Diffractive DIS at LHeC & FCC-he A case study of DPDFs accuracy

Wojtek Slominski (Jagellonian University)

- Diffractive DIS and DPDFs from HERA
- Phase-space of LHeC & FCC-he
- Data simulation
- DPDFs from fits to the simulated data

Inclusive diffractive DIS

Wojtek Slominski - PDFs and Low x at LHeC/FCC-he WG meeting

A model for diffractive PDFs used in HERA fits

HERA DPDF fits

- Two types of fits (fixed fluxes)
 - -S (standard) all A_k , B_k , C_k free

-C (constant gluon) $-B_g = C_g = 0$

- Both equally good for the HERA inclusive data
 - large ambiguity for gluon
 - inclusion of dijet data crucial for gluon determination
- Parametrizations with codes for DPDFs and F_{2/L}
 - H1-2006 C-type fit to σ_{red}
 - ZEUS-SJ S-type fit to σ_{red} + jets

HERA models vs. recent HERA data

Data simulation for LHeC & FCC

- Phase space of LHeC & FCC-he
 - \checkmark shift to lower β , ξ and higher Q^2
 - sected experimental coverage
 - top quark contribution
- Binning
 - \checkmark assumed to ensure negligible statistical errors
- Simulation
 - ✓ extrapolation from ZEUS-SJ DPDFs
 - ✓ supplemented with 5% Gaussian noise

Phase space — HERA \rightarrow LHeC \rightarrow FCC-he

LHeC phase space $-E_p = 7 \text{ TeV}$

θ = 10° -----

θ > 1°

bins \times M_x = 2 m_t - - - ·

FCC-he phase space $-E_p = 50 \text{ TeV}$

Simulated data — an example

 σ_{red} for $E_p = 7 \text{ TeV}$, $E_e = 60 \text{ GeV}$

DPDFs from fits to $\sigma_{\rm red}$

- Q² lower cut dependence
 - $-Q_{\min}^2 \approx 5 \text{ GeV}^2$ safe range for DGLAP (twist 2 only)
 - $-Q_{\rm min}^2 \approx 1.3 \,{\rm GeV^2}$ a reference base for

higher-twist and/or saturation-like improvements

- Statistical properties
 - three independent data samples generated and fitted
- Measurement accuracy study
 - vs. Q_{\min}^2
 - vs. E_p

Fit C — a model with "constant gluon" is excluded already at LHeC

- fit S gives $\chi^2/\text{ndf} = 1.05$
- fit C gives $\chi^2/\text{ndf} = 1.4$

LHeC DPDFs


```
Q_{\rm min}^2 \approx 5 \,{\rm GeV^2}
E_p = 7 \text{ TeV}
```

- Substantially improved accuracy wrt. HERA
- Statistical spread ~ 2 × error-band
- Statistical spreads well below error-bands for $Q_{\rm min}^2 \approx 1.3 \ {\rm GeV}^2$ or $E_p = 50 \text{ TeV}$

LHeC DPDFs – low Q^2 included

Accuracy improvement wrt. HERA

DPDFs accuracy vs. E_p and Q_{\min}^2

DPDFs accuracy — top quark contribution

Summary & outlook

- Gluon determination possible from the inclusive data alone
- DPDFs measurement accuracy increased by
 - factor ~ 10 for LHeC
 - factor ~ 20 for FCC-he
- PDFs practically not sensible to the top quark region

TODO

- Fits with more free DPDFs parameters
- Higher twists, saturation
- D4 *t*-dependence of DDIS cross-sections
- e-Pb DIS

.

THE END