sin²0_W extraction at HL-LHC with LHeC PDFs

Ludovica Aperio Bella, Stefano Camarda

CERN

Key parameter of EW

Indirect determination of MW and sin² θ^{ef f} more precise then the experimental measurement:

- This call for a precise direct Measurement
- Stringent test of the self consistency of the SM

The measurement of $sin^2\theta_W$ tests this relation:

$$\sin_{\rm eff}^2 \theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right) \kappa$$

 \pm 20x10^{-5} error in sin2 θeff corresponds to $\pm 10 MeV$ error in M_w

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{4\pi\alpha^2}{3s} \left[\frac{3}{8} (A(1+\cos^2\theta) + B\cos\theta) \right]$$

 $B = -4Q_l g^q_A g^l_A \chi_1 + 8g^q_A g^q_V g^l_A g^l_V \chi_2 \,,$

- B ~ Z/ γ^* and V-A interference
- Linear term in cos(θ) give rise to nonvanishing forward-backward asymmetry
- The V-A interference contribution is proportional to $g_V g_A$, and depends on the weak mixing angle θ_W

$$g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$$

- The Z/γ* interference contribution is proportional to (s - m_z²)
 - → A_{FB} changes sign at the Z pole

L. Aperio Bella

precision

CMS/LHCb projections

https://indico.cern.ch/event/647676/contributions/2721144/attachments/1549078/2432924/ian kieseler SM.pdf https://indico.cern.ch/event/647676/contributions/2759749/attachments/1549711/2434260/HLLHC2017Savin.pdf https://indico.cern.ch/event/647676/contributions/10759751/attachments/10759191/2494846/CK stonstained var dEW.pdf (fb^{-1}) < 2.4 < 2.8 < 2.4 < 2.8 < 2.4< 2.8 $|\eta|$ $|\eta|$ $|\eta|$ $|\eta|$ η $|\eta|$ $\delta_{nnpdf3.0}^{nominal}$ $\delta_{\rm stat}[10^{-5}]$ L_{int} (fb^{-1}) $|\eta| < 2.8$ < 2.4 n $|\eta|$ < 2.419 (from [1]) CMS-PAS-FTR-17-001 19 (from [1]) **CMS** Phase-2 Simulation Preliminary 14 TeV ~10² **CMS** Phase-2 Simulation Preliminary

ILL N

For ATLAS projection the CT14NNLO PDF are considered as baseline uncertainty are considered

- Similar sensitivity studies are ongoing in ATLAS
- different detector categories with further rapidly coverage
 - CC (|η| < 2.47)
 - CF (|η| < 2.47 & 2.47 < |η| < 4)
 - FF (2.47 < |η| < 4)

Comparable results as CMS and LHCb

In ATLAS we are also considering the LHeC prospect PDF set

Using LHeC PDFs a factor of 10 improvement for PDF error factor of 5 on the final measurement

ct14-profiled

LHeC PDF set

ct14-profiled

<u>LHeC project</u> ("TDR") <u>LHeC PDf Projection</u>

- 0.1 to 0.5% uncertainties on valence and sea quarks
- rs is fixed
- sea PDFs very suppressed wrt CT14
- No modelling uncertainties
- 12 parameters

Is all this OK for a realistic projection ?

7

- Prospects for reaching LEP+SLC accuracy on the measurement of $sin^2\theta_W$ at HL-LHC
- The availability of LHeC PDF could dramatically change the picture, with a factor of 5 improvement over LEP+SLC accuracy
- In ATLAS we would like to include LHeC PDF in our prospect studies
- Are there any plans to provide an updated LHeC PDF set.

L. Aperio Bella

Period	LHCb THCp	Statistical Sensitivity (naïve scaling) sin ² θ ^{eff} _{lept} / 10 ⁻⁵
End of Run 2	700k	aline 50 aline
End of Run 3	7M	we ^{sco} 20 we ^{sco}
300/fb	40M	H3. 7 H3.