

SLHC Calorimeter Trigger Firmware Studies and Performance

T. Gregerson, A. Farmahini-Farahani, J. Liu, B. Buchli, K. Compton, M. Schulte, ECE Department, U.Wisconsin

M.Bachtis, S.Dasu, T. Gorski, K.Flood, I.Ross, W. Smith Physics Department, U.Wisconsin

W. Plishker, G. Zaki, S. Kedilaya, N. Sane, S. Bhattacharyya ECE Department, U.Maryland October 28, 2009

Introduction

- Design Platform and Methodology
- Preliminary Designs and Results
 - RocketIO and Buffering
 - Particle Cluster Finder
 - Cluster Weighting and Overlap Filter
 - Cluster Isolation and Jet Reconstruction
 - High-Speed Sorters
- DIF Modeling and Unit Testing
- Next Steps

- Xilinx Virtex-5 devices contain
 - Virtex-5 Slices (4 LUTs and 4 flip-flops)
 - DSP48E Slices (multiplier, adder, and accumulator)
 - Block RAMs (36 Kbits)
 - RocketIO Transceivers
 - GTP transfers up to 3.75 Gbps/link
 - GTX transfers up to 6.50 Gbps/link
- Initial designs synthesized for
 - Xilinx Virtex-5 LX110T and TX240T FPGAs

FPGA	Virtex-5 Slices	DSP48E Slices	Block RAM (Kbits)	RocketlO Transceivers
LX110T	17,280	64	5,328	16 GTP
TX240T	37,440	96	11,664	48 GTX

- Xilinx Virtex-6 devices
 - Increase the number of flip-flops per Virtex Slice from four to eight
 - Do not modify the DSP48E Slices and Block RAMs
 - Will have higher speed RocketIO transceivers
 - GTX transfers up to 6.50 Gbps/trans (up to 36 trans)
 - HTX transfers up to 11.2 Gbps/trans (up to 64 trans)

FPGA	Virtex-5/6 Slices	DSP48E Slices	Block RAM (Kbits)	RocketIO Transceivers
5V-TX240T	37,440	96	11,664	48 GTX
6V-SX475T	74,400	2,016	38,304	36 GTX
6V-HX565T	58,560	864	32,832	48 GTX, 24 GTH

Initial Design Methodology

- Designs start with the algorithms
- Physicists and engineers collaborate
 - Evaluate algorithm/implementation tradeoffs
- Designs specified using
 - Verilog and Xilinx Core Generator
- Designs implemented and tested using
 - Xilinx ISE
 - ModelSim Xilinx Edition
- Initial results obtained for
 - RocketIO, buffering, particle cluster finder, cluster overlap filter, cluster weighting, sorting

- Each pair of RocketIO links provides 17-bit data for 15 towers every 25ns
 - An 8 x 8 grid requires 12 RocketIO GTX links

$$\left\lceil \frac{9 \times 9}{15} \right\rceil \times 2 = 12$$

A 16 x 16 grid requires 40 RocketIO GTX links

$$\left\lceil \frac{17 \times 17}{15} \right\rceil \times 2 = 40$$

Virtex-5 Resource Utilization for Input and Output RocketIO and Buffering on the TX240T FPGA

Resource	8 x 8 Grid	8 x 16 Grid	16 x 16 Grid
RocketIO Input Links	25%	46%	83%
Virtex-5 Slices	5%	10%	19%

- Applies thresholds on the towers
- Creates a 2x2 cluster at each
 position on the lattice
- Clusters overlap by one tower in eta/phi
- Calculates Electron/Photon ID bit
 - Denotes if the cluster is Photon/Electron like
- Applies OR of the finegrain bits
- Sums the ECAL and HCAL energy for each tower of the cluster

Particle Cluster Finder Logic

- Particle Cluster Finder
 - Synthesized for a 200 MHz clock (5 ns cycle time)
 - Latency of four cycles (20 ns @ 200 MHz)

Resource utilization for Particle Cluster Finder theTX240T FPGA

Resource	8 x 8 Grid	8 x 16 Grid	16 x 16 Grid
Virtex-5 Slices	10%	20%	39%
BRAMs	14%	27%	53%

Cluster Overlap Filter

- Compare Cluster ET with neighbor ET
 - If main cluster is less energetic remove the overlapping towers
- After pruning, sum all the towers to obtain cluster ET
- Apply a threshold to the resulting cluster
- Assign a bit to the clusters that were not pruned
 - Local Maxima!

- Cluster Overlap Filter
 - Synthesized for a 200 MHz clock (cycle time of 5 ns)
 - Latency of four cycles (20 ns @ 200 MHz)
 - Operates in parallel with EPIM
 - No DSP48E or Block RAM resources needed

Virtex-5 Slice Utilization for Cluster Overlap Filter

FPGA	8 x 8 Grid	8 x 16 Grid	16 x 16 Grid
LX110T	14%	29%	58%
TX240T	7%	14%	27%

- Weights the cluster to provide position resolution of 1/2 tower
 - Results in one of the depicted 16
 points in the cluster
- Algorithm
 - Calculate horizontal and vertical energy sums
 - H = E1+E3-E0-E2
 - V = E2+E3-E0-E1
 - S = E1 + E2 + E3 + E4
 - Hpos = H/S, Vpos = V/S
- No division is needed
 - -1<Hpos<-0.5, -0.5<Hpos<0, 0<Hpos<0.5, 0.5<Hpos<1.0
 - -1<Vpos<-0.5, -0.5<Vpos<0, 0<Vpos<0.5, 0.5<Vpos<1.0

• Signs of H and V plus magnitude comparisons determine Hpos and Vpos (each 2 bits)

- Cluster Weighting
 - Synthesized for a 200 MHz clock (cycle time of 5 ns)
 - Latency of two cycles (10 ns @ 200 MHz)
 - Can operate in parallel with the Cluster Overlap Filter with additional hardware cost
 - No DSP48E or Block RAM resources needed

FPGA	8 x 8 Grid	8 x 16 Grid	16 x 16 Grid		
LX110T	11%	22%	43%		
TX240T	5%	10%	20%		

Virtex-5 Slice Utilization for Cluster Overlap Filter

Combined Design

- Cluster finder, overlap filter and weighting logic can be processed in 7 pipeline stages (without buffering I/O)
 - Latency of just 35 ns
 - Lots of hardware is shared
 - Parallel computations decrease delay
- All designs tested with physics patterns from emulator

- Estimated resources are given in the table below
 - Includes RocketIO, buffers, particle cluster finder, overlap filter, and cluster weighting
 - We plan to examine other grid sizes and FPGA devices

Overall Resource Utilization on TX240T FPGA

Resource	8 x 8 Grid	8 x 16 Grid	16x 16 Grid
RocketIO Links	25%	46%	83%
Virtex-5 Slices	27%	54%	105%
Block RAMs	14%	27%	53%

- Runs on a 8x8 lattice of filtered clusters
- Counts the number of clusters over a threshold around the central cluster.
 - ET > electron threshold
 - ET > tau threshold
- Adds all the electron/tau threshold bits
 to obtain electron/tau isolation count
- Uses the central cluster ET and the electron/tau isolation count to obtain the electron/tau isolation bit
- Outputs two isolation bits per cluster

Cluster Isolation Logic

Central Cluster ET

- Two approaches for Electron/Tau Isolation Modules
 - Use compressed Central ET plus the count to lookup isolation bits
 - Count < A+ B x CentralET + C x CentralET²
- Implementation and evaluation in progress

Jet Finder

- Runs on 8x8 lattice of filtered clusters
- Starts from a local maximum
 - Central bit set
- Calculate Half Sums
 - UD = | Up Down |
 - RL = | Right Left |
 - ET = Total Sum
- Check ratios
 - LR/ET < c AND UD/ET < c
- No need to divide, just multiplycompare or shift-compare
 - e.g. V/ET < 12.5% OR V < (ET >> 3)

Jet Finder Logic

- 64-input adder tree
 - Computes partial sums L, R, U, and D and total sum ET
 - Overlapping lattices can share adder tree hardware
- Implementation and evaluation in progress

Adder Tree Design

- Have logarithmic delay
- Utilized in cluster isolation, jet finding, and MET / MHT / SumEt calculations
- Lots of opportunity for hardware sharing
- Preliminary designs are being investigated

- Electrons, taus, and jets all need to be sorted
 - Several other CMS subsystems also perform sorting
 - Data to be sorted often has a corresponding position
 - Number of inputs, outputs, and data width can vary
- Develop modular high-speed sorters
 - Allow the number of inputs/outputs, data width, and pipeline depth to be varied
 - Utilize bitonic sorting algorithm optimized for few outputs than inputs
 - Develop hierarchical designs that build larger sorters from smaller components
 - Focus initially on *n*-to-4 sorters with *n* a power of two, but techniques work for different numbers of outputs

n-to-4-output Bitonic Sorting

Sorting Unit	Structure (level1 + level2 ++ levelm)	# of Stages (Latency)	# of Comparators
8-to-4	BM[2] + BM[4] + MAX	4	16
16-to-4	$BM[2] + BM[4] + 1 \times BM[8]_4 + MAX$	7	44
32-to-4	$BM[2] + BM[4] + 2 \times BM[8]_4 + MAX$	10	100
64-to-4	$BM[2] + BM[4] + 3 \times BM[8]_4 + MAX$	13	212
128-to-4	$BM[2] + BM[4] + 4 \times BM[8]_4 + MAX$	16	436
256-to-4	$BM[2] + BM[4] + 5 \times BM[8]_4 + MAX$	19	884

Number of stages: $3 \times \log_2(n) - 5$

Number of comparators: $3.5 \times n - 12$

Synthesis Results

Synthesis uses XST 10.1 SP3 on a V5-TX240T FPGA Comparator Data Width: 10 bits

					1
Sorting	Pipeline	Estimated	Slice	Slice	End-to-end
Unit	Denth	Frequency	LIT	Registers	Latency
Om	Deptil	(MHz)	L015	Registers	(ns)
16-to-4	7	427.6	1200	760	16.37
16-to-4	4	232.2	1200	440	17.23
16-to-4	3	160.6	1200	280	18.67
32-to-4	10	427.6	2720	1720	23.38
32-to-4	5	232.2	2720	760	21.56
32-to-4	4	160.6	2720	600	24.89
64-to-4	13	427.6	5760	3640	30.39
64-to-4	7	232.2	5760	2040	30.15
64-to-4	5	160.6	5760	1240	31.12
128-to-4	16	427.6	11840	7480	37.41
128-to-4	8	232.2	11840	3320	34.46
128-to-4	6	160.6	11840	2520	37.34
256-to-4	19	427.6	24000	15160	44.42
256-to-4	10	232.2	24000	8440	43.07
256-to-4	7	160.6	24000	5080	43.56

CMS Upgrade Workshop October 28 2009

- CMS Trigger algorithms should be
 - Implemented correctly and quickly, achieve high performance, and be rapidly updateable
- Describe modules in The DIF Language (TDL) for
 - Formal descriptions of behavior
 - A platform independent *golden model* of the application
 - A foundation for high level performance analysis
- Modules in the calorimeter trigger that have been modeled include:
 - Particle Cluster Finder (Cluster Threshold & Cluster Computation)
 - Cluster Overlap Filter with Cluster Weighting
 - Jet Reconstruction (preliminary version)
 - Cluster Isolation (in progress)

DICE and Unit Testing

- Unit tests are small, local tests that
 - Ensure a particular module is correct
 - Reduce time spent later on system level testing and debugging
- Developed techniques to support unit tests
 - Automatic DIF unit test bench generation
 - Automatic DIF application-level test bench generation
 - SVN repository for firmware, tests, DIF models, and documentation
 - Automatic nightly testing of all modules (DIF, Veriog, C++)
- DSPCAD Integrative Command Line Environment (DICE) enables design frameworks used in trigger to share testbenches
 - C++, Verilog, DIF
 - DICE Website: http://www.ece.umd.edu/DSPCAD/projects/dice/dice.htm
- Cross platform unit tests created for
 - Particle Cluster Finder (Cluster Threshold & Cluster Computation)
 - Cluster Overlap Filter with Cluster Weighting

Next Steps

- Implement the rest of the Calorimeter Trigger
 - Cluster Isolation and Jet Reconstruction
 - MET / MHT / Et Sum Calculation
 - Particle Sorters
- Perform more in-depth testing and analysis of the designs
 - FPGA resources, latency, and clock frequency
 - Design partitioning across multiple FPGAs
 - Enhance testing and analysis frameworks using SVN, DICE and DIF
- Prototype the Calorimeter Trigger designs on FPGA hardware

Questions?

CMS Upgrade Workshop October 28 2009

Producing FPGA Firmware- 30

- Estimated latencies are given in the table below
 - Clock rate of 200MHz (cycle time of 5 ns)
 - Cluster Overlap Filter operates in parallel with part of Particle Cluster Finder

Estimated Latencies on TX240T FPGAs

Component	Latency (cycles)	Latency (ns)
Input RocketIO and Buffers	15	75
Particle Finder, Overlap Filter, Cluster Weighting	7	35
Output Rocket IO and Buffers	10	50
Total Estimated Latency	32	160

- Our initial design on TX240T FPGAs uses Xilinx's Aurora protocol for RocketIO inputs
- Each GTX Dual Tile de-serializes 2x8x16 = 256 bits every 25ns.
- 16 16-bit registers store data for 15 towers for 25ns.