ATLAS High Granular Timing Detector Conceptual design and R&D

L. Serin on behalf of the ATLAS collaboration

- Detector location & requirements
- Sensor R&D
- Electronics R&D
- Conceptual design and on going optimisation
- Conclusion

Proposed HGTD:

Radially constrained by ITk/HGTD services (64cm) and pump (12cm) $2.4 < \eta < 4.0$

Thickness constrained to $\Delta Z = 7.5$ cm (+ 5 cm moderator) Detector with individual planar layers (modularity/installation)

Requirement of 30 ps time resolution per mip during HL-LHC running

- **Excellent timing sensor**
- Excellent Front End Electronics → Dedicated ASIC ALTIROC
- → Thin LGAD

Proposed HGTD:

Radially constrained by ITk/HGTD services (640mm) and pump (120mm) $2.4 < \eta < 4.0$

Thickness constrained to $\Delta Z = 75$ mm (+ 50 mm moderator) Detector with individual planar layers (modularity/installation)

Expected radiation levels

- Max neutron fluence / dose after 4 ab⁻¹, including safety factors:
 - At r=12 cm 9 x 10^{15} n_{eq}/cm² and 9 MGy
 - ~20% of sensors + ASICs (r<30 cm) need replacement at 1/2 life time of HL-LHC

 \rightarrow max. doses: 4.5 × 10¹⁵ n_{eq}/cm² and 4.5 MGy (r < 30 cm)

 $4.0 \times 10^{15} \text{ n}_{eq}/\text{cm}^2 \text{ and } 2.1 \text{ MGy (r> } 30 \text{ cm)}$

No safety factor applied in these plots

1.5 for simulation

x 1.5 for ASIC

Radiation

- → Operation at -30°c
- → C02 cooling

Thin LGAD

Standard n-p silicon diode with an extra highly doped p layer

- Moderate gain ~20 with respect to pin diode
 → increase signal and keep sensor noise limited
- Thin detector :
 - → better radiation hardness and short rise time (smaller jitter and Landau fluctuation)

A lot of work done with the RD50 collaboration and with 3 possible vendors : CNM, HPK and FBK

Tests with different fabrication technologies, different structure, doping level, pad size before and after irradiation

Unirradiated sensors performance (50 µm LGAD)

Irradiated sensors performance (50 µm LGAD)

G. Kramberger et al, to be sumitted

Radiation damage:

- Trapped of charge carriers (→thin sensor)
- Increase of leakage current (→ -30 °c)
- Modification of effective doping concentration
 - → modification of multiplication layer
 - → Reduction of gain thus increase of time resolution. Partially mitigated by larger bias voltage

Time resolution:

- Operate at safe bias voltage / breakdown
- Achieved 50 ps up to 6.10^{15} n_{eq} /cm² at -20 °c

On going R&D

- Improving radiation hardness (Ga/B, C spray)
- Thinner LGAD 35 μm (excellent first measurements)
- Improving fill factor

Electronics

Broadband preamplifier common source configuration followed by fast discriand TDC (vernier lines)

TOA measurement (20 ps) + TOT measurement (40 ps) + local FIFO until L0/L1 TSMC CMOS 130 nm

Electronics

Single pixel

Data formatting/ suppression + rate average

Luminosity block: provides hits in 3 ns window centered on bunch crossing and outside the window at 40 MHz Dedicated back end

ALTIROC Front End ASIC

TSMC 130 nm

ALTIROC0: 4 channels only analog part

25 ps for one mip (10 fC at G=20)

- → Noise to be improved and bandwidth too small
- → New version in building block submitted in December Has been bump bonded to LGAD and exposed to beam

ALTIROC 1: 25 channels with full single pixel readout (analog+TDC+FIFO) to be submitted in Feb 2018, and bump bonded to sensor Q3/1018

Total HGTD CO2 cooling for 4 layers/side : 20 kW 1.4 m² LGAD sensor area per layer ₁₂

Modules + Layer R-phi view

Optimisation towards final baseline design

Sensor size (4x2 cm²):

- fitting the inner radius
- sensor yield and flip-chip yield
- unique sensor size

Number of layer :

- Dead area / efficiency
- Time resolution after irradiation

	Two layers	Three layers	Four layers
$N_{\rm hits} \ge N_{\rm layers}$	86%	82%	78%
$N_{\rm hits}=0$	0.5%	0.11%	0.07%
$< N_{\rm hits} >$	2.04	3.08	4.1
$<\sigma_t>$	43 ps	37 ps	32 ps

< 1 % geometrical inefficiency for 2 layers From 32 ps to 43 ps at worse radiation level radius assuming 60 ps/hit

Granularity (1.3x1.3 mm²):

- occupancy < 10 %
- Time resolution (detector capacitance)

Integration:

- Half disk/vessel for easier installation
- Inner module wheel

Conclusion

Intensive R&D since organised activity started mid 2015

→ 30 ps time resolution for mip over HL-LHC period looks feasible but still R&D on sensors and electronics to validate it

Overall detector design under optimisation to find the best trade-off between performance, construction/installation complexity/schedule and cost (to be provided In Technical Proposal in April 2018)

A highly motivated community (~20 institutes from 7 countries) is willing to build it for Phase II and improve the ATLAS detector performance under the harsh HL-LHC environment.

Back up

HV along radius

Expected sensor alone time resolution at HL-LHC

Preliminary performance with 35 µm LGAD

Pulse shape with irradiation

Main HGTD parameters

Pseudorapidity coverage	$2.4 < \eta < 4.0$			
Position in z	3420 < z < 3545 mm including 50 mm of moderator			
Position of active layers	3435 < z < 3485 mm			
Radial extension (active area)	110-1100 mm (120 mm-640 mm)			
Time resolution of HL-LHC running	30 ps / MIP			
Pixel size	$1.3 \times 1.3 \text{ mm}^2$			
Number of layers	2–4 per side			
Layout with 2 (4) layers per side				
Number of channels	3.15 (6.3M)			
Number of Si sensors $(2 \times 4 \text{ cm}^2 \text{ each})$	6976 (13952)			
Number of ASICs $(2 \times 2 \text{ cm}^2 \text{ each})$	13952 (27904)			
Total Si active area	5.6 m ² (11.2 m ²)			

R-Z view

A 4-layer design would fit in the allocated thickness but strict tolerance required

Number of layers/performance/cost on going optimisation

0.5 % geometrical inefficiency for 2 layers From 32 ps to 43 ps at worse radiation level radius assuming 60 ps/hit

CO₂ cooling

Component	Power	Total (kW)
Sensor	< 20 mW/cm ²	2.23
ASIC	$< 200 \text{ mW/cm}^2$	15.2
Flex cable	25 mW/flex	0.35
HGTD cold vessel heaters	< 100 W/m ²	< 0.9
EC calo cryostat heaters	120 W/m^2 , 50% up to $R = 1600 \text{ mm}$	< 0.6
Total for CO2 cooling		19.2
Off-detector electronics	30% of ASICs power consumption	5

HGTD integration

HGTD integration

