
QIE10 Issues

Tom Zimmerman
Fermilab
Oct. 28, 2009

The generic problem: digitizing photodetector charge pulses

- 1) over wide dynamic range (typically 13-18 bits)
- 2) with negligible quantization error
- 3) at high rate (typically around 50 MHz)

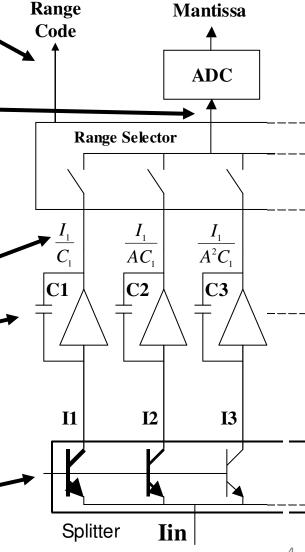
Constant precision implies that ADC bin width is not uniform, but proportional to energy.

A time-tested solution: QIE

QIE = Charge Integrator and Encoder.

Digitizes wide dynamic range signals in a floating point format

Older versions of QIE required an off-chip commercial ADC Newer versions incorporate an on-chip ADC: *single-chip solution*


- Integrate input charge on multiple scaled ranges simultaneously
- Select one appropriate range for any given input amplitude
- Digitize the integrator output on that range
- Read out the digitized result (mantissa) and the range code (exponent)
- Pipeline all operations to obtain deadtimeless acquisition and readout
- Scaling ratios between ranges must be constant to allow slope/offset calibration
- Controlled input impedance over wide dynamic range

Some advantages of the QIE approach

Single-chip solution is straightforward with few external components: high channel density. Efficient floating point on-chip ADC minimizes power and data going off the detector.

The QIE Concept (simplified)

- 5) The range code forms the exponent.
- 4) For a given input charge, one appropriate range output is selected and digitized by an ADC, forming the mantissa.
- 3) Splitter ratios and integration C ratios are chosen to achieve range-to-range scaling of the transfer gain (I/C) by factor **A**.
- 2) Each splitter range output feeds a charge integrator. The current fractions are integrated simultaneously on all ranges.
- 1) Input current pulses are divided into weighted fractions by a current splitter

QIE10 for CMS

- Least count charge (LSB) = 3 fC
- Max. input charge = 330 pC (~17-bit range)
- Dual polarity input desired:

Negative input current from PMT through coaxial cable: need constant impedance (50 ohm) input over wide range (sub-uA to 60 mA): **not trivial!**

Positive input current from SiPM or APD (short cable): need low impedance (~ 10 ohm) input

• Multi-range system to accommodate wide dynamic range:

Propose 4 QIE ranges, each scaled by factor of 8

ADC has 4 "segments" per QIE range: bin widths 1, 2, 4, 8 to maintain "constant" resolution

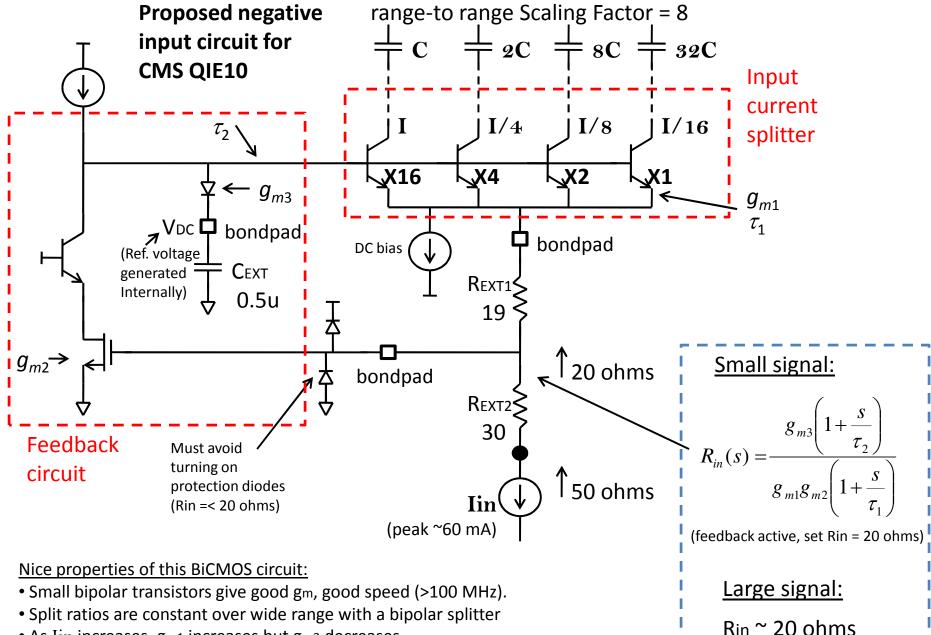
- Input impedance (negative input) should look resistive to high freq. (1GHz) to minimize reflections
- Constant resolution level of better than 2%
- Deadtimeless operation: integrate all input charge every 25 ns, read out at 40 MHz
- Fast analog signal bandwidth (100MHz)
- TDC new feature not previously implemented on any QIE chips
- Clock phase adjust new feature not previously implemented on any QIE chips

QIE10: what process to use?

Input splitter must have constant split ratios over wide range: not possible with MOS. Need bipolars!! Bipolar NPNs are also instrumental in obtaining a controlled impedance input. CMOS required for switches, logic.

This design configuration requires a BiCMOS process

Voltage requirements

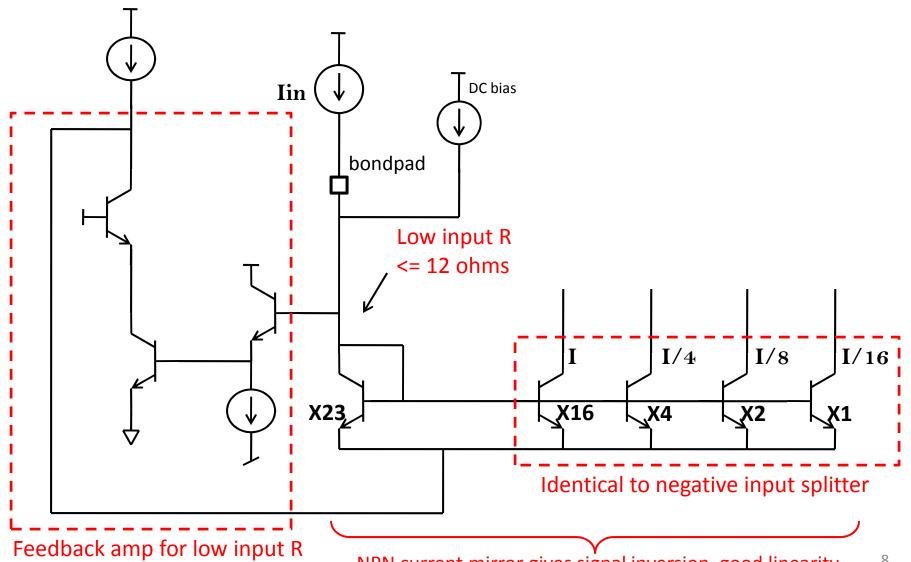

"Stacked configuration":

Splitter 2V Current switches 1V Integrators 1V Headroom 1V

→ This design configuration requires a 5V process

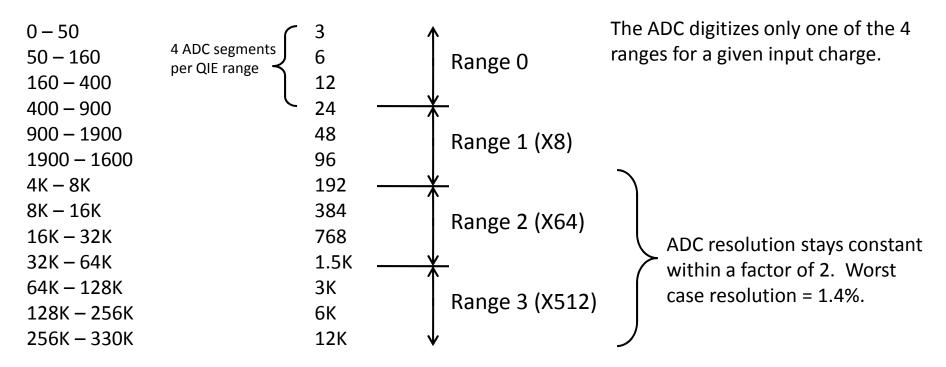
Earlier versions of QIE: **AMS 0.8u BiCMOS process**. This is an older process -- still available, but only for dedicated runs, not multi-project prototyping runs through silicon brokers (like MOSIS).

AMS 0.35u SiGe BiCMOS is a more modern process, available for multi-project runs through MOSIS. This is a 3.3V process, but has optional 5V NPN and CMOS transistors available. Start using it!



- As Iin increases, gm1 increases but gm3 decreases, so that Rin ~ constant! Arrange VDC for Rin = 20.
- Rin looks resistive to > 1GHz!

(feedback circuit inactive)


Proposed positive input circuit for CMS QIE10

(Invert and split the signal current)

Proposed QIE10 on-chip Flash ADC characteristics: 6 bits (64 bins of varying width).

<u>Input charge (fC)</u> <u>effective ADC bin size (fC)</u>

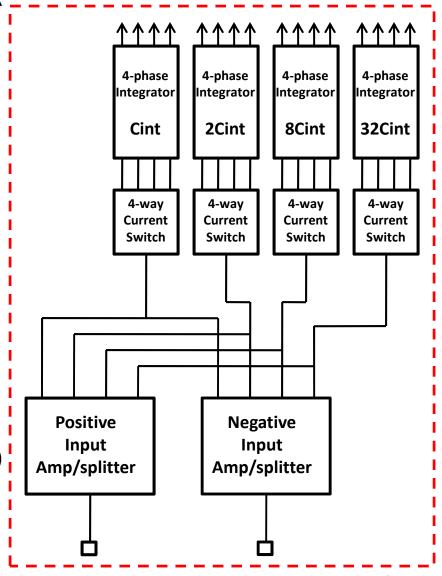
This FADC is "non-linear" in the sense that it has non-uniform bin widths. However, it's really a linear FADC with "missing" comparators, strategically "removed" since they are not necessary. Improves speed, area, power, etc. This 64-bin ADC has the same range as a 192-bin (7.5 bit) "linear" ADC (where all bins are of equal width).

First planned test chip submission

Design work completed to date (simulation only):

Negative input amp/splitter
Positive input amp/splitter
Current switches
Integrators

Starting schematic entry and layout 10/09


Objectives:

Gain experience with 0.35u process

- -- confirm simulation accuracy
- -- NPN splitter matching, linearity

Radiation testing? (SiGe supposed to be more rad hard)

If this prototype works as expected, continue to full-chip design and layout.

