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CSCTT Algorithm

SLHC conditions expected to yield very high single muon rate at Level 1

- Combining Tracker data with CSC Track-Finder (CSCTF) data can help reduce
fake rate due to noise, detector effects, and CSCTF mis-measurement

CSC+Tracker Trigger (CSCTT) Algorithm:
- Define regions of interest to help pre-sparsify tracker readout
- Assume clustered stub information is read out from tracker
- Define narrow roads in ¢, z to further filter tracker readout
- Tracker stubs have excellent positional resolution utilize internal correlation
- Attempt fit using tracker-only information (best measurement at low momenta)

Current CSCTT model developed in context of the Long barrel geometry developed
by Tracker upgrade simulation group »

1040 e 1.7

- 100 micron x 1 mm pixels
- 10 Layers (“stacks”), sensors ~ O(mm) = Stubs
- Grouped into 5 “double stacks”, stacks ~ O(cm)

860
680 > il

" e ——
— Our studies use FastSim, simHits Stubs ’ 183 a3 2700
- See Laura Fields talk in Tracking/Trigger session for more detail

CSCTT code is being committed to CVS this week

Internal Note under development. First draft will be available soon.




CSCTT Algorithm

L]
lllustration
(‘,’ ’!‘(.-‘ Vs
’}," — 1 vy —
2\_ 3: Run algorithms:
: \ l o2,

« Step 1: Use matching windows to cut stubs
based on Trackfinder, ., -Tracker, ,

» Step 2: Only keep stubs that are correlated
In A(p & AcotB (|e (pdstackZ_(pdstackO)

. Step 3: Apply r-z algorithm — cot(0) & z,
and r-@ algorithm — p-
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(CSC+Trigger Matching Windows

Examples of For Double Stack 0 :

Matching Z;Z, .. Windows Matching @u@yacker Windows Matching windows are defined
For Double Stack 0 For Double Stack 0 n <1.5 fOI' all pOSSiblC CSCTF-PT (5
§ 5_ + %: 0.3 rad wide in g ,;HHH*.?M bits) and CSCTF-n (5 bits per
940 om wide in Z | HH ' S o2p \ w endcap) Yalues. Average
oof / . H o I match-window-occupancy
o HH ' osf plots shown below are a
vE HH | os- | function of these CSCTF bins
A L ' i " #, and were made with min bias
Widths ~ 6 cm Widths =O(~0.1) - O(~0.01) rad o events (200 PU).

n dependence low p; due to inhom. B-field
Can be tightened if necessang

<Nstubs> per window (simHits)
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Expected Eta Coverage (Long barrel)

—

Geometry Validation: Eta Coverage
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Matching Windows Efficiency (room for fine-tuning)

Number of Matched Stubs v Mo’ Q,

Matching Efficiency to CSCTF Q2 Tracks |
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Matching Efficiency to CSCTF Q 3 Tracks

I Efficiency for Quality 1, 2, and 3 Tracks EffEtaQ1
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Here we see origin of
inefficiency caused by Nstubs
cut.

(1) |[Etaj>2.1 Nstubs is seen to
drop to ~2 (expect 4)

(2) Eta dependent switch in
CSCTF-track quality
assignment due to gap between
inner and outer rings of ME2
and ME3 (matching windows
are tuned for Q3 tracks).
Q3:Q2 ~ 8:1 for 1 mu events |
(cf Q3:Q2 ~ 2:1 for MinBias)
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Matching Windows: Signal versus Background

Single muon

events
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Matching Windows: Separating Signal from Background

I
Signal and Background vs CSCTF-n

‘ Matched Stubs, 1-i and MinBias Events vs CSCTF-n: P:'"=1o | ‘ Matched Stubs, 1-i and MinBias Events vs CSCTF-n: P:'"=30 |
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Once matching windows atching Windows N__—¢u [ SBatterN,, cuf |
are re-tuned, expect that £ 30 3 £ 30
counting can provide a F F £
powerful handle for rate S 25 z G 25
reduction from noise and ~ © ©
CSCTF mis-measurement. 20 20
15
Example exercise: tune
matching window bin-by- 10
bin Nswbs threshold to
accept 95% of signal stubs. °
Cuts and S/B versus bin 0

seen on right =




Rate Reduction from stubs in Matching Windows

|
Trigger Rate vs CSCTF-PT: Quality>1 ot Reduction Factor vs CSCTF-P_: Quality>1 N,.... cut . .
| <o |2 |.°_ - i Rate and relative reduction
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Pt Estimate 1: Using A

F=i0acm Circle Fit Approximation:

d=do + arcsin( LR/ pt)
f' N 1 _________ linear approximation:

/
— A ~ 1/pr

- Ad ~ AR

sensors report local coordinate — global ¢

measure ¢ in 100 um units of arc length at 104 cm
Adog = Adjj - ARog/ AR;j

| Change in Phi from Station 0 and 4
= ]

A(POQ — 1/pT — pT gooé LayerOM Layer ¥ H—

~tong-barrel;-central™-

Approach demonstrated
o achieve 2% P e o
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P+ with Beam spot drift

Current algorithm takes filtered stub candidates and assigns Pt by
finding effective Aoy between tracker Layers

— Uses linear fit between 1/Pt and A@o9, with (0,0,0) beamspot

— This algorithm can be re-tuned to accommodate off-center (not
investigated yet)

e (Can we use the CSCTT model framework to accommodate beam
spot drift?

— Take filtered stub candidates and use a 3-point circle fit to find Pr

» Algorithm 1: Assume a known beam spot and use stubs available from two tracker
Layers

» Algorithm 2: Assume unknown beam spot and use stubs available from three tracker
Layers

— Can then use DCA to provide beam spot location

» Both algorithms fit two lines: L1 = Point; to Pointi+; and L2 = Pointi+1 to Pointi+>
(points increasing in radius). Solve for the intersection of the two orthogonal lines
which bisect L1 and L2

» Working with engineer to understand how we can implement algorithm in HW




Once candidate stubs are
identified, try all pair-wise 50
combinations for 3-point fit
(assume known beam spot)
and look at resolutions
(below).

LI L B B B B L B B B

-50

I

N\ X
Beamspot

T L

P, resolution v P["*° from 3 point fit | | P resolution v P]"* from 3 point fit |
§  [Permumon s o — ey Result not too
= — Layers: 0-1 k= h IS i O o e
s e D2 DL ~2.1:1 2 o= | D2:D1 ~ 1:1 surprising, best
4 Layers: 0-3 /O ° ° 2 — Layers: 3-5 .
01| — oo 2101 Larerer 6 resolution found
R — Layers: 37 when chords are
t:y:::f g:; Layers: 3-8 .
e _ Layers: 39 nearly equal in
i length. 3 —9
r 1ves best result
| /’_‘/f\/ NS o .
with resolution ~
S 0
} 1 muon events i 1 muon events 1-3%
109" ""20 40 60 80 100 120 140 0% 2020 60 80 100 120 140
P:_’rue (GeVlc) lee (GeV/c)




Circle-Fit Pt (be

EF
E 1 muon events =
S 100 ez e of Moot
= 0.02f
50—
i a4
o+
i S 0.040.05:0.02:0.01 0 0.010.02 0.03 6.0
i 7 X (em) X (cm)
-50(— s
-100—
L 1 1 1 1 | 1 1 1 1 \ Il 1 1 1 |
-100 -50 0 50 100

x (cm)

Estimate of beamspot using 3-point fit:
xbgen=0.0325 cm, ybgen=0.00506 cm ‘ P, resolution v P™ from 3 point fit

| Distance of Closest Approach |

Flat Pt
Layers: 0-3-9 resolution when
1 muon events

0.04 101 3-Layer fit 1s

ooal / \‘\ used. We see

05 / ; \\ resolution ~
: / N 1.5%

Resolution

[ X, =321+ 2 um, D=5i2um

DCA (cm)

-0.02_ // \\
0043- T T A AANAAN A AN A LA N A
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3 2 1 0 1 2 3 0 20 40 60 80 100 120 140
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Rate with Circle Fit

Trigger Rate vs CSCTF-P_: Quality>1

Take either 2 OR 3
(preference to 3
Layer) Layer Circle
fit, reevaluate rate

(Hz)

_‘Rate
S

—
o
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o
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11 I L1 | I L1 |

| Input Collections Used:

: Rate v CSCTF-P: N, >
Rate v CSCTF-P: N, .. >
Rate v CSCTF-P;: N, .. >=
Rate v Circle Fit-P
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COt(e) & ZO (1) Get cotb from

= AZi = Zstub1 - Zstub2 and
t

AR;i = Rstub1 - Rstub2

sz , (2) Get Zeorr from Ri (known)

ﬂ 2
WAL : and cot0
o |
Z> / Z ) R (3) Get ZO from Zstubl and Zcorr

- A - AZ

AZ
Zcorr = Ri xX— Zo = Zi —Zcorr & COt(e) =
AR AR

» Pairs of stubs used, first stub always from double stack #0-3
- Similar triangles
» cot(0) and Z. calculated then stored in a lookup table.

CSTT model has been demonstrated
to achieve Zoresolution 640 um and
cot(0) resolution 0.002
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Conclusions

* UF group has developed a CSC+Tracker Trigger (CSCTT)
model for Level 1

* Seeding regions of interest within Tracker volume by using CSC
Tracker-Finder allows one to make precise estimates of Pt via
Ao or circle fit, Zo, cotd at L1. Beam spot possible as well.

* Matching windows cut on Nstubs can be a powerful weapon 1n
rejecting fake muons or mis-measured CSC Track-Finder muons

» Various features of CSCTT algorithm are better understood

— Currently studying various improvements to matching windows and
filtering, as well as CSCTF-quality (lots of handles for fine-tuning)

 CSCTT code will likely enter CVS this week
 Internal Note 1n progress (hope to have first draft out soon)
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