Endcap Muon (CSC) Trigger Phase I and II Upgrade Plans and Status

Ivan K. Furić University of Florida

on behalf of the CSC Detector and Trigger communities

Overview

- CSC "low" occupancy in LHC running
- utilized in design of trigger, DAQ data flow
- SLHC challenge: handle internal rates, control trigger?
- Phase I:
 - Detector upstream: trig primitive quality good enough, focus is on handling increased rate
 - Track Finder: handle increased rate + improve CSC standalone momentum resolution
- Phase II:
 - Detector upstream: relax upper limits on number of trigger primitives (another internal rate increase)
 - Track Finder: combine CSC and tracker information for ultimate momentum resolution

Dataflow Architecture Sketch

Chambers Peripheral Crates CSC Track-Finder Crate

ME4/2 and MEI/I upgrades

"Empty" YE3 disk ready for ME4/2

Simulation result (May '09)

(Vadim Khotilovich, Alexei Safonov)

- Efficiency gaps for good quality TF tracks disappear with addition of ME4/2
- ME4/2 will be included by default in 31X
- Back-porting to 22X took a considerable amount of effort
 - Thanks to the experts:
 Rick Wilkinson, Tim Cox,
 Oana Boeriu and Slava
 Valuev!

ME4/2 upgrade motivation

- Triggering with & without the ME4/2 upgrade:
 - The high-luminosity Level 1 trigger threshold is reduced from 48 → 18
 GeV/c

"Digital CFEB" cathode board

- CSC principle: digitize cathode charges to ~1%, interpolate for fine position
- Current CFEB: the ADC is multiplexed 16:1
 - Requires analog charge storage ASIC (SCA)
 - Serial digitization after L1A

- Digital CFEB uses Flash ADCs:
 - Continuous and deadtimeless digitization

MEI/I Restoring η 2.1-2.4

- High-η section of MEI/I
 - Cathode strips are currently ganged 3:1

- Plan:
 - Install DCFEB boards on MEI/I
 - Move existing CFEBs from MEI/I to ME4/2
 - Takes ~2.5 months per endcap
- 72 new TMB and DMB boards needed to accommodate additional inputs, optolinks

Comparator dCFEB-to-TMB option

- Channel Link: DS90CR483/484A
- 48-8 bit Ser/Deser, requires 19 conductors per CFEB
 - Use 20th conductor as "cable detect" to control Power-Down
- Has options for pre-emphasis and DC balancing
 - Provides for reliable operation, even on our longest cables
- Adds ~3 BX to the trigger latency (~same as Fiber options)

Channel Link Performance Spec

- Performance exceeds our needs: I4 m cable @40 MHz
- Use the same 50-pin SkewClear, 5 cables to TMB!
 - Each cable can carry one OR two CFEB's comparator bits
 - Two-CFEB case gets appropriate fan-out at MEI/I Patch Panel

TMB-to-MPC

For MEI/I the rates are very high...

- How to send 4 LCTs per BX to MPC?
 - Efficiency will suffer if we don't do this
- Review Virtex-5 capabilities: SelectlO
 - Up to 800 Mb/sec on single ended lines
 - Up to 1250 Mb/sec on differential lines

Using current backplane resources, what can we do?

- Consider differential signals at 320 Mb/sec, FPGA-to-FPGA:
 - Must go from one mezzanine connection to the other...
 - ...through two backplane connectors!
 - This will double the bandwidth, allows 4 LCTs per BX
 - Requires much "proof-of-concept" testing
 - Is it reliable? Should we abandon the mezzanine?
 - Signal distance is only ~0.5 m: Can it work?

Port Cards Current design is adequate for LHC luminosity

- 2 LCTs (di-muon signal) + 1 (background) = 3 LCTs per Port Card per BX
- With luminosity upgrade, we expect ~7 LCTs per Port Card per BX.
 - Preliminary simulated data, no measurements so far
 - Reality could be worse
- Port Card becomes a bottleneck
- Solution:
 - Keep 2 Trigger Primitives per chamber
 - Bring all LCTs to SP (18 per Port Card per BX), no filtering
 - May keep the filtering option in Port Cards, in case it's needed
- Port Cards have to be redesigned and replaced system-wide
 - Faster data links evaluated.

Trig. Primitives -> Coordinates

- Presently, conversion is done using large LUTs
 - 4MB per primitive
- For upgrade:
 - Using large LUTs impossible: too much memory
 - Make conversion inside FPGA
 - Combine LUTs and logic to reduce memory size
 - Use θ instead of η
 - Using θ allows for uniform angular extrapolation windows, no need to adjust them depending on θ

Track reconstruction logic: Expanding Current design

Module	% in current design	increase factor	% upgraded
Multiple Bunch Crossing Analysis (BXA)	8%	36	282%
Extrapolation units (EU)	23%	11	262%
Track assembly (TAU)	1%	4.5	4%
Track parameters assignment (PAU)	13%	4.5	57%
Sorting, ghost cancellation (FSU)	51%	20	1012%
Output Multiplexor (MUX)	2%	4.5	9%
BX adjustment to 2 nd trig. primitive (BXCORR)	2%	1	2%
Total	100%		1628%

That's too big reserve at God switchle FDC A for reserve to large relative to current: about 16 x bigger

That's too big, may not find suitable FPGA for reasonable cost.

Pattern-based TF

- Investigating another approach:
 - Pattern-based detection
 - Separately in φ and θ
 - Once the patterns are detected, merge them into complete 3-D tracks

Benefits:

- Logic size reduction
- Certain processing steps become "natural", logic for them is greatly simplified or removed
 - Multiple Bunch Crossing Analysis
 - Ghost Cancellation
 - Automatic track timing on 2nd trig. primitive

Pattern-based finding

Precise parameter assignment

- Similar to pattern search logic in front-end boards (ALCT)
- Sector is split to 5 ϕ zones and 6 θ zones defined by chamber coverage
- Patterns detected independently in each zone
- Best φ and θ patterns matched together to make 12 track candidates
- Best three are selected by sorting logic
- Corresponding trig.
 primitives found, precise
 parameters assigned.

CSC TF Resolutions

 p_T resolution of TF: current LUT's - 40%

- better LUT's developed, not deployed yet 30%
 [E. Berry (Princeton), A. Kropivnitskaya (UF)]
- design predictions 20-30% below 30 GeV/c

Further Improvements

- There is unused information in the TF fit:
 - phi information is truncated in fit
 - ignore track direction in chambers
 - ignore staggering in Z of chambers
 - eta information truncated to 4 bits in fit
 - segment quality ignored
- room for further improvement of CSC standalone track finding
- follow up with simulation work to estimate impact

Phase I Summary: • Detector electronics upgrades deal with increased

- Detector electronics upgrades deal with increased internal rates and occupancy
- ME 4/2 increases high quality track coverage
- Track Finder expects significant I/O and processing challenge due to increased occupancy
- investigating pattern based approach as solution
- TF fit can incorporate more information to improve momentum resolution measurement
- follow up with simulations to evaluate impact
- Phase II studies found resolution important for track seeding window width, efficiency
- upgrade needs to incorporate both increased volume and better resolution - next major push

Phase II: CSC + Tracker Trigger

Illustration

More details: talk by B. Scurlock, Muon Phase II session

- Step 1: Use matching windows to cut stubs based on Trackfinder_{z,φ}-Tracker_{z,φ}
- Step 2: Only keep stubs that are correlated in Δφ & Δcotθ (ie φ_{dstack2}-φ_{dstack0})
- Step 3: Apply r-z algorithm → cot(θ) & z_o
 and r-φ algorithm → p_T

CSC+Trigger Matching Windows

Examples of For Double Stack 0:

Widths =O(~0.1) - O(~0.01) rad η dependence low p_T due to inhom. B-field Can be tightened if necessary6 Matching windows are defined for all possible CSCTF-P_T (5 bits) and CSCTF-η (5 bits per endcap) values. Average matchwindow-occupancy plots shown below are a function of these CSCTF bins and were made with min bias events (200 PU).

Stubs from unclustered PixelDigis

Stubs from clustered PixelDigis

Matching Windows: Signal versus Background

Matching Windows: Separating Signal from Background

Once matching windows are retuned, expect that counting can provide a powerful handle for rate reduction from noise and CSCTF mis-measurement.

Example exercise: tune matching window bin-by-bin N_{stubs} threshold to accept 95% of signal stubs. Cuts and S/B versus bin seen on right →

P_T Estimate 1: Using Δφ

Circle Fit Approximation:

$$\phi = \phi_0 + \arcsin(\zeta R / p_T)$$

linear approximation:

$$\Delta \phi \sim 1/p_T$$

$$\Delta \phi \sim \Delta R$$

- sensors report local coordinate → global φ
- measure φ in 100 μm units of arc length at 104 cm
- $\Delta \phi_{09} = \Delta \phi_{ij} \cdot \Delta R_{09} / \Delta R_{ij}$
- $\Delta \phi_{09} \rightarrow 1/p_T \rightarrow p_T$

Approach demonstrated to achieve 2% P_T resolution

PT Estimate 2: Circle-Fit Resolutions

University of Florida, CSCTT Model

P_Thi25hold

$cot(\theta) \& Z_0$

- Similar triangles
- cot(θ) and Z_{corr} calculated then stored in a lookup table.

CSTT model has been demonstrated to achieve zo resolution 640 µm and cot(θ) resolution 0.002

Phase II Status:

- New manpower: B. Scurlock (UF)
- reviewed and integrated code used in summer studies, validated internal consistency
- results reported in July still stand, further developed
- new studies:
 - counting tracker stubs in matching window rejects background. More tracker layers in trigger lead to more reliable trigger output
 - 3 layers of tracker in trigger allow for beam spot independent pt measurement and beam spot estimation on line (track beam position in real time)

Conclusions:

- CSC electronics upgrades will increase internal data throughput for high luminosity running
- CSC TF Phase II studies with LB geometry converged.
- Recently full CVS permissions, committing code in the upcoming few days
- CSC TF Phase I challenge: increased multiplicity + better resolution, both at the same time

Supporting Material

Phase II: CSCTT Algorithm

- Define regions of interest to help pre-sparsify tracker readout
- Assume stub information is read out from tracker
- Define narrow roads in φ, z to further filter tracker readout
- Tracker stubs have excellent positional resolution utilize internal correlations
- Attempt fit using tracker-only information (best measurement at low momenta
- Current CSCTT model developed in context of the Long barrel geometry
- CSCTT code is now in CVS

Expected Eta Coverage (Longbarrel)

Matching Windows Efficiency (room for fine-tuning)

Here we see origin of inefficiency caused by Nstubs cut.

- (1) |Eta|>2.1 Nstubs is seen to drop to ~2 (expect 4)
- (2) Eta dependent switch in CSCTF-track quality assignment due to gap between inner and outer rings of ME2 and ME3 (matching windows are tuned for Q3 tracks). Q3:Q2 ~ 8:1 for 1 mu events (cf Q3:Q2 ~ 2:1 for MinBias)

Rate Reduction from stubs

Rate and relative reduction contours with Quality>1 CSCTF Tracks (versus Nstubs matching window cuts)

Rate with Quality>2 CSCTF Tracks

Rate reduction power is mostly related to CSCTF Quality. Improperly seeded windows miss underlying stubs. This can be a powerful weapon against CSCTF mis-measurement!

P_T with Beam spot drift

- Current algorithm takes filtered stub candidates and assigns P_T by finding effective $\Delta\phi_{09}$ between tracker Layers
 - Uses linear fit between $1/P_T$ and $\Delta \varphi_{09}$, with (0,0,0) beamspot
 - This algorithm can be re-tuned to accommodate off-center (not investigated yet)
- Can we use the CSCTT model framework to accommodate beam spot drift?
 - Take filtered stub candidates and use a 3-point circle fit to find P_T
 - Algorithm 1: Assume a known beam spot and use stubs available from two tracker Layers
 - Algorithm 2: Assume unknown beam spot and use stubs available from three tracker Layers
 - Can then use DCA to provide beam spot location
 - Both algorithms fit two lines: L1 = Point_i to Point_{i+1} and L2 = Point_{i+1} to Point_{i+2} (points increasing in radius). Solve for the intersection of the two orthogonal lines which bisect L1 and L2
 - Working with engineer to understand how we can implement algorithm in HW