

CSC+Tracker Trigger Algorithm

D. Acosta, A. Ballado, M. Fisher, I. K. Furić, L. Kaplan, A. Madorskiy, B. Scurlock, B. Williams

CSCTT Algorithm

- SLHC conditions expected to yield very high single muon rate at Level 1
 - Combining Tracker data with CSC Track-Finder (CSCTF) data can help reduce fake rate due to noise, detector effects, and CSCTF mis-measurement
- CSC+Tracker Trigger (CSCTT) Algorithm:
 - Define regions of interest to help pre-sparsify tracker readout
 - Assume clustered stub information is read out from tracker
 - Define narrow roads in ϕ , z to further filter tracker readout
 - Tracker stubs have excellent positional resolution utilize internal correlation
 - Attempt fit using tracker-only information (best measurement at low momenta)

• Current CSCTT model developed in context of the Long barrel geometry developed by Tracker upgrade simulation group

- 100 micron x 1 mm pixels
- 10 Layers ("stacks"), sensors ~ O(mm) → Stubs
- Grouped into 5 "double stacks", stacks ~ O(cm)
- Our studies use FastSim, simHits Stubs
- See Laura Fields talk in Tracking/Trigger session for more detail
- CSCTT code is being committed to CVS this week
- Internal Note under development. First draft will be available soon.

CSCTT Algorithm

Illustration

- Step 1: Use matching windows to cut stubs based on Trackfinder_{z,φ}-Tracker_{z,φ}
- Step 2: Only keep stubs that are correlated in Δφ & Δcotθ (ie φ_{dstack2}-φ_{dstack0})
- Step 3: Apply r-z algorithm \rightarrow cot(θ) & z_o and r- ϕ algorithm \rightarrow p_T

CSC+Trigger Matching Windows

Examples of For Double Stack 0:

Widths =O(\sim 0.1) - O(\sim 0.01) rad η dependence low p_T due to inhom. B-field Can be tightened if necessary6

Matching windows are defined for all possible CSCTF-P_T (5 bits) and CSCTF-η (5 bits per endcap) values. Average match-window-occupancy plots shown below are a function of these CSCTF bins and were made with min bias events (200 PU).

Expected Eta Coverage (Long barrel)

Matching Windows Efficiency (room for fine-tuning)

Here we see origin of inefficiency caused by Nstubs cut.

- (1) |Eta| > 2.1 Nstubs is seen to drop to ~ 2 (expect 4)
- (2) Eta dependent switch in CSCTF-track quality assignment due to gap between inner and outer rings of ME2 and ME3 (matching windows are tuned for Q3 tracks). Q3:Q2 ~ 8:1 for 1 mu events (cf Q3:Q2 ~ 2:1 for MinBias)

Matching Windows: Signal versus Background

Matching Windows: Separating Signal from Background

Once matching windows are re-tuned, expect that counting can provide a powerful handle for rate reduction from noise and CSCTF mis-measurement.

Example exercise: tune matching window bin-by-bin N_{stubs} threshold to accept 95% of signal stubs. Cuts and S/B versus bin seen on right →

Rate Reduction from stubs in Matching Windows

100 120 140

CSCTF-P_T (GeV/c)

20

40

weapon against CSCTF

mis-measurement!

100 120

CSCTF-P_T (GeV/c)

P_T Estimate 1: Using $\Delta \phi$

Circle Fit Approximation:

$$\phi = \phi_0 + \arcsin(\zeta R / p_T)$$

linear approximation:

$$\Delta \phi \sim 1/p_T$$

$$\Delta \phi \sim \Delta R$$

- sensors report local coordinate → global φ
- measure φ in 100 μm units of arc length at 104 cm
- Δφ₀₉ = Δφ_{ij} · ΔR₀₉ / ΔR_{ij}
- $\Delta\phi_{09} \rightarrow 1/p_T \rightarrow p_T$

Approach demonstrated to achieve 2% P_T resolution

P_T with Beam spot drift

- Current algorithm takes filtered stub candidates and assigns P_T by finding effective $\Delta \phi_{09}$ between tracker Layers
 - Uses linear fit between $1/P_T$ and $\Delta \varphi_{09}$, with (0,0,0) beamspot
 - This algorithm can be re-tuned to accommodate off-center (not investigated yet)
- Can we use the CSCTT model framework to accommodate beam spot drift?
 - Take filtered stub candidates and use a 3-point circle fit to find P_T
 - Algorithm 1: Assume a known beam spot and use stubs available from two tracker Layers
 - Algorithm 2: Assume unknown beam spot and use stubs available from three tracker Layers
 - Can then use DCA to provide beam spot location
 - Both algorithms fit two lines: L1 = Point_i to Point_{i+1} and L2 = Point_{i+1} to Point_{i+2} (points increasing in radius). Solve for the intersection of the two orthogonal lines which bisect L1 and L2
 - Working with engineer to understand how we can implement algorithm in HW

Circle-Fit P_T (beam spot known)

Once candidate stubs are identified, try all pair-wise combinations for 3-point fit (assume known beam spot) and look at resolutions (below).

Result not too surprising, best resolution found when chords are nearly equal in length. $3 \rightarrow 9$ gives best result with resolution \sim 1 - 3% Circle-Fit P_T (beam spot unknown)

Estimate of beamspot using 3-point fit: xbgen=0.0325 cm, ybgen=0.00506 cm

Flat P_T resolution when 3-Layer fit is used. We see resolution \sim 1.5%

Rate with Circle Fit

Take either 2 OR 3 (preference to 3 Layer) Layer Circle fit, reevaluate rate

$cot(\theta) \& Z_0$

(1) Get $\cot\theta$ from

$$\Delta z_i = z_{\text{stub1}} - z_{\text{stub2}}$$
 and

$$\Delta R_i = R_{stub1} - R_{stub2}$$

- (2) Get Z_{corr} from R_i (known) and $\cot \theta$
- (3) Get Z_0 from Z_{stub1} and Z_{corr}

- · Similar triangles
- cot(θ) and Z_{corr} calculated then stored in a lookup table.

CSTT model has been demonstrated to achieve Z_0 resolution 640 μ m and $cot(\theta)$ resolution 0.002

Conclusions

- UF group has developed a CSC+Tracker Trigger (CSCTT) model for Level 1
- Seeding regions of interest within Tracker volume by using CSC Tracker-Finder allows one to make precise estimates of Pt via $\Delta \varphi$ or circle fit, Z_0 , $\cot \theta$ at L1. Beam spot possible as well.
- Matching windows cut on Nstubs can be a powerful weapon in rejecting fake muons or mis-measured CSC Track-Finder muons
- Various features of CSCTT algorithm are better understood
 - Currently studying various improvements to matching windows and filtering, as well as CSCTF-quality (lots of handles for fine-tuning)
- CSCTT code will likely enter CVS this week
- Internal Note in progress (hope to have first draft out soon)

