PHASE II MUON UPGRADE SUMMARY

Pierluigi Zotto (INFN Padova)

30.10.2009

CONTRIBUTIONS

- Simulation tools
 Vadim Khotilovich
- Muon chambers Tracker association algorithms Ignazio Lazzizzera, Bobby Scurlock
- MTT development Alessandro Montanari, Oliver Pooth
- RPC Trigger Upgrade Archana Sharma

SIMULATION TOOLS (1)

Goal: to provide full simulation framework that realistically describes performance of the future CMS detector and muon trigger at SLHC luminosities

Why full simulation?

- studies of trigger primitives depend on realistic simulation of rather subtle effects in incredibly busy environment
- Simplifications in fast simulation make detailedmuon trigger simulations unreliable
- Understanding occupancy and BX related effects and backgrounds make Full Geant simulation the only viable option

SIMULATION TOOLS (2)

High PU FullSim Machinery

- Custom SLHC FullSim framework by TAMU:
- Needed in order to cope with memory hungry high PU FullSim
- FullSim in fraction of detector, drop unnecessary data
- Stable & reliable for efficiencies & single object rates estimates
- Can simulate muon systems+long barrel tracker with PU400 in full DT or half of CSC
- Twiki: SLHCFullSim
- It is still a short term fix
- Can't study rates of global trigger or physics processes

Neutron Backgrounds

- Machinery for simulation of MB+neutrons is almost ready (Rick Wilkinson)
- Will be included in CMSSW_3_4_0
- Neutrons simulation takes ~30x longer /event than for regular MB
- Waiting on MixingModule developers for a special "neutron" input

Vadim Khotilovich

SIMULATION TOOLS (3)

Samples

- Small samples available for Phase I emulator studies
 - PU hits digitized only for muon systems
 - Bigger samples would be necessary for rates estimation
- samples for Phase II (with new tracker)
 - PU (if present) is digitized in tracker and muon systems
 - No-PU samples for Florida's track-muon matching studies available
- Simulation of muon systems+long barrel tracker with PU400 in full DT or in half of CSC
 - Would require substantial amount of computing resources
 - Working framework exists: whoever needs it is welcome to use it
 - Plan to start some production before End of the year in LNL-Padova

Vadim Khotilovich

MUON-TRACKER ASSOCIATION STUDIES

Barrel and Forward groups are both working with a similar approach

- Extrapolate of the Trigger Primitives to the Tracker layers
 - linear extrapolation before track finding in the barrel
 - LUTs from CSC Track Finder estimation in the forward
- Define dinamically the size of the matching region depending on candidate PT and pseudorapidity
- Match with stubs of stacked layers
- Muon Trigger Primitive candidate confirmation
- Momentum re-computation using muon point and/or matched stubs

BARREL WINDOWS

Station 1 φ extrapolated resolution (mrad) p_T (GeV/c) Station 2 φ extrapolated resolution (mrad) 50E ⁷⁰ 140 p_T (GeV/c) Ignazi

φ window
(PT dependent)af 100 GeV
at 10 GeV
size is ±15 mrad
size is ±90 mradθ window
(r dependent)at 35 cm size is ± 300 mrad
at 35 cm size is ± 180 mrad
at 100 cm size is ± 90 mrad

FORWARD WINDOWS

Double Stack 0

Matching Z_{TF}-Z_{tracker} windows

Matching φ_{TF}**-φ**_{tracker} windows

Bobby Scurlock

MUON -TRACKER MATCHING EFFICIENCIES

9

Ignazio Lazzizzera, Bobby Scurlock

position are driving result * middle point position almost negligible Vertex constraint really strong should we dare to * impose it? **Caution needed** with long lived particles ... Even small lever arm useful to improve resolution at low P_T **Early FastSim** results confirmed

outer { L5

medium { L3

inner

L1

STRAWMAN B

LONGBARREL

L9 L8

L3 L2 L1

LO

Ignazio Lazzizzera

10

<u>Matching Windows: Signal versus Background</u>

Bobby Scurlock

Rate Reduction from stubs in Matching Windows

Bobby Scurlock

HARDWARE - MTT

Muon Track fast Tag

- •initially (2007) proposed as a possible device for
 - -fast selective readout of Tracker (Static Mapping)
 - -improvement of RPC trigger
 - -ghost/fakes suppression in MB1

now, in the new Tracker scenarios

-it is still possible to send fast muon tag (L0 trigger) to some stage -it allows ghost/fake suppression in MB1 for Dynamic Mapping

various hardware implementation are under study

 new RPC with 2D readout (Bari)
 scintillator tiles (Aachen, Bologna)

Alessandro Montanari

Prototype built and tested in Bologna

Alessandro Montanari

Clearly distinguish number of fired pixels

h1

Alessandro Montanari

1426

ADC counts

Light collection uniformity

10% more light closer to fiber

Alessandro Montanari

≥7

97.8

≥ 7

97.2

Time walk

Timing resolution is dominated by the the spread in arrival times of the collected photons: it can be improved with more efficient light collection

Threshold (# photons)	RMS of arrival time (ns)
≥ 2	2.7
≥ 3	3.0
≥ 4	3.4
≥ 5	3.6
≥ 6	3.7

Alessandro Montanari

MTT ACTIVITIES IN AACHEN

Developing a MC simulation of light collection for MTT scintillator option

Other projects

A MPGD FOR UPGRADE

Proposal to instrument region at $1.6 \le \eta \le 2.4$

Archana Sharma

 ² mm Proposed detector is GEM:
 ¹ mm combination of triggering and tracking in a single detector

20

Enhance and optimize the readout $(\eta - \phi)$ granularity by improved rate capability Rate capability $-10^4/mm^2$ Spatial resolution ~ 100 µm ($\Theta_{track} < 45^\circ$) Time resolution ~ 1-3 ns (Gas!) Efficiency > 98% Rate capability > 5 kHz/cm₂

-Argon CO₂ (non flammable mixture -big plus)

GEM tests show they are adequate in terms of rate capability and ageing

21

Archana Sharma

CONCLUSIONS

- Lot of progress showing convergence of designs
- Transition to 2.2.6 + longbarrel finished and code being released soon
- Ready to start full simulation studies with high PU
- First results on a MTT real size prototype.