

### SuperHTR Update CMS Upgrade Workshop

October 28, 2009 Jeremiah Mans

## **Outline**



- System overview and role of the SuperHTR
- Hardware demonstrators : status and current projects
  - MiniCTR1
  - MiniCTR2
- Plans for TB2010
- Path towards production electronics

## System Overview (Backend-Centric)





# **Backend Crate in upgraded HCAL**



18-20 Links/ **SuperHTR** from FE Control MCH (commercial) **SuperHTR** SuperHTR SuperHTR SuperHTR **SuperHTR SuperHTR** SuperHTR SuperHTR SuperHTR SuperHTR SuperHTR SuperHTR DAQ + Timing (DTC) MCH Sites **Trigger Links** 

(Two special hub slots with connectivity to all other slots)

Trigger Links (Protocol/connectors/density to be defined)

## **Dataflow in/out of SuperHTR**





October 28, 2009

# **Research and Development Questions**



- uTCA Infrastructure
  - Fairly complex microcontroller firmware necessary to interface with uTCA crate controller (MCH)
  - Clock distribution and fast controls distribution [see BU talk]
  - Reliable slow controls/local DAQ support [see UVA talk]
- Front-end link
  - Stability, performance of high rate (>3 Gbps) optical links
  - Latency control link operations mode (LHC-synchronous, asynchronous with IDLE removal)

# **Research and Development (2)**



- Global DAQ
  - Link between SuperHTR and DTC
    - Backpressure/quasi-OOB signalling
  - Selective readout support (?)
    - Behavior/requirement is dependent on Global DAQ constraints and requires simulation work
- Trigger
  - Data link selection and operation: latency, bandwidth
  - Data format contents: issue for simulation

## Hardware Demonstrator I : miniCTR





- Completed in Summer 2008
- Demonstrate workability of uTCA form factor

- Utilize new/advanced Virtex 5 FPGAs
  - Develop experience with "3 Gbps-class" built-in deserializers
- Various tests completed and underway including link stability and latency measurements (with crystals), HCAL link reception (ongoing effort)

## **Closer to the Final Product: MiniCTR2**



Block Diagram

### **Closer to the Final Product: MiniCTR2**





October 28, 2009

## **Detailed HW Status**



- MiniCTR1 Cards: 4 fully functional cards (2 at CERN, 2 at Minnesota)
- MiniCTR2
  - Bare PCBs : 20
  - Assembled : 5
- Crates
  - Obtained a number of 2-4 slot uTCA crates for a low price
  - Will need a proper 2-MCH crate for TB2010 (probably to be purchased via BU – development need primarily for DTC)
- Controllers (MCH)
  - Purchased 3 NAT MCHs (~\$1.3k/ea)

## MiniCTR2s in Development Crate





#### October 28, 2009

### Work Planned or Underway on miniCTR2

- Underway
  - Basic functionality tests
    - FPGA configuration, I/O
    - Clock control (48 clock mux bits)
  - Microcontroller
    firmware for interfacing
    to the MCH (i2c
    physical layer, with
    IMPI logical layer on
    top)

### Planned

- 2.5 and 5.0 Gbps optical links based on local oscillators (8b/10b)
- Implementation/testing of CERN GBT protocol reception
- Local DAQ capability via Ethernet (8b/10b)
- TB2010: self-trigger capability via LVDS output
- Reception of clocks, fast controls from DTC

## **TB2010 Backend Plans**

- Half-density or quarter-density RM on the front-end
  - Limited number of such RMs (1?) to built this year
- Links to run at 5 Gbps
  - Provide a full complement of fibers to allow operation at 2.5
     Gbps as a backup
  - Conservative baseline: 8b10 asynchronous link operation for TB2010
- DTC to provide clocks (LHC) and fast controls (TTC)
  - No global DAQ path in TB2010
- DAQ via Ethernet (local DAQ)

## From miniCTR2 to SuperHTR



- Research and validation must prove successful for optical links, clocking, DAQ, etc
- Double the incoming link count
  - Replace the outgoing SNAP12 with an incoming
  - Requirement for twice the incoming links: two Virtex 5
     FPGAs or a high-scale Virtex 6 FPGA
- Settle trigger I/O questions (direct-drive, daughter card, etc)
- Other projects have *fairly* similar requirements: generate a common design?