorption for unbaked copper [Molecules/e-]

			ESD scrubbed Cu
	ESD at SEY = 2.0	ESD at SEY = 1.6	SEY = 1.0
H2	0.22	4.00E-02	1.00E-03
CH4	0.012	1.00E-03	2.00E-05
CO	0.028	3.00E-03	1.00E-04
CO2	0.075	3.00E-03	1.00E-04
	Î		1
	Un-scrubbed	Initial state	e Complete
		Needed dose	scrubbed
		4x10 ¹⁶ e-/cm ²	Needed dose:
			1x10 ¹⁹ e-/cm ²

Thermal Degassing [mbarl/s/cm²]

New sector valve		TD	DIS
H2	9.45e-12	H2	1.03e-11
CH4	1.18e-15	CH4	2.44e-14
CO	5.90e-15	СО	1.44e-13
CO2	5.90e-15	CO2	3.31e-14

* at 10⁻⁷ mbar

Vacuum simulation (2) -static pressure

Total pumping speed inside TDI*

H2	CH4	со	CO2
4350	0	0	0
0	120	0	0
0	0	1380	0
0	0	0	1890

Thermal Degassing [mbar·l/s/cm²]

New sector valve		TD	DIS
H2	9.45e-12	H2	1.03e-11
CH4	1.18e-15	CH4	2.44e-14
CO	5.90e-15	СО	1.44e-13
CO2	5.90e-15	CO2	3.31e-14

- $P_{max} = 9.8 \times 10^{-12}$ mbar.
- Static Pressure dominated by H2.

* at 10⁻⁷ mbar

Vacuum simulation (3) -dynamic pressure

Assume the following: the worst scenario

 ESD max for unbaked Cu (To be noted: SEY = 2.2)

H2	0.22
CH4	0.012
СО	0.028
CO2	0.075

Largest half-gap opening = 50mm
Electron flux = 607.7mA

 3 TDIS have the same homogenous electron current.

Vacuum simulation (4) -dynamic pressure

Assume the following: SEY = 1.6

• ESD for unbaked Cu at SEY = 1.6

H2	4.00E-02
CH4	1.00E-03
СО	3.00E-03
CO2	3.00E-03

• Largest half-gap opening = 50mn

 3 TDIS have the same homogenous electron current and SEY = 1.6.

- Dynamic Pressure dominated by CH4.
- To reach SEY of 1.6, 4x10¹⁶e/cm2 is needed => ~ 5 mins scrubbing at 250mA/m2.

Dynamic pressure rise

- Dynamic pressure rise strongly depends on the ESD (Electron stimulated desorption yield) of the material.
 - Will need to measure different surfaces in the lab.
- Optimal operation distances and scrubbing are needed if the TDIS runs as it is.

TDIS Vacuum Simulation Summary

Vacuum, Surfaces & Coatings Group Technology Department

ESD for Cu as function of SEY

• Consider the ESD dependence on SEY in the simulations.

(G. Vorlaufer, B. Henrist)

Vacuum, Surfaces & Coatings Group Technology Department

ESD for Cu as function of SEY

- ESD on Baked copper measured in the ESD lab @ 300 eV
- A factor of 5 less than the un-baked Cu in H2.

Vacuum v.s total electron flux

Max Dynamic pressure in TDIS as a function of half-gap, SEY

Total electron flux in TDIS as a function of half-gap, SEY

Vacuum, Surfaces & Coatings Group Technology Department

Real case vacuum profile simulation

Vacuum simulation (6) –reality case study

- Tank 1 and 2: uncoated graphite jaw with Stainless steel RF shield.
- Tank 3: A block of Ti6Al4V 965mm and CuCrZr 600mm with Stainless steel RF shield.
 - Consider Half-gap = 50 mm
 - SEY = 1.3 for Tank 1 and 2.
 - SEY = 1.6 for Tank 3.
 - $P_{max} = 1.03 \times 10^{-6}$ mbar.

TDI2 SEY 1.3 and 1.6, Gap 50 mm, EC 209.8 and 607.7 mA, P_{max} = 1.032621e-06 mbar

Vacuum, Surfaces & Coatings Group Technology Department

Conclusion TDIS:

- The expected electron cloud flux for the new TDIS is twice of the value as what we have today.
- The dynamic pressure rise in the TDIS is 1.04x10⁻⁶ mbar by considering SEY=1.6 and Half-gap of 45-50 mm.
- Optimal operation distances and scrubbing are needed if the TDIS runs as it is.
- NEG/a-C coating may be an option for the Cu blocks and the RF shields to reduce the initial dynamic pressure rise. More studies are needed.

Vacuum Layout Integration LSS2

Vacuum, Surfaces & Coatings Group Technology Department

Static/Dynamic pressure after LS1

LMC 21 Oct 2015

Vacuum, Surfaces & Coatings Group Technology Department

Static Pressure after LS2

Back-ups

Vacuum, Surfaces & Coatings Group Technology Department

Vacuum v.s total electron flux

Vacuum, Surfaces & Coatings Group Technology Department

SEY measurements

- Before the bake out (2h at 225°C), Ti and Cu have similar SEY_{max}.
- After the bake out, Ti: $SEY_{max} \sim 1.75$ while Cu: $SEY_{max} \sim 1.6$.

Holger Neupert

Vacuum, Surfaces & Coatings Group Technology Department

The Current TDI

Vacuum v.s total electron flux

The plot represents the worst scenario in pressure rise.

