# Layout studies Tools and results – general overview

#### Outline

#### Description of tkGeometry tools

- tkLayout (operational)
- tkMaterial (operational)
  - validation
- tk2CMSSW (under development)
- Outlook

#### Overview of (some) studies done so far

- Endcap with rectangular detectors
- Modelling of different options
- Outlook

# tkGeometry tools

- tkLayout: generation of detector geometry
  - Starting from (relatively) small n of input parameters and assumptions
  - Basic geometrical validation (n of hits)
  - Calculation of overall basic parameters (surface, channels, power...)
- tkMaterial: modelling of detector material
  - Simplified modelling with small n of input parameters
  - Creation of (additional) inactive volumes
  - Produce radpidity profile of radiation and interaction lengths
- tkCMSSW: Creation of geometry files for CMSSW
  - Should be readable by IGUANA
  - Tracking is another story...

# tkLayout

#### Two configuration files

- Geometry.cfg
  - Defines the geometry of active surfaces
- Module\_type.cfg
  - Defines which type of module populates each surface (layer/ring/disk)

Some (non exhaustive) examples in the following slides

## **Definition of Tracker Volumes**

```
Tracker aRandomName {
    // ...
}

Barrel ABARREL {
    // ...
}
```

# Generic structure of the geometry configuration file



# **Definition of Tracker Volumes**

```
Tracker aRandomName {
Barrel ABARREL {
Endcap SOMEDISKS {
  // ...
```

# Generic structure of the geometry configuration file



## **Definition of Tracker Volumes**

```
Tracker aRandomName {
Barrel ABARREL {
Endcap SOMEDISKS {
  // ...
Barrel ANOTHERBARREL {
```

# Generic structure of the geometry configuration file



## **Main TK parameters**

```
Tracker 2pt ecsq {
zError = 70;  // spread in IP z position, mm
overlap = 1;  // required overlap as seen from IP, mm
smallDelta = 2;  // radial distance consecutive sensors along z (rphi)
bigDelta = 12;  // radial distance consecutive sensors along rphi (z)
etaCut = 2.55;  // remove detectors above cut
ptCost = 200; // CHF / cm^2
stripCost = 40;  // CHF / cm^2
ptPower = 0.1;  // mW / channel
stripPower = 0.5; // mW / channel
```

#### **Modules**

## Sensors optimally cut out of 6" wafers

- Usable radius to be specified
- Square sensors default

#### aspectRatio

Parameter to generate rectangular sensors

Option to generate smaller sensors not yet implemented



## **Barrel geometry**

#### Space in r-z defined by

- nModules
- innerRadius
- outerRadius

#### N of layers

nLayers

#### Multiplicity in φ

phiSegments

#### Radii of layers

- Automatically approximated to equidistant
- Can be manually adjusted through several options

#### Overall length

Layers re-adjusted to same length, within each barrel

## **Barrel special options**

#### **Double-Stack layers**

- Inner stack is a shrunk clone of the outer stack
- Option stacked 3/-40;
- Creates a clone of layer 3, 40 mm inside

#### Mezzanine barrels

- Specify starting z position
- minimumZ = 2110;



N.B. Module arrangement always without Lorentz angle compensation

Feature to be added, if needed

# **EndCap geometry**

#### Space in r

- innerRadius or innerEta
- outerRadius

#### N of disks

nDisks

#### Z of first and last disk given by

- minimumZ or barrelGap
- maximumZ

#### Multiplicity in φ

phiSegments as in barrel

#### Z of intermediate disks

- Automatically placed following geometrical progression
- $> z_i/z_{i-1} = z_{i+1}/z_i$

## **Procedure to define rings**

#### Wedge-shaped modules (default)

- Shape automatically optimized (ring-by-ring) to maximize silicon sensor surface
- Can be retuned (manually) in some rings, to match overall radial range

#### Rectangular modules

- Shape=rectangular; // default wedge
- aspectRatio=1.1; // default 1.0
- No optimization possible
- Aspect ratio tuned "by hand"
  - possibly for both barrel and end-caps
- Overlap calculated at the tip of the module



## **Definition of module types**

For each volume, define module types as follows:

```
BarrelType Barrel{
nStripsAcross[1] = 768; // 768 strips along r\phi, \approx 110 \div 120 \,\mu m pitch
nSides[1] = 1;
                           // SS module (one sensor)
nSegments[1] = 4; // 4-fold z segmentation (\approx 2.5 cm strip length)
type[1] = rphi;
                           // rphi, stereo, pt - name used in summaries
    In the EndCaps, modules can be specified by rings
nStripsAcross[nring] = xxx;
Or by ring and disk
```

nStripsAcross[nring,ndisk] = xxx;

# One non-trivial output: occupancy estimate

- Occupancy parametrized from present Tracker
  - From full simulation
  - Separately for Barrel and EndCap
  - Observed values reproduced to batter than 10%
- Re-scaled according to channel length
  - Accurate for pitch ≈ 100 μm
  - Pessimistic (overestimated) for significantly smaller pitch
- Used to evaluate needed strip length
  - Assuming a target occupancy within a few %
- Also used to evaluate needed bandwidth
  - Too pessimistic: to be improved

N.B. All numbers shown in the following correspond to 400 mb/BX!!

#### **Conclusions and outlook**

- Tool easy and fast to use
  - Avoids clumsy powerpoint/excel exercises
    - (... and/or relying too much on intuition)
  - Output can be easily extended to include other quantities
    - Multiplicities of services, electronics components etc... once input defined
- Code modular, can be evolved as needed
  - Add new options if requested, e.g.
    - Module arrangement with Lorentz angle compensation
    - Parametrization of "cluster occupancy", instead of channel occupancy
    - User-defined module size

**–** ...

- Creation of volumes
  - Starting from a geometry generated with tkLayout
- Modelling of materials
  - Strategy chosen to limit complexity and maximize flexibility
- Configuration file
  - Some examples

#### Volumes

- Volumes are created around the active surfaces
  - Will receive materials related to
    - Modules
    - Services (power, cooling, readout..)
    - Support structures
- Other volumes dedicated to services
  - Created automatically after analysis of tkLayout geometry
    - Cfr "up" and "down" configurations below
- Additional volumes for support structures
  - Some automatic, some user-defined





# **Volumes: Barrel modules**

P = position of the module; n = n of channels

#### For <u>each module type:</u>

- $\rightarrow$  M=  $A \times n(p-1) + B \times n + C \times (p-1) + D$ 
  - D: constant amount
    - Examples: sensors, cooling pipes, module frame...
  - C: scaled with module position
    - Example: HV wires (accumulate from z=0 towards higher z)
  - B: scaled with n of channels
    - Example: hybrids in readout modules and their cooling contacts
  - A: scaled with n of channels and module position
    - Example: LV wires, twp for signals....
- Flag assigned to each contribution
  - "L" = Local; "E" = exiting
    - Contribution with "E" flag are taken as input for module services

# **Modules: examples**

```
// Sensor - does not scale
M Si 0 0 0 0.2 mm L;
// Hybrid - scales with n of channels
M G10 0 2.26 q 0 0 L;
M Cu 0 0.83 g 0 0 L;
// All services below calculated over 100 mm length = 1 module
// 4 TWP/hybrid - scales with n of channels and module position
M Cu_twp 0.132 g 0 0 0 E;
M PE_twp 0.08 g 0 0 0 E;
"M" indicates a Module volume
```

# **Volumes: EndCap modules**

#### Same concept as for barrel, but

- Different rings in a disk may have different module flavours
  - While modules are all identical along a Barrel rod/string
- Services from inner rings decrease in density while running outwards on a disk
  - Simple scaling with ring # does not work

#### Solution

- Explicit calculation of material from inner rings
  - Taking into account module types and density scaling

#### **Volumes: Service Volumes**



- Service volumes receive material:
  - from module volumes
    - With user-defined scaling laws from module materials with "E" flags
  - from neighbour service volumes
    - Materials with "E" flag: everything that goes in goes out
      - · With appropriate geometrical scaling
      - Done automatically by the software

# **Service Volumes: Examples**

```
//Manifolds
D 0.79 g Steel 4.2 g Steel L;
D 0.18 g CO2 1.4 g CO2 L;
//Radial pipes
D 0.79 g Steel 17.2 g/m Steel E;
D 0.18 g CO2 3.7 g/m CO2 E;
//Service holding mechanics
D 0.79 g Steel 7.4 g Al L;
   "D" indicates the service volume
   Only "E"xiting materials from the module volumes are taken into account
   Materials flagged with "E" are then propagated across service volumes
```

# Volumes for mechanical supports

- Some created automatically
  - e.g. inner support tube for barrel and endcap
- Some user defined
  - e.g. support disks in Outer Barrel

N.B. All studies focused only on material inside the Tracking Volume (so far)



#### **Validation with TOB**

- > Spike at z=0: correct
  - Tiny overlap in z=0, seen or not depending on binning
- ➤ Modelling of IC Bus imperfect by choice
  - Causing local increase for  $\eta$ <0.4, decrease for 0.4< $\eta$ <0.8
  - Not necessarily so relevant for modelling next TK
- ➤ Electronics at the end of the rod (CCUM, optical connectors, wiring...) moved just outside
  - Makes rising edge of the η≈1 peak sharper











## **Validation with TOB**

- > Spike at z=0: correct
  - Tiny overlap in z=0, seen or not depending on binning
- ➤ Modelling of IC Bus imperfect by choice
  - Causing local increase for  $\eta$ <0.4, decrease for 0.4< $\eta$ <0.8
  - Not necessarily so relevant for modelling next TK
- ➤ Electronics at the end of the rod (CCUM, optical connectors, wiring...) moved just outside
  - Makes rising edge of the η≈1 peak sharper





#### **Conclusions and outlook**

- Accuracy and flexibility fully adequate for present needs
  - Cannot model heavy objects localized in some regions of the sensor volumes (hopefully not needed!)
  - Very accurate (≈ %) otherwise
  - Could in fact be accurate enough for many years
- Can be used to follow the evolution of the material estimate during the Tracker design
  - Can help to compare different options
    - And therefore help and support detector engineering
- Only material inside the Tracking volume has been studied so far
  - There may be still problems to fix in the volumes at the TK boundaries

#### **Next steps**

- tkLayout
  - Implement additional features, as needed
    - Notably "small" modules
- tkCMSSW
  - Translation of geometry to xml files for CMSSW ongoing
    - Barrels already visibile in IGUANA; EndCaps will take longer
    - Discussing about validation steps
    - In parallel investigating reconstruction/tracking code (N. Giraud)
- tkMaterial
  - Debug and validate volumes on boundaries
    - Low priority; can be relevant if translation to CMSSW is successful
- All packages
  - Write documentation and user instructions
    - One brave "external" user so far, perhaps some more soon



# **General concepts**

(details given in previous presentations)

- > Strip length reduced to  $\approx 5$  or 2.5 cm to cope with particle density
- Hybrids mounted on sensors. One hybrid serving two rows of strips
- Pitch adapter integrated on hybrid (or on sensor)
- Power through wires, data through twps, no large PCBs
- Optical links (GBT) integrated at the end of the rods (periphery of disks)
  - GBTs receive twps from modules
  - Assume TOB twps, for the time being
- Power converters integrated on small separate PCBs, one per hybrid
- Mechanics and cooling contacts adapted from present TOB
  - Assume CO<sub>2</sub> cooling
- For material modelling take wires, connectors and all other elements from TOB
  - A priori pessimistic
  - Should ensure that nothing relevant is forgotten

#### Some studies on outer part







#### **Outer Part:**

- 4 single-sided layers in the radial range 50-110 cm (barrel)
- A 12-module long Barrel requires a 5 disks forward to complete rapidity coverage In the example above:
- Same rectangular modules in Barrel and End-Cap
- Two versions used: 110  $\mu$ m × 2.5 cm and 110  $\mu$ m × 5 cm

Show results about this option, then make one step back and compare with other options

# **Statistics**

| Tag              | OB_L1   | OB_L2   | OB_L3   | OB_L4   | EC_R1   | EC_R2   | EC_R3   | EC_R4   | EC_R5   | EC_R6   | EC_R7   |                       |
|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|
| Туре             | rphi    |                       |
| Area (mm²)       | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 85.1(m <sup>2</sup> ) |
| Occup (max/av)   | 2.7/2.6 | 3.2/3.0 | 1.9/1.8 | 0.8/0.8 | 3.9/3.5 | 2.8/2.5 | 2.2/2.0 | 3.3/3.0 | 2.6/2.4 | 2.0/1.8 | 1.7/1.5 | 414                   |
| Pitch (min/max)  | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     |                       |
| Segments x Chips | 4x6     | 2x6     | 2x6     | 2x6     | 4x6     | 4x6     | 4x6     | 2x6     | 2x6     | 2x6     | 2x6     | -                     |
| Strip length     | 24.9    | 49.8    | 49.8    | 49.8    | 24.9    | 24.9    | 24.9    | 49.8    | 49.8    | 49.8    | 49.8    | - 0                   |
| Chan/Sensor      | 3072    | 1536    | 1536    | 1536    | 3072    | 3072    | 3072    | 1536    | 1536    | 1536    | 1536    |                       |
| N. mod           | 960     | 1248    | 1536    | 2016    | 400     | 480     | 560     | 600     | 680     | 760     | 800     | 10040                 |
| Channels (M)     | 2.95    | 1.92    | 2.36    | 3.1     | 1.23    | 1.47    | 1.72    | 0.92    | 1.04    | 1.17    | 1.23    | 19.11                 |
| Power (kW)       | 1.5     | 1       | 1.2     | 1.5     | 0.6     | 0.7     | 0.9     | 0.5     | 0.5     | 0.6     | 0.6     | 9.6                   |
| N of GBTs        | 160     | 104     | 128     | 168     | 80      | 80      | 120     | 60      | 60      | 80      | 80      | 1120                  |
| GBT power (kW)   | 0.3     | 0.2     | 0.3     | 0.3     | 0.2     | 0.2     | 0.2     | 0.1     | 0.1     | 0.2     | 0.2     | 2.2                   |

#### Assumptions for power

- > Readout: 0.5 mW / channel
- > 2 W / GBT optical channel

# Material inside tracking volume





|                    | Rad length | Int length |                |
|--------------------|------------|------------|----------------|
| AVG in η=[0,2.4]   | 0.12       | 0.038      |                |
| Peak               | 0.2        | 0.06       | in η=[0.9,1.6] |
| Services on flange | 0.03       | 0.006      | in η=[0.9,1.6] |

# One step back: EndCap with wedges

This was the starting point

Comparison of optimization procedures

- EndCap with wedges
  - Build barrel with square modules (optimal use of of silicon), with a chosen number of modules along z
  - Position disks after barrel, optimize overall use of silicon in all rings (e.g. in the specific case "stretch" the shape compared to individual optimization)
- EndCap with same modules as barrel
  - Modify aspect ratio to cover radial range with integer number of rings
  - Recalculate barrel
  - Iterate to account for second order effects
    - Barrel modules are not square anymore
    - EndCap modules have excess of overlap because of non-optimal shape
    - Expect penalty in n of modules, n of channels, power, material

# **Comparisons:** coverage







# Wedges: statistics

| Tag                 | OB_L1   | OB_L2   | OB_L3   | OB_L4   | EC_R1   | EC_R2   | EC_R3   | EC_R4   | EC_R5   | EC_R6   | EC_R7   |                       |
|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------|
| Туре                | rphi    |                       |
| Area (mm²)          | 8580.5  | 8580.5  | 8580.5  | 8580.5  | 8439.9  | 8438.5  | 8371.2  | 8521.3  | 8304.2  | 8334.4  | 8167.5  | 80.5(m <sup>2</sup> ) |
| Occup (max/av)      | 2.7/2.6 | 3.2/3.0 | 1.8/1.8 | 0.9/0.8 | 3.5/3.1 | 2.6/2.3 | 2.0/1.8 | 3.1/2.8 | 2.5/2.2 | 1.9/1.7 | 1.6/1.4 |                       |
| Pitch (min/max)     | 120     | 120     | 120     | 120     | 100/123 | 101/120 | 99/115  | 108/122 | 98/111  | 100/111 | 103/113 | E 11-                 |
| Segments x<br>Chips | 4x6     | 2x6     | 2x6     | 2x6     | 4x6     | 4x6     | 4x6     | 2x6     | 2x6     | 2x6     | 2x6     | -                     |
| Strip length        | 23.2    | 46.3    | 46.3    | 46.3    | 24.5    | 24.8    | 25.3    | 48.2    | 51.6    | 51.3    | 49.1    |                       |
| Chan/Sensor         | 3072    | 1536    | 1536    | 1536    | 3072    | 3072    | 3072    | 1536    | 1536    | 1536    | 1536    |                       |
| N. mod              | 960     | 1152    | 1440    | 1824    | 360     | 440     | 520     | 560     | 680     | 760     | 800     | 9496                  |
| Channels (M)        | 2.95    | 1.77    | 2.21    | 2.8     | 1.11    | 1.35    | 1.6     | 0.86    | 1.04    | 1.17    | 1.23    | 18.1                  |
| Power (kW)          | 1.5     | 0.9     | 1.1     | 1.4     | 0.6     | 0.7     | 0.8     | 0.4     | 0.5     | 0.6     | 0.6     | 9.0                   |
| N of GBTs           | 160     | 96      | 120     | 152     | 80      | 80      | 120     | 60      | 60      | 80      | 80      | 1088                  |
| GBT power (kW)      | 0.3     | 0.2     | 0.2     | 0.3     | 0.2     | 0.2     | 0.2     | 0.1     | 0.1     | 0.2     | 0.2     | 2.2                   |

# Wedges: material





|                    | Rad length | Int length |                |
|--------------------|------------|------------|----------------|
| AVG in η=[0,2.4]   | 0.114      | 0.036      |                |
| Peak               | 0.18       | 0.055      | in η=[0.9,1.6] |
| Services on flange | 0.03       | 0.006      | in η=[0.9,1.6] |

## **Comparison: numbers**

| 是 Table 1987 1987     | Wedges  | Rectangles | Increase |
|-----------------------|---------|------------|----------|
| Sensor area barrel    | 8580.5  | 8475.8     |          |
| Sensor area forward   | 8368.1  | 8475.8     |          |
| Pitch barrel          | 120     | 110        |          |
| Pitch endcap          | 100/120 | 110        |          |
| Strip length barrel   | 23/46   | 25/50      |          |
| Strip length forward  | 25/50   | 25/50      |          |
| N of modules          | 9496    | 10040      | 5.7%     |
| N of channels (M)     | 18.1    | 19.1       | 5.6%     |
| FE power (kW)         | 9.0     | 9.6        | 6.7%     |
| N of links            | 1088    | 1120       | 2.9%     |
| Overall power (kW)    | 11.2    | 11.8       | 5.9%     |
| <x x<sub="">0&gt;</x> | 0.114   | 0.120      | 5.6%     |
| $<\lambda/\lambda_0>$ | 0.036   | 0.038      | 4.7%     |

- Penalty in n of modules, power, material ≈ 5%
- Comes also with some positive features
  - Slightly longer barrel / slightly better coverage
  - Smaller pitch in barrel
- Seems to be a good option!

### Another study: barrel-only geometry for outer part

First step: build two geometries with similar coverage

The barrel-only geometry can use square detectors









# **Barrel only: statistics**

|                  | Outer - Barrel only |         |         |         |         |         |         |         |                        |  |  |  |  |  |
|------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|------------------------|--|--|--|--|--|
| Tag              | SH_1_L1             | SH_1_L2 | SH_2_L1 | SH_2_L2 | OB_L1   | OB_L2   | OB_L3   | OB_L4   | Total                  |  |  |  |  |  |
| Туре             | rphi                | rphi    | rphi    | rphi    | rphi    | rphi    | rphi    | rphi    | -                      |  |  |  |  |  |
| Area (mm²)       | 8580.5              | 8580.5  | 8580.5  | 8580.5  | 8580.5  | 8580.5  | 8580.5  | 8580.5  | 131.8(m <sup>2</sup> ) |  |  |  |  |  |
| Occup (max/av)   | 3.6/3.5             | 4.1/4.0 | 2.4/2.3 | 1.3/1.3 | 2.7/2.6 | 3.2/3.0 | 1.8/1.8 | 0.9/0.8 |                        |  |  |  |  |  |
| Pitch (min/max)  | 120                 | 120     | 120     | 120     | 120     | 120     | 120     | 120     |                        |  |  |  |  |  |
| Segments x Chips | 4x6                 | 2x6     | 2x6     | 2x6     | 4x6     | 2x6     | 2x6     | 2x6     |                        |  |  |  |  |  |
| Strip length     | 23.2                | 46.3    | 46.3    | 46.3    | 23.2    | 46.3    | 46.3    | 46.3    |                        |  |  |  |  |  |
| Chan/Sensor      | 3072                | 1536    | 1536    | 1536    | 3072    | 1536    | 1536    | 1536    | 1                      |  |  |  |  |  |
| N. mod           | 768                 | 1056    | 448     | 544     | 2240    | 2688    | 3360    | 4256    | 15360                  |  |  |  |  |  |
| Channels (M)     | 2.36                | 1.62    | 0.69    | 0.84    | 6.88    | 4.13    | 5.16    | 6.54    | 28.21                  |  |  |  |  |  |
| Power (kW)       | 1.2                 | 0.8     | 0.3     | 0.4     | 3.4     | 2.1     | 2.6     | 3.3     | 14.1                   |  |  |  |  |  |
| GBTs             | 128                 | 88      | 112     | 136     | 480     | 288     | 360     | 456     | 2048                   |  |  |  |  |  |
| Power (kW)       | 1 28 2 2            |         |         |         |         | 100     |         | 1       | 4.096                  |  |  |  |  |  |

## **Barrel only: material**





|                  | Rad length | Int length |                |
|------------------|------------|------------|----------------|
| AVG in η=[0,2.4] | 0.244      | 0.079      |                |
| Peak             | 0.45       | 0.14       | in η=[1.6,2.3] |

## **Comparison: numbers**

|                       | EndCap | Barrel | Increase |
|-----------------------|--------|--------|----------|
| Sensor area barrel    | 8475.8 | 8580.5 |          |
| Sensor area forward   | 8475.8 |        |          |
| Pitch barrel          | 110    | 120    |          |
| Pitch endcap          | 110    | -      |          |
| Strip length barrel   | 25/50  | 23/46  |          |
| Strip length forward  | 25/50  | 0.2    | 0.21     |
| N of modules          | 10040  | 15360  | 53%      |
| N of channels (M)     | 19.1   | 28.2   | 48%      |
| FE power (kW)         | 9.6    | 14.1   | 47%      |
| N of links            | 1120   | 2048   | 83%      |
| Overall power (kW)    | 11.8   | 18.2   | 54%      |
| <x x<sub="">0&gt;</x> | 0.120  | 0.244  | 103%     |
| <λ/λ <sub>0</sub> >   | 0.038  | 0.079  | 108%     |

- Despite the use of square sensors, the Barrel-only has a large penalty
  - Particularly bad at low radii
- Barrel + Endcap is clearly preferable

## **Another small study: location of GBTs**

GBTs at the end of the barrel (option shown before)







### **Another small study: location of GBTs**

GBTs outside the Tracking volume (e.g. over the EndCap or on bulkhead)







- Basically no change
  - With present assumptions material of twps ≈ material of GBTs + power wires
  - To be re-evaluated in future

## **Next step: modelling of P<sub>T</sub> layers**

- Understanding of integration aspects much more limited than for readout layers
  - Dedicated discussion in TUPO last week
  - Expect more progress in the coming weeks/months
- Used as baseline the two geometries presented in the R&D proposal from Geoff/Anders
  - Surface similar, module material similar, power estimates compatible, data rate the same (given by functionality)
    - No need to distinguish between the two at this stage
- Part list should be reasonably OK
  - Although it is not yet understood how they may come together
  - Some provision of material for cooling (and mechanics)
  - Basic assumptions recalled in the following slides



## **P**<sub>T</sub> module with vertical link

- "Vertical" data transmission through substrate
- Correlation logic implemented at pixel level
- Dimension limited by substrate technology





## **P**<sub>T</sub> module with vertical link – a variant

- Same as before with different interconnection technology
- Double bump assembly with through vias in the chip



## Part list and assumptions

- Module
  - 2×200 μm sensor thickness
  - 800 μm substrate with ≈70 μm Cu
- ➢ GBTs
  - One link / module for trigger
  - One link / 12 modules for readout (4 twps / module)
- Power converters
  - 3 converters / (module + trigger GBT)
  - 2 converters / readout GBT
- Cooling
  - 2 straight pipes per row of modules
  - Provision of some TPG and Alu for cooling contacts
- Mechanics
  - Some CF...
- Wires, connectors etc...
  - As in readout layers

# Two P<sub>T</sub> layers





- Layers still modelled with ≈ 10×10 cm² sensors
  - Multiplicities given earlier rescaled accordingly
- Along  $r\phi$ , module multiplicity in ratio 2:3 in the two layers
  - Convenient to define sectors

## **Statistics**

| Two Pt layers + Outer tracker |         |         |         |         |         |         |         |         |         |         |         |         |           | 99           |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|--------------|
| Tag                           | PT_L1   | PT_L2   | OB_L1   | OB_L2   | OB_L3   | OB_L4   | EC_R1   | EC_R2   | EC_R3   | EC_R4   | EC_R5   | EC_R6   | EC_R7     | Total        |
| Туре                          | pt      | pt      | rphi      | THE .        |
| Area (mm2)                    | 8580.5  | 8580.5  | -       | -       | 47/2    | -       | -       | 7       | 1000    |         |         | 200     | 5 4 4 1 - | 26.9(m2      |
| Area (mm2)                    |         |         | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8  | 8475.8    | 85.1(m2      |
| Occup (max/av)                | 1.0/0.9 | 0.6/0.5 | 2.7/2.6 | 3.2/3.0 | 1.9/1.8 | 0.8/0.8 | 3.9/3.5 | 2.8/2.5 | 2.2/2.0 | 3.3/3.0 | 2.6/2.4 | 2.0/1.8 | 1.7/1.5   | 13/47        |
| Pitch (min/max)               | 90      | 90      | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110     | 110       | COURSE !     |
| Segments x Chips              | 36x8    | 36x8    | 4x6     | 2x6     | 2x6     | 2x6     | 4x6     | 4x6     | 4x6     | 2x6     | 2x6     | 2x6     | 2x6       | NEWN         |
| Strip length                  | 2.6     | 2.6     | 24.9    | 49.8    | 49.8    | 49.8    | 24.9    | 24.9    | 24.9    | 49.8    | 49.8    | 49.8    | 49.8      | The state of |
| Chan/Sensor                   | 36864   | 36864   | 3072    | 1536    | 1536    | 1536    | 3072    | 3072    | 3072    | 1536    | 1536    | 1536    | 1536      |              |
| N. mod                        | 512     | 1056    | 960     | 1248    | 1536    | 2016    | 400     | 480     | 560     | 600     | 680     | 760     | 800       | 1160         |
| N. sens                       | 1024    | 2112    | 960     | 1248    | 1536    | 2016    | 400     | 480     | 560     | 600     | 680     | 760     | 800       | 1317         |
| Channels (M)                  |         |         | 2.95    | 1.92    | 2.36    | 3.1     | 1.23    | 1.47    | 1.72    | 0.92    | 1.04    | 1.17    | 1.23      | 19.1         |
| Channels (M)                  | 37.75   | 77.86   | -       | -       | -       | -       | W-1     |         | 1000    |         | -       | 150 1-  | - 1       | 115.6        |
| Power (kW)                    | 3.8     | 7.8     | 1.5     | 1       | 1.2     | 1.5     | 0.6     | 0.7     | 0.9     | 0.5     | 0.5     | 0.6     | 0.6       | 21.          |
| GBTs (readout)                | 192     | 384     | 160     | 104     | 128     | 168     | 80      | 80      | 120     | 60      | 60      | 80      | 80        | 169          |
| Power (kW)                    |         |         |         |         |         | 40/17   |         |         |         |         |         |         |           | 3.           |
| GBTs (trigger)                | 2048    | 4224    |         |         |         |         |         |         |         |         |         |         |           | 627          |
| Power (kW)                    |         |         |         |         |         |         |         |         |         |         |         |         |           | 12.          |
| Total Power (kW)              |         |         |         |         |         |         |         |         |         |         |         |         |           | 37.          |

#### Assumptions for power

- > Readout: 0.5 mW / channel
- P<sub>T</sub>: 0.1 mW / channel
- > 2 W / GBT
- N.B.  $P_T$  module count in the table corresponds to  $\approx 10 \times 10$  cm<sup>2</sup> sensors

### **Material**





- Average radiation length in tracking volume [0, 2.4]: 55%
  - Max of ≈155%
- Average interaction length in tracking volume [0, 2.4]: 16%
  - Max of ≈42%
- $\triangleright$  Material entirely dominated by the two P<sub>T</sub> layers

### **Material**



- Average radiation length in tracking volume [0, 2.4]: 55%
  - Max of ≈155%
- Average interaction length in tracking volume [0, 2.4]: 16%
  - Max of ≈42%
- $\triangleright$  Material entirely dominated by the two P<sub>T</sub> layers

# More on P<sub>T</sub> layers

- Two PT layers only
- No complication from geometry

















# **Comparison in numbers**

|                           | Average X/X <sub>0</sub> |     |  |  |  |  |
|---------------------------|--------------------------|-----|--|--|--|--|
| Two P <sub>T</sub> layers | 0.435                    |     |  |  |  |  |
| Sensors + substrate       | 0.072                    | 17% |  |  |  |  |
| FE power and cooling      | 0.175                    | 40% |  |  |  |  |
| GBTs + power and cooling  | 0.150                    | 35% |  |  |  |  |
| Rest                      | 0.038                    | 9%  |  |  |  |  |

Modules are not very light But services dominate

## Double-stack all-trigger layout





- $\triangleright$  Same assumptions as before for first two P<sub>T</sub> layers (double-stack)
- First rough guess for outer layers
  - One GBT every six layers
  - 50% of power consumption in front-end (optimistic?)
    - To account for lower particle rate

# **Statistics**

| All-pt Tracker   |                |                |                |                |                |                         |  |  |  |  |
|------------------|----------------|----------------|----------------|----------------|----------------|-------------------------|--|--|--|--|
| Tag              | B_1            | B_2            | B_3            | SH_1           | SH_2           | Total                   |  |  |  |  |
| Туре             | P <sub>T</sub> | 200                     |  |  |  |  |
| Area (mm2)       | 8580.5         | 8580.5         | 8580.5         | 8580.5         | 8580.5         | 288.7(m2)               |  |  |  |  |
| Occup (max/av)   | 1.0/0.8        | 0.4/0.4        | 0.1/0.0        | 0.2/0.2        | 0.1/0.1        |                         |  |  |  |  |
| Pitch (min/max)  | 90             | 90             | 90             | 90             | 90             |                         |  |  |  |  |
| Segments x Chips | 36x8           | 36x8           | 36x8           | 36x8           | 36x8           | NEW MICHELLA            |  |  |  |  |
| Strip length     | 2.6            | 2.6            | 2.6            | 2.6            | 2.6            | ( ) ( ) ( ) ( ) ( ) ( ) |  |  |  |  |
| Chan/Sensor      | 36864          | 36864          | 36864          | 36864          | 36864          |                         |  |  |  |  |
| N. mod           | 1400           | 3584           | 8512           | 1408           | 1920           | 16824                   |  |  |  |  |
| N. sens          | 2800           | 7168           | 17024          | 2816           | 3840           | 33648                   |  |  |  |  |
| Channels (M)     | 103.22         | 264.24         | 627.57         | 103.81         | 141.56         | 1240.4                  |  |  |  |  |
| Power (kW)       | 10.3           | 26.4           | 31.4           | 5.2            | 7.1            | 80.4                    |  |  |  |  |
| Readout GBTs     | 480            | 1280           | 3040           | 528            | 720            | 6048                    |  |  |  |  |
| Power (kW)       |                |                |                |                |                | 12.1                    |  |  |  |  |
| Trigger GBTs     | 5600           | 14336          | 5675           | 939            | 1280           | 27830                   |  |  |  |  |
| Power (kW)       |                |                |                |                |                | 55.7                    |  |  |  |  |
| Total power (kW) |                |                |                |                |                | 148.2                   |  |  |  |  |

## **Material**





- Average radiation length in tracking volume [0, 2.4]: 119%
  - Max of ≈300%
- Average interaction length in tracking volume [0, 2.4]: 33%.
  - Max of ≈80%

## **Material**





- Average radiation length in tracking volume [0, 2.4]: 119%
  - Max of ≈300%
- Average interaction length in tracking volume [0, 2.4]: 33%.
  - Max of ≈80%

## Trigger from cluster width

#### Basic concepts and ideas

#### Data reduction in barrel

- · Discriminate on the basis of cluster size within one sensor
- Works down to R  $\approx$  40÷50 cm using small pitches ( $\approx$  60  $\mu$ m)

#### Need End-Cap to extend rapidity coverage Cluster width not effective in End-Cap orientation

- · Use "2-in-1" modules to provide trigger in forward
- · Strip length has to be 5cm at least
- Forced to accept somewhat high occupancy ( $\approx 6 \div 7$  %) in the innermost part

#### Can use "simple" readout modules in the radial region 20 < R < 40 cm

• But need to further reduce strip length to  $\approx 1.1$  cm (x8 z segmentation)

#### Need to introduce stereo modules (since no pixellated layers)

- · Can add tilted sensor behind a "trigger" sensor in the barrel
- · Need dedicated double modules in the forward

#### In principle End-Cap can be made of rectangular detectors

• But  $P_T$  acceptance varies within a module. To be evaluated.

#### N.B. The following study is made with 10x10 cm<sup>2</sup> detectors

· Most likely would need half-modules at least at the top of the End-Cap

# Layout for cluster width Barrel layers 3 and 4 are both trigger layers and stereo layers

- R- $\phi$  (single-sided)
- Stereo









### **Statistics**

|                  | B_L1    | B_L2    | B_L3    | B_L4    | B_L5    | B_L6    |
|------------------|---------|---------|---------|---------|---------|---------|
| Туре             | rphi    | rphi    | pt/st   | pt/st   | pt      | pt      |
| Area (mm2)       | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  |
| Occup (max/av)   | 4.3/4.0 | 2.5/2.4 | 2.8/2.6 | 1.6/1.6 | 1.9/1.8 | 0.8/0.8 |
| Pitch (min/max)  | 59      | 59      | 59      | 59      | 119     | 119     |
| Segments x Chips | 8x12    | 8x12    | 4x12    | 4x12    | 2x6     | 2x6     |
| Strip length     | 11.7    | 11.7    | 23.4    | 23.4    | 46.8    | 46.8    |
| Chan/Sensor      | 12288   | 12288   | 6144    | 6144    | 1536    | 1536    |
| N. mod           | 480     | 576     | 864     | 1152    | 1440    | 1824    |
| N. sens          | 480     | 576     | 1728    | 2304    | 1440    | 1824    |
| Channels (M)     | 5.9     | 7.08    | 10.62   | 14.16   | 2.21    | 2.8     |
| Power (kW)       | 3.5     | 4.2     | 6.4     | 8.5     | 1.3     | 1.7     |
|                  |         |         |         |         |         |         |
| Modules/GBT      | 2       | 2       | 2       | 2       | 6       | 6       |
| Readout GBTs     | 240     | 288     | 432     | 576     | 240     | 304     |
|                  |         |         |         |         |         |         |
| GBTs/module      |         |         | 4       | 4       | 1       | 1       |
| Trigger GBTs     | 2 850   | No.     | 3456    | 4608    | 1440    | 1824    |

#### Power estimate:

Front-end only
Use 0.6 mW/channel
(instead of 0.5) to
account for additional
logic and electrical links

N.B. Occupancy should be somewhat overestimated for layers with 60  $\mu$ m pitch

|                 | EC_R1   | EC_R2   | EC_R3   | EC_R4   | EC_R5   | EC_R6   | EC_R7   | EC_R8   | EC_R9   | EC_R10  |
|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Туре            | rphi    | rphi    | rphi    | pt      | pt      | stereo  | stereo  | pt      | pt      | pt      |
| Area (mm2)      | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  | 8578.8  |
| Occup (max/av)  | 4.6/4.4 | 3.1/2.9 | 2.3/2.0 | 6.8/6.0 | 5.0/4.5 | 4.0/3.6 | 3.1/2.8 | 2.6/2.3 | 2.0/1.8 | 1.7/1.5 |
| Pitch (min/max) | 59      | 59      | 59      | 59      | 59      | 119     | 119     | 119     | 119     | 119     |
| Segments x      |         |         |         |         |         |         |         |         |         |         |
| Chips           | 8x12    | 8x12    | 8x12    | 2x12    | 2x12    | 2x6     | 2x6     | 2x6     | 2x6     | 2x6     |
| Strip length    | 11.7    | 11.7    | 11.7    | 46.8    | 46.8    | 46.8    | 46.8    | 46.8    | 46.8    | 46.8    |
| Chan/Sensor     | 12288   | 12288   | 12288   | 3072    | 3072    | 1536    | 1536    | 1536    | 1536    | 1536    |
| N. mod          | 120     | 280     | 504     | 560     | 672     | 728     | 840     | 896     | 1008    | 1064    |
| N. sens         | 120     | 280     | 504     | 1120    | 1344    | 1456    | 1680    | 1792    | 2016    | 2128    |
| Channels (M)    | 1.47    | 3.44    | 6.19    | 3.44    | 4.13    | 2.24    | 2.58    | 2.75    | 3.1     | 3.27    |
| Power (kW)      | 0.9     | 2.1     | 3.7     | 2.1     | 2.5     | 1.3     | 1.5     | 1.7     | 1.9     | 2       |
| Modules/GBT     | 2       | 2       | 2       | 2       | 2       | 6       | 8       | 8       | 8       | 8       |
| Readout GBTs    | 60      | 140     | 252     | 280     | 336     | 126     | 112     | 112     | 126     | 140     |
| GBTs/module     |         |         |         | 4       | 4       |         |         | 1       | 1       | 1       |
| Trigger GBTs    |         |         |         | 2240    | 2688    |         |         | 896     | 1008    | 1064    |

| Summary              |       |
|----------------------|-------|
| Active surface (m²)  | 178.4 |
| N of channels (M)    | 75.4  |
| Power Front-End (kW) | 45.2  |
| Readout GBTs         | 3764  |
| Trigger GBTs         | 19224 |
| Power in GBTs (kW)   | 46.0  |
| Total power (kW)     | 91.2  |

## Material - "Cluster width"





- Average radiation length in tracking volume [0, 2.4]: 57%
  - Max of ~80%
- > Average interaction length in tracking volume [0, 2.4]: 16%
  - Max of ~20%

# Material - "Cluster width"



# **Summary table**

|                   | Pixellated Pt                                       | -33  | All pixel/trigge                                   | r      | CW - strips              | only       |
|-------------------|-----------------------------------------------------|------|----------------------------------------------------|--------|--------------------------|------------|
| Surface (m²)      | Pt (pixels)                                         | 27   | Pt (pixels)                                        | 289    |                          |            |
|                   | Readout (strips)                                    | 85   |                                                    |        | Strips                   | 179        |
| Channels (M)      | Pt (pixels)                                         | 116  | Pt (pixels)                                        | 1240   |                          |            |
|                   | Readout (strips)                                    | 19   |                                                    |        | Strips                   | 75         |
| Power (kW)        | Pt (pixels)                                         | 11.6 |                                                    | 80.4   |                          |            |
|                   | Readout (strips)                                    | 9.5  |                                                    |        | Strips                   | 45.2       |
|                   | Trigger GBTs                                        | 12.5 | LA CORPORATION AND A                               | 55.7   | Trigger GBTs             | 38.4       |
|                   | Readout GBTs                                        | 3.4  |                                                    | 12.1   | Readout GBTs             | 7.5        |
|                   | Total                                               | 37   |                                                    | 148.2  |                          | 91.2       |
| Material          | Average X/X <sub>0</sub>                            | 55%  | Average X/X <sub>0</sub>                           | 119%   | Average X/X <sub>0</sub> | 57%        |
|                   | Max X/X <sub>0</sub>                                | 155% | Max X/X <sub>0</sub>                               | 300%   | Max X/X <sub>0</sub>     | 80%        |
|                   | Average $\lambda/\lambda_0$                         | 16%  | Average λ/λ <sub>o</sub>                           | 33%    | Average λ/λ <sub>0</sub> | 16%        |
|                   | Max λ/λ <sub>0</sub>                                | 42%  | Max $\lambda/\lambda_0$                            | 80%    | Max $\lambda/\lambda_0$  | 20%        |
| Points            | 2 trigger points inside                             |      | 6 trigger points inside                            |        | 4 trigger points of      | utside     |
|                   | 4 readout points outside                            |      | La Company of the Company                          | Burty. | 2 readout points         | inside     |
|                   | Two pixellated layers wi<br>mm length. No stereo la |      | Six pixellated layers with mm length. No stereo la |        | Two stereo layers        | s          |
| z info in trigger | Same as tracking.                                   |      | Same as tracking.                                  |        | Info only from st        | rip length |

### Outlook – tools & studies

- > Still quite some work to do on tools
  - Add useful features to tkLayout
    - "Small" modules
    - Parameterization of particle occupancy
    - **–** ...
  - Continue "commissioning" of tkMaterial
    - Notably check volumes at the boundaries
  - Pursue translation to CMSSW
  - Prepare documentation and "user manuals"
- > Further studies
  - Depend essentially on availability of better input
  - Will evolve according to progress in development of components and integration studies

## Assumptions used in material estimates

- Assumptions used in these first studies are based on expectations from planned developments + existing objects
- They are on purpose not exceedingly optimistic, based on elements we have today in hand (or at least in mind), and that we believe should be usable
- Such exercises should help to
  - Identify the aspects where we need to invest more effort
  - Keep the estimates "live" as we proceed with the developments
    - E.g. to avoid discovering the weight of the Tracker only after it is built...
  - Choose a detector baseline that provides a good common ground for the needed developments
  - Evaluate different options and support engineering design

## Comments on layouts studied: cluster width

- The layout (in this version) contains several module flavours.
  - Single, readout, 60 μm × 12 mm
  - Double, CW + stereo, 60 μm × 24 mm
  - Single, CW, 120 μm × 47 mm
  - 2-in-1 for trigger, 60  $\mu$ m × 47 mm
  - Double, rφ + stereo, 120 μm × 47 mm
  - 2-in-1 for trigger, 120 μm × 47 mm
- A lot of work would be needed to improve the modelling
- Provides more information in different aspects
  - More tracking information in the z view (two stereo coordinates)
  - Trigger information from 4 layers
    - Really useful?
  - Narrower pitch ≈ everywhere
- No (or very poor) z information on primary vertex for trigger.

## Comments on layouts studied: pixellated P<sub>T</sub>

- ➤ It is clear that at the present stage we cannot drop the development of readout modules / layers
  - And that will remain the case certainly for quite a while
- The n of  $P_T$  layers that we can afford, and the overall quality of the tracker, will depend crucially on what will be achieved with the development of  $P_T$  modules
  - In terms of minimizing the mass of the module and its power consumption
- Packaging of optical links and interconnectivity of module, links and power converters are crucial as well
  - Finally, we need to evaluate "layers", not just modules



# Outer: Long barrel vs "TOB+TEC"



# Outer: Long barrel vs "TOB+TEC"

