

MTT activities in Aachen

Oliver Pooth

RWTH Aachen 3B Achim Stahl (Günter Flügge) in collaboration with Aachen 3A, Thomas Hebbeker

Main activities of our institute: Tracker Commissioning & DQM Top Quarks and Tau Leptons

MTT in Aachen

- simulation of possible prototype modules
- characterization of SiPMs / front end electronics
- preparation of new lab envirmonment

group: 2 seniors (10%), 1 PhD student, 2 students

SPONSORED BY THE

Federal Ministry of Education and Research

Motivation

Improvement of relative precision is marginal after several years of LHC running

 \Rightarrow increase luminosity \Rightarrow SLHC

SLHC: 1000 fb⁻¹/year \Rightarrow NP, extended limits

various scenarios E_{beam}, f_{BX}, N_p/bunch under discussion

MTT motivation

Triggering on muons at 10^{35} cm⁻²s⁻¹ possible? Keeping the original L1 trigger rate of muon system (Level-1 with muon $p_t > 14$ GeV (to limit the rate))

```
\Rightarrow increase p_t threshold
```

or extend trigger concept

⇒ MTT (fast 2D trigger behind HCAL outer)

Improve muon momentum resolution of L1 trigger

- tracker \rightarrow excellent p_t measurement
- muon system \rightarrow muon ID

resolve muon ambiguities \rightarrow

optimal granularity? \rightarrow start with 25 x 25 x 1 cm³ alternative $10 \times 10 \times 1 \text{ cm}^3$

How to connect? Two scenarios under investigation →

Model various (sizeable) prototypes with GEANT4.

- scintillator: 100 x 100 x 10 mm³ (BC 404, Bicron (Saint Gobain))
- (optional) wavelength shifting fibre (BCF 92, Bicron (Saint Gobain)) all properties according to data sheets
- SiPMs with realistic detection efficiencies (Hamamatsu data sheets)
- muon gun \rightarrow I GeV muons homogeneously distributed across surface
- \Rightarrow O(10000) photons per muon, each tracked individually
- (- study surface properties: roughness, reflectivity)

Simulated prototypes

Pro:

simple detector module

Con:

low light yield more SiPMs needed

Pro:

good light collection via fibre

Con:

detector module more complex

Direct readout

- SiPM in direct contact to scintillator surface
- surface: diffuse (Lambert) reflector (98%)

SIKALISCHES INSTITU

- \Rightarrow Photon density at the surface:
 - approx. homogeneous
 - 20-30 γ/mm²
 - \rightarrow ideal world

but:

only a fraction of the surface is covered by SiPMs.

WLS fibre readout

- SiPM coupled to WLS fibre

rectangular fibre \rightarrow homog. distribution circular fibre \rightarrow preferably at the fibre edges

Expect smearing out with real fibres ... needs to be checked

 \Rightarrow Photon collection marginally better with bent fibre.

Photon arrival time

remember: SLHC bunch crossing distance: 50 ns

Prototype: 100 x 100 x 10 mm²

 \Rightarrow

- photons arrive at SiPM in \leq 20 ns
- direct r/o 1.5x faster
- → no timing problems?!

needs to be the checked for 250 x 250 x 10 mm²

NB: diffuse reflector 98% reflectivity

Scintillator surface under an AFM m 0 m m 0 improve surface modelling^m n Microsurface Microsurface lacrosurface Visi Visible Biothed Blviskele topo fwd M. Liebmann, Physics Inst. IIA, RWTH Aachen [2⁴⁰ ב⊓] ≻35 0.2 0.15 ⊑_0.15 № 0.1 -0.1 30 -0.05 0.05 25 ſ 10 -0.05 20 -0.1 -0.05

-0.15

-0.2

10 15 20 25 30 35

۲ 5

ት 0

40

x [µm]

 \Rightarrow many small structures, one larger scratch, some speckles \rightarrow input for simulation

40

-0.1

-0.15

-0.2

15

10

5

0^r

5

10

15

20

25

30

35

x [µm]

- Characterization of SiPMs
- Development of FE electronics

First measurements

Dark counting rate vs. temperature (-15°C .. 20°C) → see next slide complements measurement from Hamamatsu

Hamamatsu SiPM evaluation kit: SiPM, HV, amplifier, comparator, USB connector

SIKALISCHES INSTITUT

IV curves / new front end

Two new possibilities in our lab.

IV curves ⇔ temperature

III. PHYSIKALISCHES INSTITUT RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACH

2 Hamamatsu sensors 100 pixel (100 x 100 μ m²)

IV curves ⇔ temperature

74

Voltage [V]

72

1600 pixel (25 x 25 μ m²) 10⁻⁵ Avg. Dark Current [A] T = 30°C T = 25°C T = 20°C T = 15°C **10**⁻⁶ T = 10°C T = 5°C T = 0°C T = -5°C sensor I 10⁻⁷ T = -10°C T = -15°C 10⁻⁸ 10⁻⁹ **10**⁻¹⁰ 72 68 70 74 66 Voltage [V] 10⁻⁵ Avg. Dark Current [A] T = 30°C T = 25°C T = 20°C = 15°C **10**⁻⁶ T = 10°C $T = 5^{\circ}C$ $T = 0^{\circ}C$ -5°C sensor 2 10⁻⁷ T = -10°C T = -15°C 10⁻⁸

70

68

2 Hamamatsu sensors

2 Hamamatsu sensors 400 pixel (40 x 40 μm²)

Oliver Pooth

10⁻⁹

10⁻¹⁰

66

Systematic comparison underway ...

Tasks:

- Improve simulation: fibre (geometry, position),

SiPM more accurately (pixels \rightarrow fill factors, area 3x3mm²)

- Segmentation (25x25 cm)
- coupling SiPM scintillator (direct vs. wls fibre)
- temperature dependency of gain (\rightarrow stabilizing the gain)
- controlled process variable? dark current, single-photon events (kHz), ...

Goals:

Compact PCB with

- pre amplifier
- regulated power supply
- discriminator (digitization?) \rightarrow expect problems.

Digitization on PCB? \rightarrow pulse height, pulse length instead of "just" a comparator (Ibit ADC) \rightarrow 5 or 6 bit ADC \rightarrow e.g. 43, 44 pe signal

Detector prototype module (mechanics,) ⇔ comparison with simulation

Problem with digital components

analog out with comparator level at 0.5 p.e.

analog out with comparator level at 1.5 p.e.

Shown: analog pulse height vs. time → signals distorted for pulses corresponding to heights > active comparator threshold level

HYSIKALISCHES INSTITUT

Controlled process variable

SIKALISCHES INSTITUT

Lower discriminator opens switch in case of I pe signal

 \rightarrow part of the shaped signal on C, if the gain raises C is charged, if the gain drops C is discharged

An inverting preamp compares to reference voltage and creates control prosses signal for the bias voltage.

Lab installations in preparation

Pulsed UV Laser 266 nm pulsewidth \leq I ns \rightarrow high statistics \rightarrow adjustable impact position \rightarrow known number of photons \rightarrow timing studies coming soon

Scintillator setup:

- \rightarrow individual, flexible setups
- \rightarrow cosmic trigger

Photon arrival time, w/o reflector

remember: SLHC bunch crossing distance: 50 ns

Prototype: 100 x 100 x 10 mm²

 \Rightarrow

- photons arrive at SiPM in \leq 20 ns
- direct r/o 1.3x faster
- → no timing problems?!

needs to the checked for 250 x 250 x 10 mm²

NB:

perfectly polished scintillator w/o diffuse reflector

Particles in MTT

→ Activity stopped (manpower, requires probably substantial CMSSW tuning)

First data will tell us the quality of prediction ...

Oliver Pooth

Surface modelling

Surface Modelling in GEANT4

UNIFIED Model (Knoll et al.) (empirical) model parameters n₁, n₂ (refractive indices) $-C_{ss}, C_{sl}, C_{bs}, C_{dl} (\Sigma C_{xv} = 1)$ σ_{σ} : gaussian standard dev. - refl. coeff. RC (ext. diff. refl.) parameter constraints Cxy : height distrib., wavelength $-\sigma_{\rm h}/\lambda < 0.025 \rightarrow C_{\rm ss}$ or C_{sl}=1, $\sigma_{\rm sl}$ $-\sigma_{\mu}/\lambda > 1.5 \rightarrow C_{ee} = 0, C_{ee} = 1$ σ_{a} : analysis of facet slopes Markus Merschmeyer, III. Physikalisches Institut A, RWTH Aachen Universit 14