SLHC Calorimeter Trigger Algorithms & Simulation

Mike Bachtis, Ian Ross University of Wisconsin

Presented by S. Dasu

Calorimeter Trigger Requirements

- Provide equal or better performance for Egamma,
 Taus and Jets by keeping the rates low in the
 presence of PileUp (for Phases I. II)
- Provide the best possible position resolution for matching between the calorimeter and the tracker (for Phase II)
- Exploit the latest technologies to create fast flexible and reconfigurable hardware to be adaptable to any conditions

Calorimeter Trigger signatures

Electrons/Photons

Taus

Jets

- Electrons and photons deposit most of the energy in a 2x2 cluster
- Taus deposit most of their energy in a 2x2 cluster however there is often leakage due to bending and three prong decays
- Jets correspond to a uniform energy deposit around a maximum

Calorimeter Trigger Algorithm

- Particle Cluster Finder
 - Reconstructs 2x2 overlapping clusters (overlap by one tower)
 - Applies Electron ID
- Cluster Overlap Filter
 - Removes overlap and locates local maxima
 - Weighs the cluster and gives high position granularity
- Particle Isolation
 - Calculates isolation around interesting clusters
- Jet Reconstruction
 - Sums clusters and creates jets
- Particle separation and sorting
 - Creates output collections sorts and outputs the highest ones
- MET/MHT/SumEt calculation

Particle Cluster Finder

- Applies thresholds on the towers
- Creates a 2x2 cluster at each position on the lattice
- The clusters are overlapping by one tower in eta/phi
- Calculates Electron/Photon ID bit
 - Denotes if the cluster is Photon/Electron like
- Applies OR of the finegrain bits
- Sums the ECAL and HCAL energy for each tower of the cluster

☐ Tower deposit

Cluster

Particle Cluster Finder Logic

Electron Photon ID (EPIM)

- Applies calorimeter based electron
 ID by comparing ECAL/HCAL deposits
- Requirement 1: Flexibility
 - A lot of different cuts can be applied
 - E/(E+H) > value
 - H/E < value
 - Cuts that change at ET ranges
- Requirement 2: Firmware Stability
 - Re-synthesizing is painful (might even affect clock speed or overall resources)
- All the above lead in LUT based implementation

Electron ID should relax In High Pt to reduce trigger bias (and catch TeV electrons From Z':-))

Cluster Overlap Filter

- Cluster to be filtered
- Neighboring Cluster
- Compare Cluster ET with neighbor ET
 - If main cluster is less energetic remove the overlapping towers
- After pruning Sum all the towers to cluster ET
- Apply a threshold to the resulting cluster
- Assign a bit to the clusters that were not pruned
 - Local Maxima!

Cluster overlap filter logic

Cluster weighting

- Weights the cluster to provide maximum position resolution
 - Results in one of the depicted
 16 points in cluster
- Algorithm
 - Calculate horizontal and vertical energy sums
 - H = E1+E3-E0-E2
 - V = E2+E3-E0-E1
 - S = E1 + E2 + E3 + E4
 - Hpos = H/S, Vpos = V/S
- No division is needed
 - i.e 0<Hpos<0.5, 0.5<Hpos<1.0</p>
 - -1<Hpos<-0.5 -0.5<Hpos<0</pre>

Cluster Weighting logic

Cluster Isolation

- Runs on a 8x8 lattice
- Counts the number of Clusters over a threshold around the central cluster.
 - Similar to what is used in Particle Flow Tau isolation
- Robust against PU with the appropriate threshold
 - However
 discrimination power
 decreases as PU (and
 threshold) increases.

To be implemented in firmware

Jet Finder

- Runs on overlap filtered clusters around a local maximum
- Calculates three sums
 - LR = LEFT-RIGHT
 - UD =UP-DOWN
 - ET = Sum of all
- Applies weighting
 - LR/ET<c AND UD/ET<c
 - No division used but shift and compare
 - i.e ET> LR<<shift_amount</p>

To be implemented in firmware

EGamma performance

- This is non isolated Egamma
- Rate increases drastically in higher luminosity
- E/(E+H) cut is affected by PU (HCAL fraction increases)

Isolated EGamma Performance

- Factor 0f 2 to 3 rate reduction by isolation
- Isolation performance drops ta very high PU

Tau performance

- Nice turn on curve for non isolated taus
- Single tau rate is high(it is even high in the low lumi menus)
 - Single tau trigger only usefull for heavy Charged Higgs
 - High threshold
 - Lepton +Tau triggers more useful

Isolated Tau Performance

- Rate can be reduced by isolation for a loss of ~10% in efficiency
 - At 40 PU single tau can have a threshold of 70 GeV
 a ~10KHz
 - Not bad for heavy H->taunu

Jet Performance

- Jets sensitive to very high PU
- Single jet threshold > 100 GeV [uncorrected]

Conclusions, Plans & Issues

Initial set of algorithms chosen work

- Meet rate limitation to tolerate factor of 2 increase in luminosity with sufficient efficiency for objects of interest
 - Additional handle at GT with better position of objects
- Calorimetric isolation is becoming inefficient as expected
 - Track matching and isolation are needed at >2x luminosity

Plans

- Complete algorithm development (MET ...)
- Continue to work with FPGA firmware evaluators
- Integrate with system design

Issues

- Limited manpower (Kevin Flood left CMS, Mike Bachtis is busy with LHC/RCT, lan Ross is busy with coursework, exams ...)
- Need some support at the level of 50% for Postdoc or student