

Tests of scintillator based fast detector (MTT)

Alessandro Montanari – INFN Bologna

CMS Upgrade Workshop, 28 October 2009

Links to documentation

Concept:

- CMS-IN note 2007/058
- Upgrade proposal n.07/09: http://cmsdoc.cern.ch/cms/electronics/html/ elec_web/docs/slhcusg/proposals/proposal_list.htm
- Joint SLHC Trigger-Tracker meeting (19 July 2007): http://indico.cern.ch/conferenceDisplay.py?confld=17324
- Trigger Upgrade Workshop (10 April 2008): http://indico.cern.ch/conferenceDisplay.py?confld=27925

Simulations:

• Muon Barrel Upgrade Workshop (26 May 2009): http://indico.cern.ch/conferenceDisplay.py?confld=59211

MTT: a reminder

- Muon Track fast Tag:
 - it was initially (2007) proposed as a possible device for:
 - fast selective readout of Tracker (Static Mapping)
 - improvement of RPC trigger
 - ghost/fakes suppression in MB1
 - now, in the new Tracker scenarios:
 - it is still possible to send fast muon tag (L0 trigger) to some stage
 - it allows ghost/fake suppression in MB1 for Dynamic Mapping
 - various hardware implementation are under study:
 - new RPC with 2D readout (Bari)
 - scintillator tiles (Aachen, Bologna*)
- * Phys.: F.Fabbri, A.M., A.Perrotta

Eng. and Tech: G.Balbi, V.Cafaro, I.D'Antone, V.Giordano, I.Lax, G.Torromeo

MTT detector granularity

The optimal fine segmentation for effective ghost rejection needs to be studied with detailed simulation

A.Montanari - CMS Upgrade Workshop

Constraints to detector design

- Limited available space
- Few additional services
- Operation in magnetic field
- Robustness against backgrounds (neutrons,..)
- Fast front-end signal processing
- Possibly, simple and robust design

Idea for light collection and readout

Main features:

- WLS fiber on one or two sides
- SiPM on one or both side of the fiber
- Preamplifier directly mounted near SiPM
- Local coincidence of at least 2 SiPMs ?

- \rightarrow easy working
- \rightarrow no clear fibers
- \rightarrow compactness
- \rightarrow local digital signal ?

Can we collect enough photons with this geometry ??

Scintillator tile 250 x 250 x 8 mm³

SiPM from FBK-IRST (Trento)

Joint research program with INFN Active area: Number of pixels: Pixel size: Breakdown voltage: 1x1 mm² 400 50x50 µm² ~30 V

Custom WLS-SiPM coupling

Custom preamp: output to QDC

Fiber on SiPM (opposite side is aluminized)

Scintillators + PMT for external cosmic muon trigger (~16 events/min)

Packaged tile (with aluminized mylar)

Test bench in Bologna

Trigger on cosmic muons:

~ 16 events / min (on ~5x5 cm2)

SiPM dark pulses

1 pixel pulse, after preamp (x10), on 50 Ω :

height: $\sim 10 \text{ mV}$ length: $\sim 100 \text{ ns}$

Dark noise rate

It decreases exponentially with signal height threshold

At low thresholds, plateaux corresponding to given numbers of fired pixels are visible (useful for calibration)

A higher thresholds, no plateaux because of signal smearing effects

SiPM calibration

The spectrum of the charge of the noise signals (integrated with a QDC over 150 ns and triggered on noise) shows peaks corresponding to 1,2 or 3 fired pixels

The distance between peaks corresponds to the charge associated to one pixel:

$$= 59 ADC counts$$

QDC pedestal

The pedestal is determined by the spectrum of the charge integrated over 150 ns, on random triggers:

Detected photons with glued/not-glued fiber

- Trigger on muon, integrate charge in 150 ns
- Gaussian fit around the maximum of integrated charge distribution to obtain <Q> (discard Landau tail to be conservative)
- The most probable number of collected photons can be derived, using calibration data: <N_{ph}>= (<Q> - Q_{ped}) / <Q_{pixel}> (..neglecting inter-pixel cross talk..)
- The setup with the glued fiber is ~90% more efficient in collecting light:

<N_{ph}>(not glued) = 9.0 <N_{ph}>(glued) = 17.1

Light collection uniformity

- Rather uniform response along the fiber
- ~10% more photons detected when muon is in quadrants close to the fiber: due to photon attenuation in the scintillator.

Efficiency (threshold on signal charge)

Efficiency for MIP detection, can be evaluated from integrated charge spectra:

Fff.

99.9

99.7

99.3

98.8

Q2		Q
Thr (#ph)	Eff.	Thr (#ph)
≥ 4	99.5	≥ 4
≥ 5	99.5	≥ 5
≥ 6	99.3	≥ 6
≥ 7	98.9	≥ 7

Q3		C	Q4	
Thr (# ph)	Eff.	Thr (#ph)	Eff.	
≥ 4	99.5	≥ 4	99.8	
≥ 5	99.1	≥ 5	99.4	
≥ 6	98.4	≥ 6	98.8	
≥ 7	97.2	≥ 7	97.8	

- for "low" thresholds the efficiency is not much affected by non uniformity in light collection:
- As an example, requiring \geq 5 photons ε > 99%
- the Poisson probability that dark noise signals in a 150 ns time window cross the 5 photon threshold is ~ 10^{-5} ... but it has to be measured !

Efficiency (threshold on signal height)

Compare MIP selection efficiency by cutting on signal height wrt signal charge:

- Cutting on charge integrated over 150 ns is more efficient..
 ..but slower and more sensitive to noise
- Cutting on signal height is faster but less efficient
- Both would benefit of more efficient light collection

Time walk

Timing resolution is dominated by the the spread in arrival times of the collected photons: it can be improved with more efficient light collection

Threshold (# photons)	RMS of arrival time (ns)
≥ 2	2.7
≥ 3	3.0
≥ 4	3.4
≥ 5	3.6
≥ 6	3.7

FNAL, 28 October 2009

A.Montanari - CMS Upgrade Workshop

Summary

- First results are very promising:
 - very simple geometry, easy construction
 - good light collection with only one fiber..if glued
 - good efficiency..if charge is integrated
 - time resolution seems to be dominated by photon statistic
 - noise background still to be studied...
- Next tests:
 - improve photon statistic (more efficient SiPM, 2 WLS,..)
 - study noise (and noise reduction with 2 SiPM coincidence)
 - develop front-end electronics for readout and control of few ch.

Backup slides

Region of interest with MTT

MTT

Static mapping with MTT

- Define <u>coarse</u> muon tagging sectors outside Solenoid:
 - -all tagged muons above 10 GeV come from an associated Region of Interest (RoI) in Tracker
- Natural choice for sectors in an MTT layer near MB1 (and corresponding Rol in a Tracker Layer (TkL)):

 Φ MTT sector: 15° -> half MB1=100 cm Φ TkL sector: 3 x 15°

- η MTT sector: -> half MB1=125 cm
- η TkL sector: -> depends on radius

Total: 2 x (12 MB sectors) x

- 2 x (5 wheels) = 240 <u>coarse</u> MTT sectors
- 4 coarse MTT sectors for each MB sector - also TkL is divided into 240 sectors

Tag connection from MTT to (one) TkL

A fast muon tag signal (0.5 μs) can be sent directly to Tracker sensors: reduced bandwidth of Tracker data to be sent to following trigger stages in USC

(rates calculated for L=10³⁵cm⁻² s⁻¹ and a TkL at 80 cm from vertex, as in CMS-IN 2007/058)

Connecting to tracker with Dynamic Mapping

Correlation between deviation and bending angle allows the prediction of muon position at any depth inside CMS (use also station 2 when bending is not measured by station1)

