CMS FPIX Cooling Prototype

Phase One Estimate and Conceptual Design

R. L. Schmitt

10/28/2009

Specifications

- Based on 2008 specifications posted in docdb 2333
- System operates with panel temperature from -15 to +15C.
- Average temperature stability should be +/- 1C
 - Achievable with pressure control at phase separator
- Minimum operating temperature with no heat load, i.e. detector on or off, is -30C
 - Achievable with pressure control at storage vessel
- Maximum ambient temperature is 40C. Refrigerant shall be retained in at this temperature.
- Normal operation shall be automated so that operations is simply cooling system on/off control and setting the detector temperature.
- Total refrigerant leak rate should be less than 1e-2 atm-cc/sec.

Condensing Unit

- Standard commercial units
- Scroll compressors
- •R404A refrigerant
- Heatcraft part CZT025L6

Pumps

- Considered Three types of pumps
 - LEWA Diaphragm pump
 - Smaller version used in CERN-NIKKEF cooling system
 - High NPSH, 1 bar, or about ten meters
 - Twice the cost of the Roth turbine pump
 - 73 bar pressure rating
 - Roth turbine pump
 - Low NPSH
 - Magnetic drive
 - 69 bar pressure rating
 - Basis of estimate

LEWA LDD Diaphragm Pump

Roth MDW5133 Turbine Pump

Custom Canned Turbine Pump

- Full pressure rating
- Pressure balanced with CO₂ gas
- Inexpensive pump, less than \$1k
- Standard magnetic coupling
- Requires stainless pressure vessel, estimated at \$15k
- Requires development

Canned Pump Conceptual Drawing

Heat Exchangers

- •CO₂ condenser/R404A evaporator
 - •Mounts directly in storage vessel
 - •Removable in case of problem

Storage Vessel

- Large enough to mount heat exchangers
- Large enough to contain total refrigerant charge
- Stainless steel material

Scaling

- The Roth pump will be variable speed and could handle any detector size up to 15kW
- The capacity and number of condensing units could change, possibly required different sized storage vessel.
- The design effort does not change with scale
- M&S would decrease with size, but not a lot
- Recommend that size be based on need.

Possible Combination with BPIX

- Assume shared inlet temperature
- Mis-matched pressure drop
 - Add flow restriction to FPIX
 - Increase BPIX tube size
 - Separate phase separators
- No problem for turbine pump
- Larger or more condensing units
- Recommend BPIX decrease exit quality to 1.2
 - 2.0 mm ID tube same ΔP as FPIX 1.4mm ID tube

Backup slides

References

Specifications

https://docdb.fnal.gov/CMS/DocDB/0023/002333/00
4/CMS%20Upgrade%20Cooling%20Specifications11 2
1 08.pdf

Condensing Unit

- http://www.johnstonesupply.com/corp/OnlineCatalog /ProductDetails/tabid/1780/Default.aspx?Product Co de=B94-313

Roth Pump

– http://www.rothpump.com/Media/chemical.pdf

Tope Estimate of 5/28/2009

		Engineer or	
FNAL CMS CO ₂ cooling R&D setup cost estimate		Designer	Technician
Item or Task	M&S	Man Weeks	Man Weeks
ASME coded CO ₂ storage vessel	\$20	1	
ASME coded relief valve & rupture disk	\$3	0.5	
FESHM required pressure vessel engineering note		2	
Liquid CO ₂ pump	\$25	0.5	
Chiller	\$50	0.5	
Vacuum pump	\$6		
AC power distribution	\$5	0.2	
CO ₂ filters	\$4	1	
Valves	\$15	0.5	
Tubing, fittings, and system fabrication	\$20	2	8
Heat exchanger	\$5	1	
FESHM required piping engineering note		2	
PLC controller, programming, wiring	\$10	3	4
PC, HMI software, and programming	\$4	2	
Component lists and piping schematic		0.5	
Operating procedures		0.5	
Instrumentation	\$15	1	
Insulation	\$3	2	4
CO ₂	\$2		1
Operations support	-	2	4
Totals without contingency	\$187	22.2	21

