Status of LHCb

T. Bowcock

CERN & University of Liverpool

On behalf of the LHCb Collaboration

LHCb ready for data taking

Topics as reported at LHCC mini-review 7/7/09 Status/improvements to detector Tests before colliding beams Preparations for Physics

цнсь гнср

Vertex Locator(VELO)

170k channels, 0.2m²
High rate irradiation tests

rCam 2

RICH1

- •Magnetic Distortion Monitoring Systems (MDMS) installed
- Installed scintillators to see cosmics rings with TT in Aerogel and C_4F_{10}
- Photodetection with
 HPD

HPD

- In total 486 HPDs required for RICH-1 + RICH-2
 - Ion Feedback
 - Glowing at IFB >~5%
 - Eventually (5 years) 100 HPDs will need replacing
- Actions:
 - 60 HPDs have been removed/exchanged
 - Repair procedure ongoing
- Status:
 - 27 repaired HPDs received, more in the pipe line

 $\begin{array}{l} 8192\text{-channel pixel chip}\\ 8\times\,OR \rightarrow 1024 \text{ pixels}\\ (500\times500\ \mu\text{m square}) \end{array}$

RICH2

- RICH1&2 have been running smoothly for extended periods of time
- "hot" pixels at the 10⁻⁶ level!

Trigger Tracker

- Running cosmics with RICH1
- 99% operational strips
- 8m² strips (140 k)

Inner Tracker

In good shape: 99. 7% channels
working)
4m², 130k channels

99.7 % of the detector working [Everything but 7 Beetle ports] Improved since the TED run...

Outer Tracker

- Detector is fully installed (summer 2008)
- Gain-loss phenomenon understood:
 - Araldite glue used to glue modules
 - Croissant shape is due to O₃ formation
- Anti gain loss measures (strategy unchanged):
 - Continuous flushing
 - Heat treatment completed on all stations
 - In-situ scanning tool used to check gain loss
 - Addition of 2% O₂ decided (when luminosity gets into the critical regime); small effect on gain (15%), no effect on drift velocity
 - HV training to repair damage is possible, if needed
- Aligned to <1mm using cosmics

Calorimeters

- ECal
 - Major noise reduction compared to 2008
 - Time aligned to 3ns
 - Intermodule calibration to 4% (LED)
- Hcal
 - Time aligned to 3ns
 - Intermodule calibration to 8% (Cs)
- SPD
 - Time aligned to 5ns
- PS
 - Time aligned to 3ns

All four above:

- Smooth operation
- Cosmics and Target Data (TED)

Muon System:

- M1 Installation completed on 26 June on schedule
- Testing, debugging and alignment finished
- Final positioning w.r.t. beam pipe performed
- 435m² (2 tennis courts)

Muon System

- First data runs with M1 in "Global" i.e. with rest of detector
- Commissioning for data taking has started:
 - Noise studies for optimal threshold setting
 - Runs with cosmic rays
 - Muon L0 trigger tests
 - ~100% Channels working

Level-0 Trigger

- System complete
 - Tested successfully
 - Detailed studies ongoing
 - M1 integrated
 - Ready for data taking

HLT farm and Network

- HLT farm was increased to 550 servers from 200 servers
- Server 2nd tranche: DELL M605 blade, 2 x Intel 5420 processor (x 4 cores) (2.5 GHz), 16 GB memory
- New farm operational

Blade chassis

- 50 chassis installed with 7 blades / chassis
- 9 slots / chassis free (rapid install extra cards)
- Very power efficient (2.1 kW / maximum)

Network

- Network
 expanded to full 1
 MHz capacity June
 09
- New Line-cards (Force10 linecards)

High Level Trigger (HLT)

 FEST-injector (10⁸ Min B events) into HLT

test & monitor

- Ready for real data.
- Optimized
- Final commissioning only possible with real data.

1 MHz readout-test

- Every detector tested @ 1MHz
 - All cabling problems fixed
 - Combined test with all of LHCb
- No problem in central DAQ detected: LHCb is ready for 1 MHz readout

General Organization during the run

- On shift: 2 -3 persons, one of them SLIMOS
- 3 shifts / 24hrs / 7days
- On-call experts for each system 7 days /week
- Additional on-call services
 - DSS expert
 - RP expert / assistant
 - Patrol
- Shifter and SLIMOS training in place since last year

Summary Hardware

- LHCb detector complete
- Commissioning is well advanced
- DAQ and network ready for 1 MHz
- Ready for next TED run in October and for first collisions
- Remaining actions:
 - Third round of HPD exchange in October
 - Increase to final CPU power later...

Pre-Collision Data

- Cosmics
- Transfer line External Beam Dump (TED)
 - 300m from LHCb
 - 450Gev p showers

Cosmic Events

- Since 2008
 >10⁶ calo
- OT
- RICH/IT

TED Run(s) 2009

- VELO June 2009
 - Time alignment
 - to a few ns
 - Spatial alignment
 - VELO modules to 5μm
 - "stability" O(1µm) / year
 - VELO Halves to 10 μm
 - Resolution and efficiency
 - Quasi-binary for normal incidence
 - ~98% (soft tracks and tracking windows)
 - Image of the target!

TED Run(s)2009

- For IT
 - Alignment to 15µm
 Efficiencies O(98%)

Event in VELO

Searching for vertices

A few more events... VELO RZ

Dedicated October 2009 TED Run

- Major users VELO and IT/TT
- Run VELO in final configuration
 - Vacuum (freedom to move)
 - Cooled to -25C
 - Establish the operational fingerprint prior to data
- IT/TT continue tracking and alignment studies with larger data samples

Preparation for Physics

Getting Started with Collisions...

- Earliest Measurements
 - Simple (Random)Trigger
 - Calibration of tracking and PID
 - Study Key channels
 - $K_s \rightarrow \pi\pi, \Lambda \rightarrow p\pi$
 - Plan to analyse 10⁸ events(~10hrs@2khz!)
- J/ψ
 - Trigger with single muon
 - Other muon "unbiased" for momentum, PID

40 mins @ 10³¹ With 2 kHz random trigger 95% purity with kinematic/vertex cuts

Early Days...

- number of events 00 t of prompt J/w J/ψ basics t of J/w from b t of all J/⊎ Cross-sections 1-5 pb⁻¹ 104 Prompt • Prompt J/w from b component • From b 10 Backgrounds Study background using sidebands 102 -2 0 2 6 10 8 12 t/ps
- Forward measurements
 - Ensuring the tracking and efficiencies make sense
 - Identify other SM processes e.g. W/Z

Long tail due to association of wrong primary vertex Measure using the J/w vertex and the PV in different event

2010 – Analysis Commissioning

- Preparing for B programme
 - − D→hh (rehearsal for B → hh). Separate Kπ, KK, ππ and DCS Kπ
 - B Vertex and mass resolutions
 - B Lifetimes
- Accumulate samples of $B \rightarrow D(K\pi)\pi$
 - Study background environment
 - Look for any evidence of B+ / Basymmetries

Channel	Yield / 10 pb ⁻¹
B ⁰ →Kπ	340
B→D(Kπ)X	31k
B⁺→D(Kπ)π⁺	1900
B⁺→D(Kπ)K⁺	160
$B_s \rightarrow D_s \pi^+$	320

2010 – Charm Studies

- Preparation for B's
 - order of magnitude higher production cross section
 - Vertex/Lifetime
 - Modes with π^0
 - HLT performance

- Interesting in own right
 - flavour tagged D0 → KK
 events for measuring yCP
 and corresponding CP
 asymmetry
 - $y = \tau(D0 \rightarrow K\pi) / \tau(D0 \rightarrow KK) 1$
- State of the art
 - LHCb can collect ~ 10⁵
 flavour tagged KK events
 with 20 pb⁻¹ (same
 statisticsas BELLE with
 0.5ab-1).

B Physics 2010

- With data sample of ~200 pb⁻¹
 - $\text{ Bs} \rightarrow \mu \mu$
 - Improve Tevatron sensitivity for Bs $\rightarrow \mu\mu$
 - **-** Φs
 - 'central' value from Tevatron would confirmed at 5σ level

Summary

- LHCb Detector Ready for Physics
- Software Tools Ready for real data analysis
 - LHCb welcomes maximum possible integrated luminosity, even at 'low' energy !
 - as long as $E_b > 2$ TeV we need to close VELO)
- LHCb Physicists Ready!

Backup

TT broken bonds

- A few modules (7)
 - Wire bonds "unzip"
 - 6 modules replaced
- Ingredients needed to explain breaking:
 - Initial crack, and/or
 - Low loop height, and
 - Stress on the wire (e.g. thermal cycling, vibrations)
- Gluing doesn't seem to help
- Replacement possible when problem understood

Straw Outer Tracker

