

Work on hadron effects on crystals for CMS at sLHC

G. Dissertori, D. Luckey, P. Lecomte, Francesca Nessi-Tedaldi, F. Pauss **ETH Zürich**

CMS SLHC workshop, Fermilab, October 29, 2009

ETH contributions to ECAL@SLHC

Thorough reports regularly presented in ECAL meetings, including the November 2008 and March 2009 SLHC meetings. Update here:

- I Studies of PbWO₄, CeF₃ and LYSO under hadron irradiation
 - → New results on CeF₃ and LYSO
- II Procurement and hadron irradiation of crystals for Beam Tests
 - → 5 PWMO crystals purchased for test beam matrix
 - → 1 PbWO₄ EE crystal p-irradiated in June'09 up to $\phi_p = 1x10^{13}$ p/cm², delivered for beam test
 - \rightarrow 1 PWMO crystal p-irradiated beginning of October up to $\phi_p = 1x10^{14}$ p/cm², to be delivered in 2010

Hadron fluences at sLHC

M.Huhtinen, sLHC electronics workshop 2004

Ionizing radiation doses and particle fluences [cm⁻²] calculated for 2500 fb⁻¹ in the CMS electromagnetic calorimeter, i.e. after running until ~2025:

- ◆ Barrel (EB) : ~10 ¹² cm⁻² charged hadrons
- ◆ End Caps (EE): up to ~10 ¹⁴ cm⁻² charged hadrons

5.1E+17 1.0E+15 3.2E+14 1.0E+14 3.2E+13 1.0E+13 3.2E+12 1.0E+12 3.2E+11 1.0E+11 3.2E+10 5.6E+11

Neutrons:

◆ Below 20 MeV, no effect besides ionizing dose, tested up to 10¹⁴ cm⁻²

R. Chipaux et al. Proc. Mat Res. Soc. 358 (1994) 481

◆ Above 20 MeV, effects as for charged hadrons, parametrised by density of inelastic collisions

Reminder: hadron damage features in PbWO₄

It induces changes in Light Transmission, qualitatively different from those caused by γ radiation

Reminder: hadron damage features in PbWO₄

- \rightarrow It induces changes in Light Transmission, qualitatively different from those caused by γ radiation
- Tested over 2 orders of magnitude in proton fluence, up to $5x10^{13}$ /cm² and over a factor 20 in rates. The non-recovering component of μ_{IND} grows linearly with fluence

M. Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl. Instr. Meth. A545 (2005) 63-87

→ Parametrize through induced absorption:

$$\frac{LT(\lambda)}{LT_0(\lambda)} = e^{-\mu_{IND}(\lambda)L}$$

Reminder: hadron damage features in PbWO₄

- \rightarrow It induces changes in Light Transmission, qualitatively different from those caused by γ radiation
- → Tested over 2 orders of magnitude in proton fluence, up to $5x10^{13}$ /cm² and over a factor 20 in rates. The non-recovering component of µIND grows linearly with fluence

M. Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl. Instr. Meth. A545 (2005) 63-87

- → It only affects Light Transmission, and can thus be monitored P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl. Instr. Meth. A564 (2006) 164-168
- → Parametrize through induced absorption:

$$\frac{LT(\lambda)}{LT_0(\lambda)} = e^{-\mu_{IND}(\lambda)L}$$

Comments on damage recovery in PbWO₄ after p-irradiation

A fraction of the p-damage recovers in the dark, at room-T, with τ_1 = 17.2 days and τ_2 = 650 days as for γ -damage

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

Damage at 150 days ~ stable

Comments on damage recovery in PbWO₄ after p-irradiation

A fraction of the p-damage recovers in the dark, at room-T, with τ_1 = 17.2 days and τ_2 = 650 days as for γ -damage

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

Damage at 150 days ~ stable

Remark 1:

Hadron-specific damage (band-edge shift) recovers by thermal annealing up to 350°C (crystal d)

Comments on damage recovery in PbWO₄ after p-irradiation

A fraction of the p-damage recovers in the dark, at room-T, with τ_1 = 17.2 days and τ_2 = 650 days as for γ -damage

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

Damage at 150 days ~ stable

Remark 1:

Hadron-specific damage (band-edge shift) recovers by thermal annealing up to 350°C (crystal d)

Remark 2:

An accidental exposure to fluorescent light induced some recovery, but no band-edge recovery (crystal G)

Günther Dissertori, ETH Zürich

Understanding of hadron damage mechanism in PbWO₄

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

 $\mu_{\text{IND}}(\lambda)$ is qualitatively different between proton- and γ -irradiated crystals:

In proton-damaged crystals, dominant component has a Rayleigh-scattering behavior = scattering off "dipoles" with dimension $< \lambda$:

- $\rightarrow \lambda^{-4}$ dependence (see crystal a'')
- scattered light completely polarized

Understanding of hadron damage mechanism in PbWO₄

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

 μ_{ind} (m

 $\mu_{\text{IND}}(\lambda)$ is qualitatively different between proton- and γ -irradiated crystals:

In proton-damaged crystals, dominant component has a Rayleigh-scattering behavior = scattering off "dipoles" with dimension $< \lambda$:

- $\rightarrow \lambda^{-4}$ dependence (see crystal a'')
- scattered light completely polarized

Consistent with:

Fission of Pb and W above a ~20 MeV threshold, with production of heavy breakup fragments

- → range ≤ 10 μm
- → E ≤ 100 MeV
- \rightarrow dE/dx $\simeq \mathcal{O}(10000 \text{ x dE/dx (mip)})$

Along their track, the crystal structure is changed permanently
→ dipole-like inclusions

Understanding of hadron damage mechanism in PbWO₄

M.Huhtinen, P.Lecomte, D.Luckey, F.Nessi-Tedaldi, F.Pauss, Nucl.Instr.Meth.A545 (2005) 63-87

 $\mu_{\text{IND}}(\lambda)$ is qualitatively different between proton- and γ -irradiated crystals:

In proton-damaged crystals, dominant component has a Rayleigh-scattering behavior = scattering off "dipoles" with dimension $< \lambda$:

- $\rightarrow \lambda^{-4}$ dependence (see crystal $a^{"}$)
- scattered light completely polarized

Consistent with:

Fission of Pb and W above a ~20 MeV threshold, with production of heavy breakup fragments

- → range ≤ 10 μm
- → E ≤ 100 MeV
- \rightarrow dE/dx \approx O(10000 x dE/dx (mip))

Along their track, the crystal structure is changed permanently
→ dipole-like inclusions

→ This feature of damage should be absent for crystals with elements with Z<71
 A hadron damage test in crystals containing only such elements should confirm the present understanding of damage mechanisms
 → Test CeF₃ and LYSO

Proton-irradiation test of Cerium Fluoride

Apply same irradiation and measurements procedures used for PbWO₄

- \rightarrow CeF₃:Ba crystal from Optovac from the '90s, 21 x 16 x 141 mm³ (8.4 X₀)
- \rightarrow First 24 GeV/c p-irradiation up to $\Phi_p = (2.78 \pm 0.2) \times 10^{13} \, p/cm^2$ followed by recovery measurements over more than 1 year

→ F. N. et al., IEEE NSS Dresden 2008

- ->Second irradiation up to $~\Phi_p=(2.12\pm0.15)\times10^{14}~{\rm p/cm}^2$ followed again by recovery measurements over more than 1 year
- \rightarrow Transmission damage evaluated at λ where peak of scintillation emission, for Ba-doping \sim 340 nm, according to:

W.W. Moses & S.E.Derenzo, IEEE TNS 36 (1989) 173-176 Crystal Clear Coll., S.Anderson et al., NIM A 332 (1993) 373-394 E. Auffray et al., NIM A 383 (1996) 367-390

CeF₃ Transmission changes with proton irradiation

important recovery over a few months

- \rightarrow light transmission recovers for all λ , except for an absorption band that seems cumulative, sitting however where the emission drops off.
- \rightarrow evaluate damage further at the peak-of-emission $\lambda = 340$ nm

CeF₃ Light absorption after p irradiation

- Rayleigh scattering behavior, as observed for PbWO₄ over most of the λ range (see slide 9), is not present
- → this confirms that the dominant Rayleigh scattering ovserved in PbWO₄ is linked to the production of highly ionizing heavy fragments

Interest of LYSO

- → Calorimetry at sLHC will have to perform through ~7 x LHC hadron fluence
- → LYSO is not expected to fission, since Lu has Z=71, and could possibly not be subject to damage from highly ionizing fragments
- → LYSO is being mass produced by several companies, in particular for PET applications. The capability to grow large ingots has been demonstrated already.
- → LYSO has a very high light yield, and could thus perform adequately even with radiation losses
- → γ-radiation effects have been shown to be small, and not dose rate dependent

 R.H.Mao, L.Y.Zang and R.Y. Zhu, IEEE TNS 54 (2007) 1319
- → LYSO could be a candidate for sLHC calorimetry
- → The p-irradiation of LYSO will deepen our understanding of hadron damage in crystals

Proton-irradiation test of LYSO

Apply same irradiation and measurements procedures used for PbWO₄ and CeF₃

- \rightarrow LYSO:Ce crystal from SIC, 25 x 25 x 100 mm³ (8.8 X_0)
- → First 24 GeV/c p- irradiation up to a fluence

$$\Phi_p = (0.89 \pm 0.06) \times 10^{13} \text{ p/cm}^2$$

at a flux
$$\phi_p = (0.60 \pm 0.04) \times 10^{13} \text{ p/cm}^2/\text{h}$$

followed by recovery measurements over 5 months

 \rightarrow Transmission damage evaluated at λ where peak of scintillation emission, from radioluminescence \sim 430 nm, according to:

R.H.Mao, L.Y.Zang and R.Y. Zhu, IEEE TNS 55 (2008) 1759

LYSO Transmission changes with proton irradiation

- → The change in Transmission induced by p-irradiation at this fluence in LYSO is quite modest
- → No recovery overall is observed between 20 days and 123 days after irradiation

LYSO Light absorption after p irradiation

- → In LYSO, as in CeF3, Rayleigh scattering behavior, as observed for PbWO₄ over most of the λ range (slide 9), is not present
- → this is a further confirmation of our qualitative understanding, that the dominant Rayleigh scattering we observe in PbWO₄ is linked to the production of highly ionizing heavy fragments.

Such fragments -as anticipateddo not seem to be present in LYSO

Damage amplitudes versus p-fluence

- \rightarrow In PbWO₄ a fraction of the damage has a component with $\tau >> 1$ years : "permanent". Values at 150 d do not change further. Damage is cumulative
- → In CeF₃ damage recovers, thus choice of time after irradiation for comparisons arbitrary. Damage is not cumulative.
- → In LYSO we observe no damage recovery so far. A second irradiation, at ~10 x fluence, will tell us whether there is any cumulative damage

A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.

Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative

- A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.
- Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative
- Measurements of proton-induced absorption in LYSO show a damage which does not seem to recover at room-T, but is a factor 5 times smaller than in PbWO₄ for $φ_p = 0.9x10^{13} \text{ p/cm}^2$. Proton irradiations will be performed at higher fluences:

- A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.
- Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative
- Measurements of proton-induced absorption in LYSO show a damage which does not seem to recover at room-T, but is a factor 5 times smaller than in PbWO₄ for $φ_p = 0.9x10^{13}$ p/cm². Proton irradiations will be performed at higher fluences:
 - they should allow establishing whether the damage is cumulative in LYSO

- A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.
- Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative
- Measurements of proton-induced absorption in LYSO show a damage which does not seem to recover at room-T, but is a factor 5 times smaller than in PbWO₄ for $φ_p = 0.9x10^{13}$ p/cm². Proton irradiations will be performed at higher fluences:
 - they should allow establishing whether the damage is cumulative in LYSO
- ▲ The absence of a dominant Rayleigh-scattering component in CeF₃ and LYSO is consistent with its presence in PbWO₄, due to highly-ionizing fragments and their strain fields coming from the fission of Pb and W.

- A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.
- Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative
- Measurements of proton-induced absorption in LYSO show a damage which does not seem to recover at room-T, but is a factor 5 times smaller than in PbWO₄ for $φ_p = 0.9x10^{13}$ p/cm². Proton irradiations will be performed at higher fluences:
 - they should allow establishing whether the damage is cumulative in LYSO
- ▲ The absence of a dominant Rayleigh-scattering component in CeF₃ and LYSO is consistent with its presence in PbWO₄, due to highly-ionizing fragments and their strain fields coming from the fission of Pb and W.
- ▲ Our measurements demonstrate that crystals exist, which are suitable for precision calorimetry in high fluences of energetic hadrons, as expected at superLHC

- A hadron-specific, cumulative damage from charged hadrons has been observed in PbWO₄, which only affects light transmission. All characteristics of the damage are consistent with it being mainly due to an intense local energy deposition from heavy fission fragments.
- Measurements of proton-induced absorption up to $φ_p = 2x10^{14}$ p/cm² in CeF₃ show a damage which recovers at room-T and is not cumulative
- Measurements of proton-induced absorption in LYSO show a damage which does not seem to recover at room-T, but is a factor 5 times smaller than in PbWO₄ for $φ_p = 0.9x10^{13}$ p/cm². Proton irradiations will be performed at higher fluences:
 - they should allow establishing whether the damage is cumulative in LYSO
- ▲ The absence of a dominant Rayleigh-scattering component in CeF₃ and LYSO is consistent with its presence in PbWO₄, due to highly-ionizing fragments and their strain fields coming from the fission of Pb and W.
- ▲ Our measurements demonstrate that crystals exist, which are suitable for precision calorimetry in high fluences of energetic hadrons, as expected at superLHC
- A Hadron damage is not entirely about color centers. It is also about nuclear interactions and displacement of atoms!