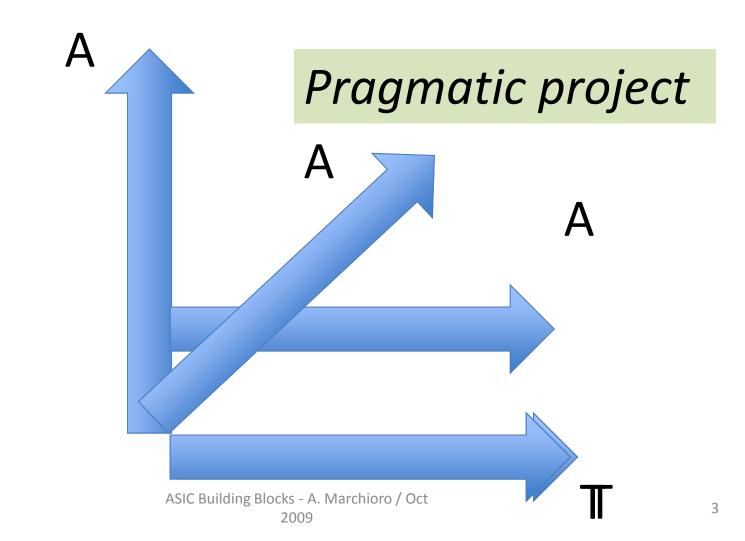
ASIC Building Blocks for Tracker Upgrade


A. Marchioro / CERN-PH-ESE October, 2009

Idea behind

 As discussions on final architectures (requirements driven, i.e. top-down) apparently needs still time and discussions to converge, it appears to me as useful to allow some critical bottom-up work to make progress in parallel without further delays.

Objective: Instead of going for a "final" design immediately, a set of critical building blocks that would be part (even if approximately) of any final architecture should be defined, designed, manufactured and evaluated in a shorter time frame.

Idea behind

Benefit of this strategy

- Organizes progress along an "evolutionary" path, instead of a risky "revolutionary" one
- Allows engineers who will have to implement the final architecture to gain experience in technologies that are largely new and where a long and painful learning curve may be necessary
 - More learning now, less mistakes later
 - Don't postpone learning because of architectural uncertainties
- Does not freeze system architecture too soon
- Does not freeze technology choice too soon, allows for adaptation to rapidly changing technology panorama
- But will help the decision process on the final architecture with the know-how gained during the design of these blocks

Building Blocks

- Front-End circuits:
 - Preamp-Shaper
 - Leakage compensation
 - Discriminator
 - Discriminator Reference and control
 - Bias DAC
 - Bandgap voltage reference
- Timing
 - PLL
 - Programmable delay clock source
- Digital Blocks
 - Event Storage memory
 - Slow Control Interface
 - GBT (e-Link) adapter
 - Various Low Power Techniques
- Interfaces
 - Slow control interface
 - Low Power digital link
- Low cost interconnection technology
 - Macro cells for C4 bump bonding (@150-225 μ pitch)

Why 90nm

- Pixel area in trigger layer is \sim (100 x 1800 μ)
 - Complexity of trigger channel is much higher than present tracker or pixels, FE chip should be "edge-less" to allow no dead-detector area
 - Analog FE, biasing, discriminator, memory, coincidence etc.
- 90 nm offers 10-20% power saving
 - Power is critical for new tracker!
- Metalization in 90 nm is low-K, i.e. less parasitic cap
 Metal density is critical for Z-shift logic
- 90 nm is also essential for low digital power
- 90/65 nm is essential for future GBT

Costs: new facts

- As an example, for a 15m2 dual-layer triggering tracker one needs (at 100% yield):
 - 6,000 5x5 cm2 dual-layer modules
 - 12,000 sensors, i.e. 3,000 6" wafers
 - ~~~@750 \$/wafer -> 2.25 M\$
 - 216,000 (8x16mm2) 90nm ASICs, i.e. ~~~ 1000 8" wafers
 - ~~~ @2K \$/wafer -> 2.0 M\$
 - It may well be more convenient to move to 300 mm wafers for this volume! The cost/cm2 is lower in 300mm.
- Bottom line: pixelized architecture changes relative cost importance between electronics and sensors

Plans

- 1. Specify the functionality of the building blocks and the rough characteristics of the test-chips
- 2. Allocate work among design groups
- 3. Synchronize design tools and methodologies
 - Designers to follow scheduled methodology courses based on new Cadence methodology tools
- 4. Organize 90nm MPW submissions to prototype some of these blocks
 - 1. New MLM option are making this more affordable

CERN organized 5 Days Training Course on 130/90 nm Design Methodology

Day 1 => Lead by Ahmed Noeman

- Concept Validation
- Constraint Driven Analog Block Creation
- **Day 2** => Lead by Ahmed Noeman
- Hinterested, email: Kostas, Koukinas@cern.ch - Electrical Parameters Optimization Over Process Variations
 - Block IP Characterization Front End
 - Functional Verification
- **Day 3** => Lead by Vincent Cao Van Phu
 - CDB IP Import to OA database for IC61 Methodology
 - Hierarchical Floorplaning (Virtuoso based)

Day 4 => Lead by Vincent Cao Van Phu

- Block IP Characterization Back End
- DRC (Calibre + Assura workflows)
- LVS (Callibre + Assura workflows)
- Extraction

Day 5 => Lead by Vincent Cao Van Phu

- Digital Block Implementation
- Digital IP Characterization

Other critical technologies

- Packaging = Hybrid = MCM technology is also likely to be on the critical (technical) path
- Candidates are:
 - 3D + ? (even 3D doesn't fly!)
 - C4 based technologies
 - Wire bonded based technologies
 - Various substrates technologies
- One common problem:
 - How to build economically modules of large area
 - Reminder for non-expert when embarking in new technologies: "Wafer-scale integration" has been a buzzword in the semiconductor industry for at least 20 years, it never worked!
- Evaluation of different options should be left open until we better understand the real requirements

Conclusion

- Factorize architectural complexity from technological complexity as early as possible
 - Understand basic analog feature of technology
 - Allow optimization in a second phase of circuit parameter
- Teaming (scarce) engineering resources is important
- Allow architects to experiment with different options while engineers are not stuck (and frustrated) with continuous ECOs