
## MECHANICAL ENGINEERING OF ACCELERATOR COMPONENTS

Antti Kolehmainen Tommi Mikkola on behalf of CERN EN/MME



## **CERN EN-MME GROUP**


"The mandate of the MME group is to provide to the CERN community specific engineering solutions combining mechanical design, fabrication and material sciences."



**CERN's Accelerator Complex** 



### **MATERIAL DEVELOPMENT AND MEASUREMENTS**

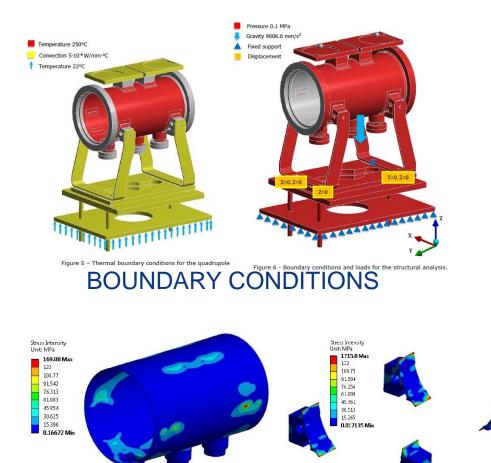


#### MATERIAL DEVELOPMENT:

- GRAPHITES FOR BEAM IMPACTS
- STAINLESS STEEL ALLOY FOR PERMEABILITY



#### MECHANICAL MEASUREMENTS:


- Non Destructive Test: X-RAY TESTS FOR THE LHC DIPOLE MAGNETS
- Destructive Test: TENSILE TEST OF MATERIALS

GEOMETRICAL MEASUREMENT OF COMPONENTS TO VERIFY COMPLIANCE TO THE SPECIFICATIONS



## **ENGINEERING CALCULATIONS**

#### SAFETY ASSESMENT, GUIDES DESIGN WORK AND VERIFIES THAT A DESIGN MEETS ITS REQUIREMENTS

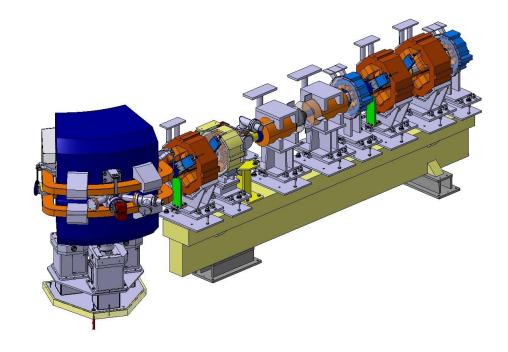




FUNCTIONAL DEVICE

Figure 10 - Stress intensity for the vacuum vessel.

Figure 11 - Stress intensity for the welded connectors.


#### **ANALYSIS RESULTS**

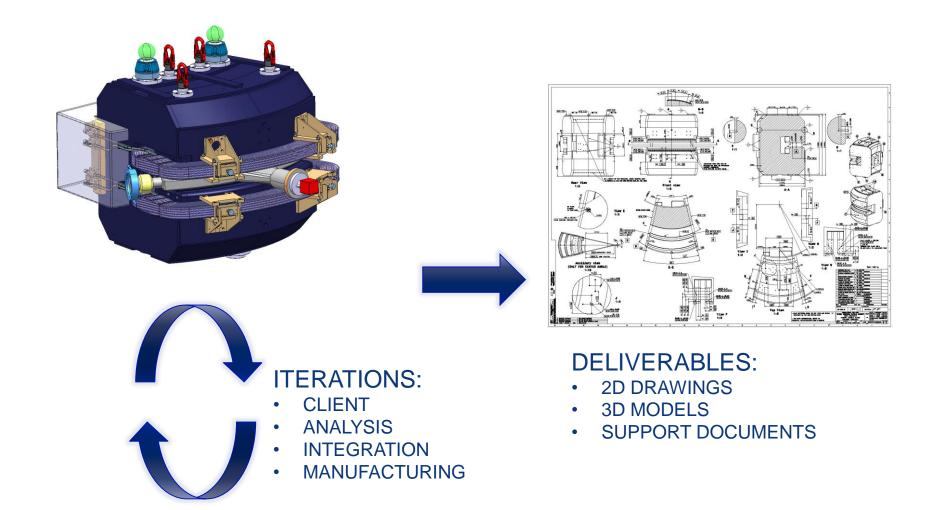


## **MECHANICAL DESIGN**

#### **DESIGN INPUTS**

| HAN N | 0.0 DRAFT                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------|
| 2     | Page 4 of 11                                                                                                   |
| 1.    | INTRODUCTION                                                                                                   |
|       | This document represents the basic requirements for the 3D model of the ELENA MBR                              |
|       | design, done in CATIA. It further represents the interface document between the                                |
|       | magnet work package and the design office.                                                                     |
| 2.    | NOMENCLATURE                                                                                                   |
|       | All the parts and assemblies established for this magnet shall follow the same                                 |
|       | nomenclature as the prototype (f.g. AD_MBHEKXXXX, where XXXX is a consecutive                                  |
|       | number).                                                                                                       |
| 3.    | SOFTWARE                                                                                                       |
|       | For this design it has been agreed that the software used will be CATIA V5. The                                |
|       | release version may change according to CERN procedures.                                                       |
| 4.    | COORDINATE SYSTEM                                                                                              |
|       | The coordinate system to be observed shall be the following:                                                   |
|       | Right handed, orthogonal coordinate system to be used                                                          |
|       | <ul> <li>z-axis: tangential to the beam in the direction of the beam in the center of</li> </ul>               |
|       | <ul> <li>z-axis: cangendar to the beam in the direction of the beam in the center of<br/>the magnet</li> </ul> |
|       | - y-axis: vertical in the opposite direction to gravity, 0 at the magnet center                                |
|       | - x-axis: According to a right-handed coordinate system perpendicular to x                                     |
|       | and z (0 at mechanical pole center)                                                                            |
|       | An example for the coordinate system can be found under Figure 1.                                              |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |
|       |                                                                                                                |

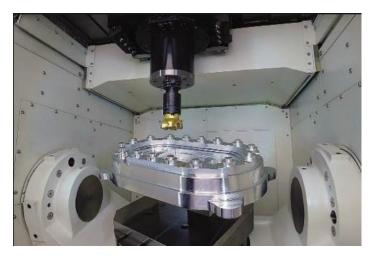



#### CLIENT SPECIFICATION FOR THE DEVICE

#### AVAILABLE SPACE FOR THE DEVICE

#### ALL PARTIES CONCERNED ARE INFORMED




## **MECHANICAL DESIGN**





## **PRODUCTION**

#### EN/MME HAS THREE WORKSHOPS



- REMOVE MATERIAL BY CUTTING –
   ONLY METAL MATERIALS BY EN/MME
- ADDING DEGREES OF FREEDOM ALLOWS MORE COMPLEXE GEOMETRIES
- ELECTRICAL DISCHARGE
   MANUFACTURING ELECTRICAL
   ARCS REMOVE MATERIAL



- FORM MATERIAL
- BEND / ROLL / DRAW
- 3D PRINTING IN USE AND IN CONSTANT DEVELOPMENT!



## **PRODUCTION AND PURCHASE**





- WELDING
  - MELT THE PARTS TO BE JOINED LOCALLY –
     FILLER METAL MAY BE ADDED
- BRAZING
  - JOINED PARTS DO NOT MELT, ONLY FILLER METAL. DIFFERENT MATERIALS CAN BE JOINED
- PURCHASE SIMPLE
   COMPONENTS AND LARGE
   SERIES FROM INDUSTRY



# ? / !

#### **QUESTIONS? / THANK YOU FOR YOUR ATTENTION!**

