A Large Ion Collider Experiment



1

## **ALICE Status Report**

# **Grazia Luparello** for the ALICE Collaboration (INFN Trieste)

132<sup>nd</sup> LHCC Meeting30 November 2017





### 2017 operations in pp @ 13 TeV

A Large Ion Collider Experiment

- Stable operations at instantaneous luminosity 2.6 Hz/μbarn (μ~1%)
- Overall ALICE data-taking efficiency >91%

18 sub-detectors included in data-taking



#### Special runs

- Low-B data-taking in the central barrel during the LHC intensity ramp-up phase
- Data-taking at very low- $\mu$  (~ 0.1%) including also Zero Degree Calorimeters during the van der Meer fills

Grazia Luparello

132nd LHCC - 30/11/2017



Muon calo

#### 2017 operations in pp @ 13 TeV: statistics

A Large Ion Collider Experiment

#### Running a rich trigger menu:

minimum bias, high-multiplicity (V0-based), single and di-muon, jet and γ from EM calorimeters, electron, jet, (anti-)nuclei from the TRD, diffractive gap, muon-calorimeter coincidences



#### Xe-Xe pilot run @ 5.44 TeV

A Large Ion Collider Experiment

#### **Data-taking conditions**

- pp beam optics used -> 10m β\* in IP2
- **16 bunches** colliding in IP2
  - → Hadronic interaction rate ~80Hz
- Modified crossing angle to include the ZDC in the data-taking for centrality determination
- Reduced solenoid magnetic field (B = 0.2 T) to focus on the low  $p_{\rm T}$  region

#### **Trigger menu including:**

minimum bias, ultraperipheral, muons

- 97.4% data-taking efficiency
- 1.7M events collected



#### **Expected results on:**

- $p_{T}$  spectra of (non-)identified particles
- Azimuthal anisotropy



### pp run @ 5 TeV

A Large Ion Collider Experiment

- ALICE
- Run 2 goal: 1B minimum bias events (130M already collected in 2015) + 1pb<sup>-1</sup> of triggered data
- 172h of Stable Beam + 1 fill for van der Meer scan (10h)

#### **Data-taking conditions**

- 10m  $\beta^*$  in IP2
- Instantaneous luminosity **~1Hz/μbarn (μ<0.5%)**, Interaction rate ~**50kHz**

#### Trigger menu

- Mainly Minimum Bias
- Calorimeters
- Diffractive triggers
- Muon triggers

#### **Collected statistics:**

- 986M minimum bias events in 180h of SB
- Muon triggers: 1.2 pb<sup>-1</sup>
- Calorimeters: 0.9 pb<sup>-1</sup>

#### Thanks to LHC teams!

A Large Ion Collider Experiment

#### • In 2017, TPC was operated with a Ne-CO<sub>2</sub>-N<sub>2</sub> gas mixture

 Good stability under typical running conditions in pp at both 13 TeV and 5 TeV



ALICE

- In 2017, TPC was operated with a Ne-CO<sub>2</sub>-N<sub>2</sub> gas mixture
  - Good stability under typical running conditions in pp at both 13 TeV and 5 TeV
  - A high rate test performed in 2017 with a charged particle
     load equivalent to 2018 Pb-Pb operation revealed stability
     problems of the wire chambers



- In 2017, TPC was operated with a Ne-CO<sub>2</sub>-N<sub>2</sub> gas mixture
  - Good stability under typical running conditions in pp at both 13 TeV and 5 TeV
  - A high rate test performed in 2017 with a charged particle
     load equivalent to 2018 Pb-Pb operation revealed stability
     problems of the wire chambers



- Decided to operate with a Ar-CO<sub>2</sub> gas mixture in 2018
  - Expect stable operations in Pb-Pb collisions at 10 kHz (as demonstrated in 2015)
  - Correction procedure for space charge distortions in Ar well established on 2015/2016 data
  - Alternating cover electrode potentials will reduce space-charge distortions



A Large Ion Collider Experiment



### ✓ Physics highlights

Grazia Luparello

132nd LHCC - 30/11/2017

#### **Submitted papers since last LHCC**



|       | <b>Constraining the magnitude of the Chiral Magnetic Effects with Event Shape Engineering</b><br><b>in Pb-Pb collisions at Vs<sub>NN</sub> = 2.76 TeV</b><br>arXiv:1709:04723 submitted to PLB |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pb-Pb | J/ψ elliptic flow in Pb-Pb collisions at Vs <sub>NN</sub> = 5.02 TeV<br>arXiv:1709:05260 accepted by PRL                                                                                       |
|       | <b>Production of</b> <sup>4</sup> <b>He and</b> <sup>4</sup> <b>He in Pb-Pb collisions at Vs<sub>NN</sub> = 2.76 TeV at the LHC</b><br>arXiv:1710:07531 submitted to NPA                       |
|       | Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb-Pb collisions<br>at Vs = 2.76 TeV<br>arXiv:1710:07975 submitted to PLB                                             |
| p-Pb  | Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at Vs <sub>NN</sub> = 5.02 and 8.16 TeV arXiv:1709.06807 submitted to PLB                  |
| рр    | <b>Production of deuterons, tritons and <sup>3</sup>He nuclei and their anti-nuclei in pp collisions at Vs =</b><br><b>0.9, 2.76 and 7 TeV</b><br>arXiv:1709.08522 submitted to PRC            |

A Large Ion Collider Experiment



### ✓ *Physics highlights: Pb-Pb collisions*



### **Elliptic flow in Pb-Pb collisions**

ALICE

A Large Ion Collider Experiment

Initial spatial anisotropy of the nuclei overlap region



Momentum anisotropy of produced particles

Quantified via the Fourier expansion:

$$\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$$
  
Elliptic flow

### Important observable to understand the properties of the created medium:

- Low p<sub>T</sub>: Sensitivity to the thermalization of the quarks in the medium
- High *p*<sub>T</sub>: Path length dependence of energy loss in the QGP

Phys. Rev. Lett. 116, 132302



Grazia Luparello

132nd LHCC - 30/11/2017

### $J/\psi$ elliptic flow in Pb-Pb collisions



A Large Ion Collider Experiment

 Evidence of J/ψ v<sub>2</sub>> 0 in the interval 4<p<sub>T</sub><6 GeV/c in semi-central collisions (significance 6.6σ) arXiv:1709:05260, accepted by PRL ALICE



### $J/\psi$ elliptic flow in Pb-Pb collisions



A Large Ion Collider Experiment

- Evidence of J/ψ v<sub>2</sub>> 0 in the interval 4<p<sub>T</sub><6 GeV/c in semi-central collisions (significance 6.6σ)
- Low  $p_T J/\psi$  are formed by recombination of the charm quarks in the medium
- → charm quarks thermalize and flow with the medium



#### arXiv:1709:05260, accepted by PRL ALICE



### $J/\psi$ elliptic flow in Pb-Pb collisions



- Evidence of J/ψ v<sub>2</sub>> 0 in the interval 4<p<sub>T</sub><6 GeV/c in semi-central collisions (significance 6.6σ)
- Low  $p_T J/\psi$  are formed by recombination of the charm quarks in the medium
- →charm quarks thermalize and flow with the medium





### (Anti-)<sup>4</sup>He production in Pb-Pb collisions

A Large Ion Collider Experiment



measurement in the TOF detector Ø ALICE, 0-80% Pb-Pb, *\s<sub>NN</sub>* = 2.76 TeV 0.95 0.9 0.85 0.8 F 0.75 0.7 Data 0.65 Theoretical <sup>3</sup>He line Theoretical <sup>4</sup>He line 0.6 F 1 0 -5 -3 -2 -1 2 3 <u>p</u> (GeV/c)

Identification via dE/dx in the TPC and time-of-flight

- Production yield compatible for particles and anti-particles
- Each added baryon gives a factor ~330 lower production yield
- Compatible with exponential fall predicted by the thermal model with  $T_{\rm chem}$  ~156 MeV

### (Anti-)<sup>4</sup>He production in Pb-Pb collisions



The  $p_{\tau}$ -integrated yields can be interpreted in terms of statistical (thermal) models

Particle yields of light flavor hadrons (including nuclei) described with a common chemical freeze-out temperature *T*<sub>chem</sub>= 156 ± 2 MeV



### **Baryon-AntiBaryon femtoscopy in Pb-Pb**

A Large Ion Collider Experiment

Using heavy-ion collisions to study interactions between baryons and anti-baryons

Measure distributions of relative momenta of pair of particles to extract strong interaction parameters ٠

$$C(p_{1}, p_{2}) = \frac{P(p_{1}, p_{2})}{P(p_{1}) \cdot P(p_{2})}$$

$$F^{-1}(k^{*}) = \frac{1}{f_{0}} + \frac{d_{0}k^{*2}}{2} - ik^{*}$$

$$C(p_{1}, p_{2}) = \frac{1}{2} + \frac{d_{0}k^{*2}}{2} - ik^{*}$$

$$C(p_{1}, p_{2}) = \frac{d_{0}k^{*}}{2} + \frac{d_{0}k^{*}}{2} + \frac{d_{0}k^{*}}{2} - ik^{*}$$

$$C(p_{1}, p_{2}) = \frac{d_{0}k^{*}}{2} + \frac{d_{0$$







#### **Baryon-AntiBaryon femtoscopy**

A Large Ion Collider Experiment



- ALICE Simultaneous fit to all correlation functions:
  - 2 energies

٠

- 3 pair combinations
- 6 centrality intervals
- → (total 36 functions)

### **Baryon-AntiBaryon femtoscopy**







- Negative real part of scattering length
   repulsive strong interaction or creation of a bound state
- Significant positive imaginary part of scattering length
   → presence of a non-elastic channel

A Large Ion Collider Experiment



### ✓ Physics highlights: p-Pb collisions



Grazia Luparello

132nd LHCC - 30/11/2017

### **Heavy-flavor decay electron** v<sub>2</sub> in p-Pb



A Large Ion Collider Experiment

Double-ridge structure observed in (un)identified charged particles: → Same signature as elliptic flow in Pb-Pb collisions



### Heavy-flavor decay electron v<sub>2</sub> in p-Pb



 $\Delta \phi$  (rad)

A Large Ion Collider Experiment

Double-ridge structure observed in (un)identified charged particles: → Same signature as elliptic flow in Pb-Pb collisions



#### Does this holds also for charm? Heavy-flavor electrons – hadron correlations



#### Heavy-flavor decay electron v<sub>2</sub> in p-Pb

#### A Large Ion Collider Experiment



- Positive v<sub>2</sub> of heavy-flavor decay electrons with 4.4σ significance
- Compatible with charged particle v<sub>2</sub>

# Suggests that charm participates in collective effects also in p-Pb; mechanism?



Grazia Luparello



### $J/\psi v_2$ in p-Pb collisions

A Large Ion Collider Experiment

Azimuthal correlations between forward/backward J/ $\psi$  and mid rapidity charged particles





#### arXiv:1709:06807



At p<sub>1</sub><3 GeV/c v<sub>2</sub> compatible with 0

No recombination expected in p-Pb due to the lower number of charm quarks produced

At **p**<sub>T</sub>>3 GeV/c v<sub>2</sub>>0

Total significance (forward + backward, 5.02 + 8.16TeV)  $\sim 5\sigma$ 

• Values compatible with  $J/\psi v_2$  in central Pb-Pb collisions

Suggests that charm participates in collective effects also in p-Pb; mechanism?

### **Charm jet production in p-Pb collisions**

A Large Ion Collider Experiment



#### Measurement of D-jet spectrum from $p_T$ =5 GeV/c to 30 GeV/c

• Described by POWHEG+PYTHIA6 (Perugia 2011 tune) simulations within uncertainties



Grazia Luparello

132nd LHCC - 30/11/2017

A Large Ion Collider Experiment



### ✓ Physics highlights: pp collisions



Grazia Luparello

132nd LHCC - 30/11/2017

### **Underlying event in pp collisions**

A Large Ion Collider Experiment



#### "Everything in a single particle collision except the hard process of interest"

• MPI, initial and final state radiations, beam remnants etc.

Underlying events have impact on photons isolations, jet pedestals, vertex reconstruction & interest per



### **Underlying event in pp collisions**

A Large Ion Collider Experiment



#### "Everything in a single particle collision except the hard process of interest"

• MPI, initial and final state radiations, beam remnants etc.

Underlying events have impact on photon isolations, jet pedestals, vertex reconstruction & interest per se



#### Triton and <sup>3</sup>He spectra in pp collisions



- Address mechanisms of (anti)nuclei production
- Interesting also for cosmology:
   Background for dark matter search



#### Triton and <sup>3</sup>He spectra in pp collisions

A Large Ion Collider Experiment



arXiv:1709:08522

- Address mechanisms of (anti)nuclei production
- Interesting also for cosmology: Background for dark matter search







### **Inner Tracking System upgrade**

A Large Ion Collider Experiment

#### 2 Outer Barrel staves produced and characterized

- Noise distribution measured in threshold scan on all 195 chips operated concurrently (102M chips!)
- Noise and threshold values are comparable to single chip ones







### **TPC upgrade: production status**

A Large Ion Collider Experiment

| <b>ROC</b> components | Needed              | Produced | Fraction (%) |
|-----------------------|---------------------|----------|--------------|
| Al-bodies             | 80                  | 80       | 100          |
| Padplanes             | 160                 | 160      | 100          |
| FEC connectors        | 15'000              | 15'000   | 100          |
| HV cables             | 1'300               | 1'000    | 77           |
| GEMs                  | 720<br>(10% spares) | 422      | 60           |
| GEM frames            | 640                 | 560      | 88           |

| Assembly step                            | Goal                    | Assembled | Fraction (%) |
|------------------------------------------|-------------------------|-----------|--------------|
| Chamber bodies<br>(IROC/OROC)            | 40/40                   | 16/10     | 33           |
| Padplane + FEC connectors<br>(IROC/OROC) | 40/120                  | 23/45     | 43           |
| GEM framing                              | 640                     | 226       | 35           |
| Assembled Chambers<br>(IROC/OROC)        | 40/40                   | 8/4       | 15           |
| Grazia Luparello                         | 132nd LHCC - 30/11/2017 |           |              |



Production of 40 IROCs and 40 **OROCs is ongoing** 

- Almost all components in hand

•

- GEM production continues until April 2018



### **TPC upgrade: ROC commissioning**

A Large Ion Collider Experiment

#### List of tests for ROC QA:

- 1. Gas tightness (< 0.5 ml/h)
- 2. Gain curve
- 3. Gain uniformity
- 4. IBF uniformity
- 5. Full X-ray irradiation (10 nA/cm<sup>2</sup>) for 6h



- High X-ray flux until reaching a current density of 10 nA/cm<sup>2</sup>
- Record the anode and cathode currents
- After > 6 hours measure leakage current of GEMs at 250 V .

Grazia Luparello

132nd LHCC - 30/11/2017

ray generator

y position

Measure anode and

Collimated <sup>55</sup>Fe source or X-IROC/04: gain scan cathode currents for each x-IROC – gain Y (cm) IROCID4-BF scan **IROC - IBF** scan 8 X [cm]

X (cm)



#### 37

#### SAMPA Front-end chip for TPC and Muon system

- SAMPA V3 & V4 delivered end of October 2017
- Preliminary tests ongoing
  - SEL sensitivity decreased
  - rate performance increased
  - building block performance improved
- On schedule to PRR in Feb 2018
- 5000 & 5000 ASICs available already now





#### Installation of CR0 computing room

- Layout finalized
- Preparation of the area started





#### **Conclusions**

A Large Ion Collider Experiment



2017 data-taking campaign concluded successfully. Rich harvest including:

866M minimum bias pp events @ 13 TeV + 11pb<sup>-1</sup> triggered data

1.7M Xe-Xe events @ 5.44 TeV

986M minimum bias pp events @ 5 TeV + ~1pb<sup>-1</sup> of triggered data (muon and calo)

#### Analysis of Pb-Pb, p-Pb and pp from Run 1 and Run 2 is producing high quality physics results

Heavy ion collisions are also used as a laboratory to study baryon interactions In p-Pb collisions, observation of non-zero  $v_2$  for charm hints at collective effects; final state rescattering

#### Upgrade projects for Run 3 advancing well

Now entered in the production phase

132nd LHCC - 30/11/2017

A Large Ion Collider Experiment

- In 2017, TPC was operated with a gas mixture Ne-CO<sub>2</sub>-N<sub>2</sub> •
  - Good stability under typical running conditions in pp at both 13 TeV and 5 TeV
  - A high rate test performed in 2017 with a charged particle load equivalent to 2018 Pb-Pb operation revealed stability problems of the wire chambers
- **Operation with a gas mixture Ar-CO<sub>2</sub> in 2018** •
  - promise stable operations in Pb-Pb collisions at 10 kHz (as demonstrated in 2015)
  - Correction procedure for space charge distortions in Ar well established on 2015/2016 data
  - Alternating cover electrodes potentials can reduce space-charge distortions









AI TCF