AC loss for EuroCirCol 16 T designs

<u>Susana Izquierdo Bermudez</u>, Davide Tommasini, Bernardo Bordini Acknowledgements: Fernando Toral, Vittorio Marinozzi, Clement Lorin

01-11-2017

Losses

- Three sources:
 - Magnetization losses
 - Proportional to the superconductor J_c and filament size (D_{eff})
 - Inter-strand coupling loss (ISCC)
 - Low thanks to the use of cored cable
 - Inter-filament coupling losses (IFCC)
 - Low at the typical ramp-rate of an accelerator as LHC/FCC (10 A/s)

Our assumption: ISCC and IFCC are negligible, only strand magnetization losses are considered

Measured losses on 11 T short model MBHSP012

Low field: from 0.1 to 6 kA High field: From 6 kA to 11.85 kA

Measurements: Gerard Willering & Hugo Bajas

Modelling SC magnetization

- Semi-analytical hysteresis model for the superconductor, developed in [1], and implemented in ROXIE [1].
- Limited accuracy at low field, partially due the reduction on magnetization observed in Nb₃Sn due to flux jumps [2], which can be overcome by introducing a reduction on the strand magnetization below a given field level.
- Model has been validated in 11 T [2] and MQXF [3] magnets

C. Vollinger, Superconductor magnetization modelling for the numerical calculation of field errors in accelerator magnets. PhD thesis, 202
S. Izquierdo Bermudez, et.al, Persistent Current Magnetization effects in High-Field Superconducting Accelerator magnets, IEEE 2016
S. Izquierdo Bermudez, et.al, Magnetic Analysis of the Nb3Sn low-beta Quadrupole for the High Luminosity LHC, IEEE 2017

AC Losses – Parameter dependence

- Strand magnetization, which depends on
 - Sub-element diameter (d_{sub})
 - Critical current density (non-Cu) (J_c)
 - Cu/non-Cu ratio (λ)
- Magnet powering cycle
- Coil geometry
 - Here we study the cos-theta, block and common coil EuroCirCol coil configurations.

 $M(B) \propto d_{sub} \cdot J_c \ (B) \cdot \frac{1}{\lambda+1}$

Superconductor parameters

- Superconductor current density as specified for EuroCirCol
 - $T_{c0} = 16 K$
 - $B_{c20} = 29.38 T$
 - $\alpha = 0.96$
 - $C_0 = 275880 \text{ A/mm}^2 \text{ T}$
 - 3 % cabling degradation

 $B_{c2}(T) = B_{c20} \cdot (1 - t^{1.52})$ $J_c = \frac{C(t)}{B_p} \cdot b^{0.5} \cdot (1 - b)^2$ $C(t) = C_0 \cdot (1 - t^{1.52})^{\alpha} \cdot (1 - t^2)^{\alpha}$

- Reference: $D_{eff} = 50 \mu m$, no reduction due to flux jumps
- Sensitivity analysis to:
 - Effective filament size $D_{eff} = 20 \ \mu m$, $D_{eff} = 50 \ \mu m$
 - Reduction of strand magnetization at low field due to flux jumps χ = 0.5-1

Cycle - Parameters

- INJECTION: For FCC (collision energy 100 TeV) ([1] D. Shuttle FCC week 2017) :
 - <u>Baseline</u>: **3.3 TeV** from LHC (acceleration ratio = 15.2)
- RESET CURRENT:
 - Compromise between field quality and magnetization loss during operation
 - <u>Reference value</u>: 100 A
 - Sensitivity study of the AC loss as a function of the reset current, with a maximum reset current = injection current

[1]https://indico.cern.ch/event/556692/contributions/2483405/attachments/1466498/2267552/Berlin_wide2.pdf

Sensitivity to coil geometry

- When normalizing the to the area of superconductor, the AC loss for the 3 designs is within 3 %
- Small room of optimization of the AC-loss with an optimization of the turns location

Coil geometry		Cos-theta	Block	Common Coil
Deff	μm	50	50	50
Xi		1	1	1
I1	Inom (50 TeV)	11060	10465	16100
12	Ireset	100	100	100
13	linj (3.3 TeV)	729.96	690.69	1062.6
14	Inom (50 TeV)	11060	10465	16100
AC-loss (2 Ap)	J/m	18330	19603	23489
AC-loss/Asc	J/m ₃	4728455	4633384	4776274

Sensitivity to the reset current

- Non-negligible reduction of the loss when increasing the reset current (we gain 17 % going from I_{reset} = 100 A to I_{reset} = I_{inj})
- The impact on field dynamics needs to be evaluated, since the change on b₃ from injection to nominal will be very large.

Coil geometry		Cos-theta	Cos-theta	Cos-theta	Cos-theta	Cos-theta
Deff	μm	50 (HF)				
Xi		1	1	1	1	1
11	Inom (50 TeV)	11060	11060	11060	11060	11060
12	Ireset	100	0	-250	500	729.96
13	linj (3.3 TeV)	729.96	729.96	729.96	729.96	729.96
14	Inom (50 TeV)	11060	11060	11060	11060	11060
AC-loss (2 Ap)	J/m	18330	18739	21058	16104	15079

Sensitivity to filament size

- The larger contribution to the losses is coming from the high field layers.
- A reduction of D_{eff} from 50 µm to 20 µm in the low field cable decrease the magnetization losses by 20 %
- A reduction of D_{eff} from 50 μm to 20 μm in the low and high field cable decrease the magnetization losses by 57 %

Coil geometry		Cos-theta	Cos-theta	Cos-theta	Cos-theta	Cos-theta	Cos-theta
Deff	μm	50 (HF)	50 (HF)	50 (HF)/20 (LF)	50 (HF)/20 (LF)	20 (HF)/20 (LF)	20 (HF)/20 (LF)
Xi		1	0.5	1	0.5	1	0.5
11	Inom (50 TeV)	11060	11060	11060	11060	11060	11060
12	Ireset	100	100	100	100	100	100
13	linj (3.3 TeV)	729.96	729.96	729.96	729.96	729.96	729.96
14	Inom (50 TeV)	11060	11060	11060	11060	11060	11060
AC-loss (2 Ap)	J/m	18330	16685	14340	12980	8026	7127

Our thoughts

- 15 kJ/m is what we would expect with today's target specification (focusing on J_c, not on small filaments)
- 10 kJ/m is a reasonable target, since we are already close to achieve a good low field conductor with $D_{eff} = 20 \ \mu m$
 - We recommend to take this as the baseline
- 5 kJ/m could be achieved by a successful implementation of new concepts (artificial pinning)

Additional slides

Superconductor parametrization

$$B_{c2}(T) = B_{c20} \cdot (1 - t^{1.52})$$

$$J_{C} = \frac{C(t)}{B_{p}} \cdot b^{0.5} \cdot (1-b)^{2}$$
$$C(t) = C_{0} \cdot (1-t^{1.52})^{\alpha} \cdot (1-t^{2})^{\alpha}$$

	Hi-Lumi	FCC
<i>Т_{с0}</i> (К)	16	16
<i>B_{c20}</i> (T)	29.38	29.38
α	0.96	0.96
$C_0(A/mm^2T)$	188870	275880

1340

625

15 T

18 T

1960

915

Notes

- In the LHC:
 - Losses during ramp = 0.5 kJ/m
 - Fast discharge = 3 kJ/m
 - Still, what is defining the size of the cryogenic system is the loss during ramp since after the fast discharge there is no beam
- The maximum allowable dT:
 - 50 mK for the LHC
 - 2.1 K for FCC, which means 2.15 K in the coil. If we want to keep the 50 mK in the FCC we would need 300 I/m of Helium, which is too much!

