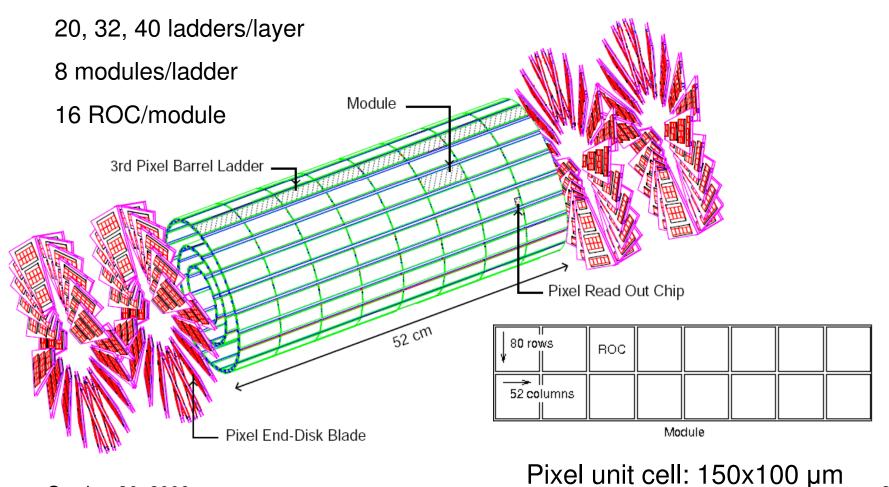
Pixel Jet Trigger Studies

CMS Upgrade Workshop

Matthew Jones (Purdue)

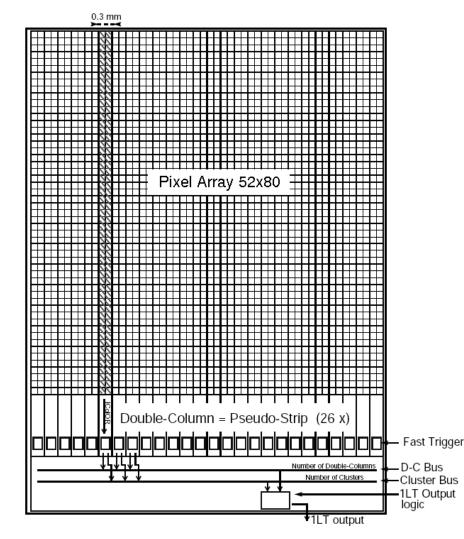
mjones@physics.purdue.edu

Background

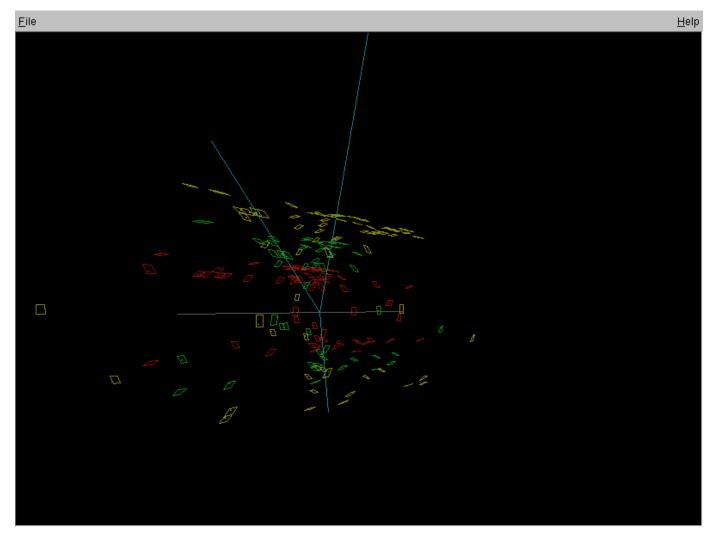

 Trigger capability designed into the PSI46 readout chip

- Hit double column and cluster mutliplicities

• Capabilities and performance studies described in Marlon Barbero's thesis.


Detector/Readout Geometry

3 layers

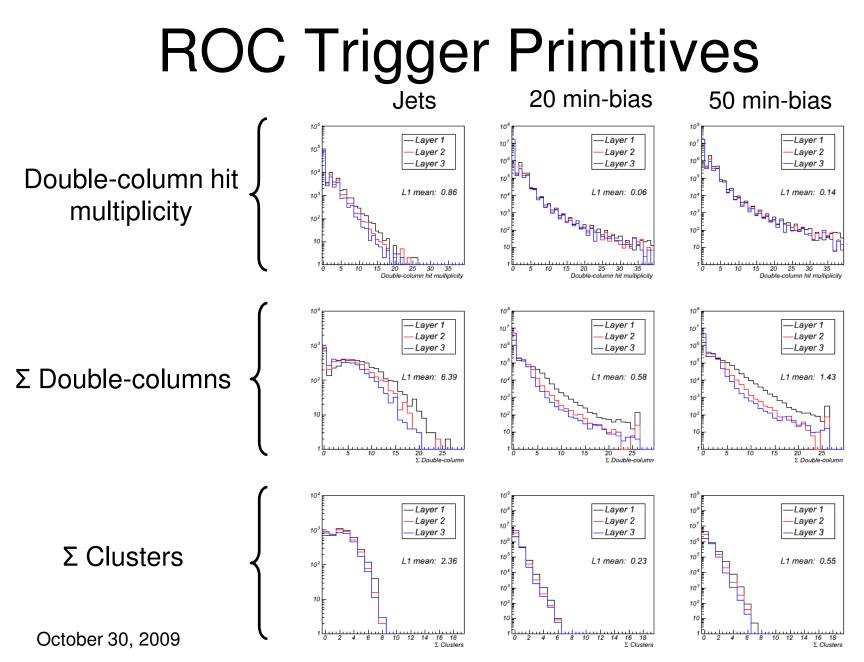

October 30, 2009

Trigger Primitives at the ROC level

- A *hit double-column* is counted if the pixel hit multiplicity exceeds a specified threshold.
- Cluster: non-adjacent groups of hit double columns
- L1 trigger output based on:
 - $-\Sigma$ Double-columns
 - Σ Clusters

Pixel Jet Trigger Motivation

Pixel Jet Trigger Issues

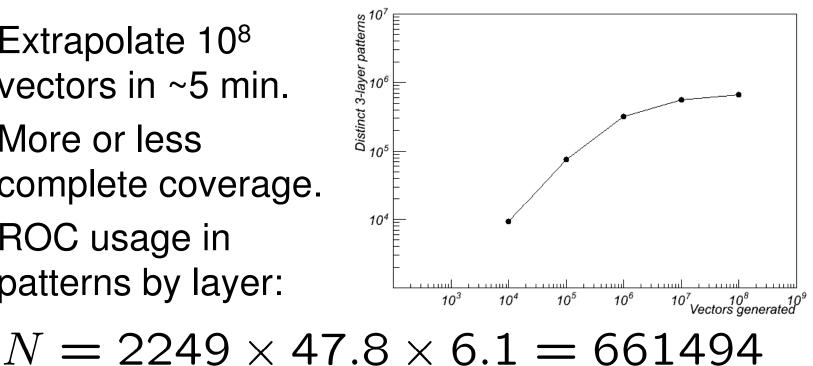

- Efficiency at ROC level
- 3-layer pattern generation (or 2-layer + z)
- η , ϕ , z resolution
- Jet identification efficiency
- Trigger data bandwidth
- Implementation in hardware
- Trigger decision latency
- Interface with calorimeter trigger

Pixel Trigger Model

- Event samples:
 - /RelValQCD_FlatPt_15_3000/CMSSW_3_1_2-MC_31X_V3-v1/GEN-SIM-DIGI-RAW-HLTDEBUG
 - /RelValMinBias/CMSSW_3_1_2-MC31X_V3-v1/GEN-SIM-DIGI-RAW-HLTDEBUG
- Pixel geometry written to a file read back to define the geometry in the model.
- Pixel DIGI hits written to a file read back as input to trigger emulation.
 - Multiple min-bias events randomly overlaid with a physics process of interest (ie, high p_T jets)
- Emulation of ROC trigger primitives.

ROC Trigger Cuts

- Define "signal" as a ROC that lies along a jet axis, where jet $p_T > 250$ GeV/c.
- Define "background" as any ROC in an event with N_{mb} min-bias events overlaid.
- Examples:
 - Double-column hit multiplicity
 - Hit D-C multiplicity, Σ Double-columns
 - Cluster multiplicity, Σ Clusters

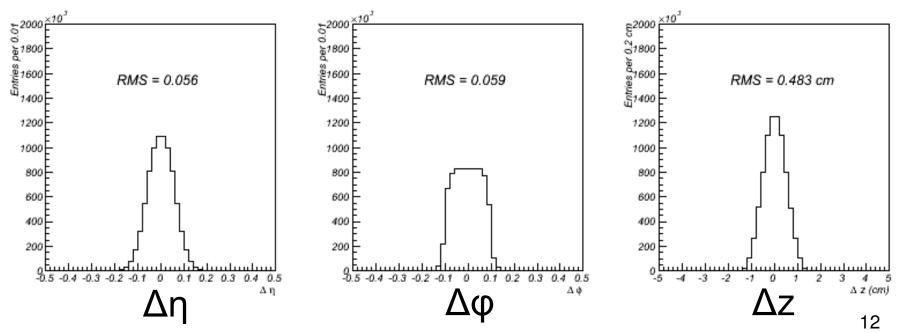


Pattern Generation

- Identify which ROC's line up, pointing back to the beam axis
 - Uniform vertex position, -16 < z < 16 cm
 - Uniform in azimuth, $0 < \phi < 2\pi$
 - Uniform in pseudorapidity, $-2 < \eta < 2$
- Extrapolate vectors through pixel detector geometry model.
- Hit ROC is one through which the vector extrapolates.
- Worst case: no clustering of hit ROC's in trigger.

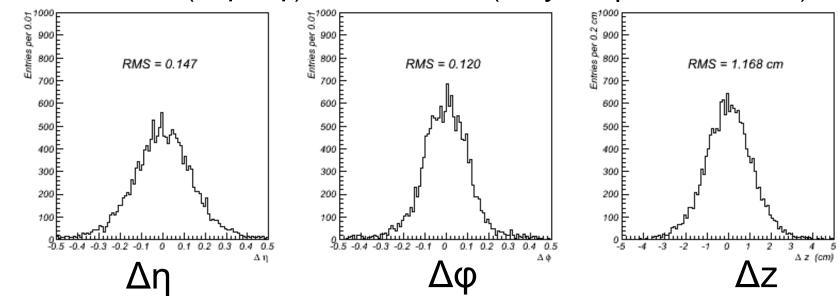
Pattern Generation (worst case)

- Extrapolate 10⁸ vectors in ~5 min.
- More or less complete coverage.
- ROC usage in patterns by layer:

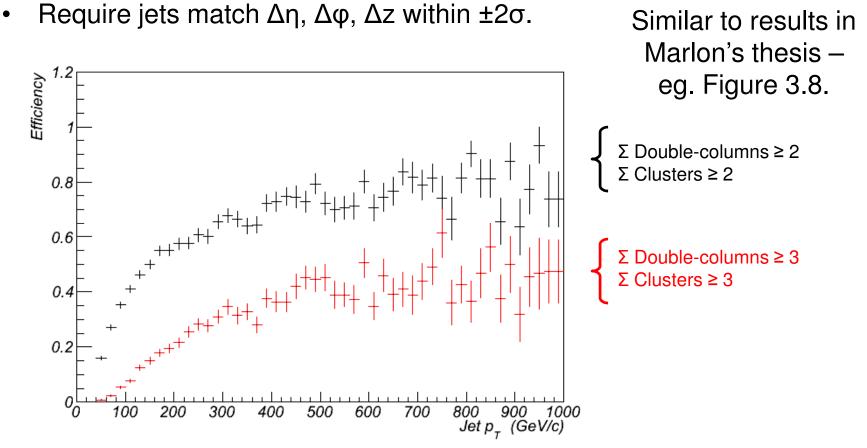

Compare with 2560 ROC's in Lyaer 1

For each Layer 1 ROC there are about 48 distinct patterns For each pair of Layer 1 and Layer 2 ROC's, there are about 6 distinct patterns ¹¹

October 30, 2009


Intrinsic Jet Parameter Resolution

- Map each pattern into space of (η,φ,z) using 5 bits for each.
- Generate more vectors, compare parameters from matched pattern with generated parameters.
- Generated 10⁷ vectors, observed 0.7% inefficiency.


Actual Jet Parameter Resolution

- Reconstruct jets (sisCone5GenJets), use p_T>250 GeV/c
- Low trigger thresholds:
 - Σ Double-columns ≥ 2
 - Σ Clusters ≥ 2
- Match in $(\Delta \eta, \Delta \phi)$ look at Δz (+ cyclic permutations)

October 30, 2009

Jet Identification Efficiency

• But the parameter space that can be optimized is very large...

• Four possible schemes:

- Synchronous (all data every 25 ns) or zerosuppressed (only data from triggered ROC's).
- Trigger on individual ROC's or from clusters of adjacent ROC's.
- Available bandwidth:
 - Assume 192 fibers for trigger (64 ROC/fiber)
 - Assume 320 MHz (8 bits/bunch crossing)?
 - Can't send synchronous data from all ROC's.

- Synchronous data each bunch crossing requires combining trigger data from ½ a module into 1 bit – granularity too coarse.
- Consider sending addresses of triggered ROC's or groups of ROC's:
 - Include bunch crossing identifier
 - List could be long for interesting events
 - Should very short for min-bias events
 - Min-bias events determine the *average bandwidth*.

- Data rate determined by packet size and the rate of hit ROC's.
 - Example: 18 bits to send $ROC_{addr1}/ROC_{addr2}/t_1 x t_2$
- Simulate by superimposing multiple min-bias events.
- Avg # of triggered ROC's / half ladder / event, (Loose cuts: Σ Double-columns ≥ 2, Σ clusters ≥ 2):

$\overline{N_{mb}}$	1	20	50	100
Layer 1	0.030	1.777	7.321	18.42
Layer 2	0.011	0.595	2.689	8.068
Layer 3	0.005	0.273	1.224	3.897

 $(10^{34} \text{ cm}^{-2}\text{s}^{-1} = 19.2 \text{ min-bias}$ events per bunch crossing)

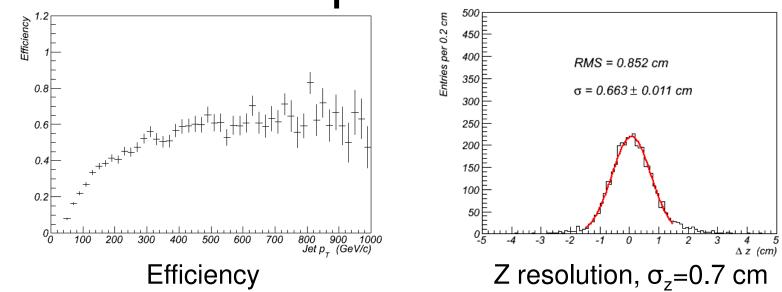
- Rates can be controlled by tighter cuts on inner layers, but will incur a loss of efficiency.
- For example, a "high luminosity" scenario:
 - Layer 1: Σ Double-columns \geq 8, Σ clusters \geq 4
 - Layers 2 & 3: Σ Double-columns \ge 4, Σ clusters \ge 3
- Avg # of triggered ROC's / half ladder / event:

N_{mb}	1	20	50	100
Layer 1	0.00265	0.145	1.048	4.450
Layer 2	0.00084	0.034	0.207	0.980
Layer 3	0.00059	0.017	0.079	0.357

- Motivates prioritizing trigger data.
- More realistic projections need to be tied to the actual hardware implementation.
 October 30, 2009

Physical Implementation

- ROC trigger output:
 - Differential analog output: Trig_out+/Trig_out-
 - Analog coded ΣClusters or High Double Column Multiplicity
- Combination of ΣClusters from adjacent ROC's important for jet identification efficiency.
- Motivates the functionality provided by a Module Trigger Chip
- Combine trigger information from 4 modules and drive on one fiber ("Side Trigger Control Chip")


One Possible Scenario

- Module level clustering:
 - Sum the Σ Clusters from 6 adjacent ROC's
 - Cut on ΣClusters in central ROC and in central + adjacent ROC's
 - Transmit central ROC address to "Side Trigger Control Chip"
 - Pipeline depth/output latency?
 - Output bandwidth?

Example

- Cuts at ROC level:
 - High ΣDC multiplicity threshold = 4
 - $-\Sigma Clusters \ge 2$
- Cuts at MTC level:
 - Output a single ROC address that has either:
 - High ΣDC multiplicity
 - Sclusters in ROC + adjacent 5 ROC's \geq 3
- Bandwidth reduced by factor of 2
- Improved efficiency for tighter cuts
- Improved jet parameter resolution

Example with MTC

Number of MTC outputs per half ladder:

$\overline{N_{mb}}$	1	20	50	100
	0.097			
Layer 2	0.013	0.495	1.921	3.423
Layer 3	0.0041	0.159	0.817	2.370
Matches/event	0.003	1.134	19.5	86.5

Observations

- Need to consider a nominal Phase 1 upgrade tracker geometry
- Need better estimates of link bandwidths
- Understand status of MTC + STCC
- Interface to calorimeter trigger
- Timing constraints
- Candidate firmware algorithms
- Testing/readout/monitoring interfaces

Summary

- Rapidly adapting to changing luminosity conditions is crucial
- The constraints already imposed by existing hardware designs are already very flexible.
- Emulation will continue to provide a realistic model of proposed hardware implementation.
- Need to focus on system level implementation, then return to performance studies.