

CERN Machine Advisory Committee 1st Meeting - 26 October, 2009

Repair and Consolidation Actions

Francesco Bertinelli CERN - Technology Department - MSC Group

- Complement Steve Myers' presentation with more details
- some "bias" towards mechanical work (magnets, interconnections, cryogenics, vacuum)
- focus on a few detailed cases

Repairs Shutdown 2008-2009

- Sector 3-4: magnets, cryogenics, vacuum
- Other sectors: replaced dipoles, connection cryostats
- □ 13kA splices
- Consolidations Shutdown 2008-2009

3-4 first inspection after the incident

Tunnel work: safety first

- Phase 1 (started Monday 22 September, 2008): limited access, improved safety/stability by adding restraints between cryostats and ground;
- Phase 2: started opening interconnects October 6: further internal restraints added between cold mass and cryostat
- Phase 3: disconnections, transport of magnets to surface, cleaning of beamlines
- Last magnets returned to surface by early January 2009, in parallel first replacement magnets installed December 2008

Tunnel work: disconnections

26 Octobe

2008-2009 resources

\\cern.ch\dfs\Users\b\bertine\Documents\MyDocs\TE-MSCfrom 2009\Chamonix_Feb2009_F.Bertinelli\Organigram TE-MSC Jan 2009

 Over 200 workers during construction 2005-2007: IEG Main Contractor finished June 2008

- New "Main Contractor": TE-MSC
- Core teams and competences were still present, rapidly increased again - FSUs

□ Analysis Task Force (Ph. Lebrun)

- In October 2008 started joint TE-MSC and EN-MME Task Force
- Renewed Collaboration Agreement for Quality Control/ELQA with Krakow Institutes

••••

Sector 3-4: D-zone

Sector 3-4 Event Findings and Observations Summary

— Point 3

(Based on investigation and measurements by AT-MCS, AT-MEI, AT-VAC, TS-MME and TS-SU)

Point 4 -----

			-	c				J,VB,Plugs								J
	A18	B18	C18	Q18	A19	B19	C19	Q19	A20	B20	C 20	Q20	A21	B21	C21	Q21
ryostat	<2	<2	<2	<2	<2	<2	<2	<2	2	<2	<2	<2	~2	<2	<2	<2
A Longit.		\$				\$?		<5	Ş	<5	<	<5	<	4	<5	<5
Cleannes Status		-		-					-			_				and the second
status																
								V	-							V
								J,VB,Plugs								J
	A22	B22	C22	Q22	A23	B23	C23	Q23	A24	B24	C 24	Q24	A25	B25	C25	Q25
				-	-	-					3	nt a			3	
vostat (🖷 +)	<2	<2	<2	-7	2	<2	<2	-187	2	<2	2	<2	2	2	<2	<2
I Longit. (+)	<5	<2	<2	-20	-67	-102	-144	<5	-190	-130	-60	<5	2	<2	<2	<5
Cleannes Status							1					5				
Status																
	175							V								
				9. P	1			J,VB,Plugs				0 - O				J
	A26	B26	C26	Q26	A27	B27	C27	Q27	A28	B28	C 28	Q28	A29	B29	C29	Q29
												-				
vostat	0	0	0	0	3	0	0	1/4	-4	0	0	11	2	-0	27	0
Longit	<2	2	0	<5	57	114	150	-45	230	189	144	85	50	35	<5	<5
Cleannes Status																
Status			1				-					1				
						80 O		V								
			a - 78	3 ⁶ 3				J,VB,Plugs								<i>з,</i> ∨В
	A30	B30	C30	Q30	A31	B31	C31	Q31	A32	B32	C 32	(132	A33	B33	C33	Q33
		2					-			-				6	a i	
vostat	<2	<2	<2	<2	2	2	<2	188	0	<2	2	- 5	-27	0	10	<2
A Longit.	<5	<5	<5	<5	19	11	148	<5	140	105	62	18	<5	<5	<5	<2
	-		-	Alexandra and	00000	a course of	and the second		in the second			-		100		
Cleannes Status																

SSS type Zone with magnets removed Cold mass displacement

Primary Electrical Fault
 Electrical interruptions
 Dipole in short circuit

(* Note: damages on Beam pipes Vacuum (PIMs, BS bellows, and CBT/BS pollution) also OUTSIDE zone Q19-Q33 (up to Q7.R3 and Q7.L4))

26

Sector 3-4: extent of work

Magnets for 3-4:

IC work in 3-4:

	W bellows opening		PIMs		M sleeves	13kA BB pairs			N-lines	jumpers
	fully	partially	V1	V2	M1, M2, M3	M1	M2	M3	Tentoved	Z and
Within D-zone (Q19R3 to Q33R3 included)	57		55	57	57	57	57	57	13	7
Outside D-zone (replace all QQBI PIMs, cl	eaning soot an	d MLI)								
Towards Point 3	35		15	30	1	1	1	1	0	0
Towards Point 4	32		28	28	2	0.5	0	1	0	0
Outside D-zone (for DN200 work only)		53								
Outside D-zone (other work)	6		6	3	6	2		1.5		
Total opened	1	83	104	118	66	60.5	58	60.5	13	7
	8	6%	49%	56%	31%	29%	27%	29%	2.8%	25%
Total present	2	12	212	212	212	212	212	212	46	28

3-4 replacement magnets

sick magnet)

0

0

- Cold testing of 100% of reinstalled magnets (as in series production):
 - (re)introduced internal splice resistance measurements
 - Identified MB2420 with 30nΩ (inter-aperture splice), now repaired
 - Extensive thermal and quench cycling on MB2303 (50 nΩ), no degradation found

Improved uniformity of work (tooling, methods, quality control) between surface and tunnel activities

26 October, 2009

UPDATED

23/10/2009

BY

3-4 interconnection work

_					1						
	"IC half-cell"		SSS Q30		MB A31		MB B31		MB C31		
	IC name	logo	5	QOBI		QBBI.A		QBBI.B		OBOI	
1	Magnet ready for installation		W15						W15		
2	Magnet transported		W15						W15		
3	Survey positioning / check		W16	18/40				18/40	W16		
4	QC: start IC PP: Pushar Prazing	W	16	W16		W46		W16		W16	
6	OC: BB	W	17	W16		W16		W16		W17	
7	insulate BB	W	17	W16		W16		W16		W17	
8	US: ultrasonic welding spools	W	17	W16		W16		W16		W17	
9	insulate spools	W	19	W16		W16		W16		W19	
10	ELQA: PAQ						W17				
11	Insert N-Line		140				W18			18/40	
12	Cable N-Line	vv	18				W/19			VV18	novt holf coll
		о Г арии		000	<u>)</u>		•				next half cell
	first welding T	8 Febru	lary, Zu	005	1		-			W19	noxt null coll
	First coldoring	21 Eabr	CUDRV	$2 \cap ($	າດ)				all D-area
	inst soldering	Z4 FEDI	uary,	ZUU	J7)				next half cell
ΠE	First FLOA test	18 Mar	ch							W20	
-		10 ////	CII)			_	all D-area
ΠF	First leak test	8 April								W21	
		e April						W21	W21	W21	
	.ast magnet lo	wered	30 Apr	il,	2009 (W18)		W22	VVZ I	W22	
<u> </u>		47.1				1		W23		W23	
	ast IC closure.	s 1/ Jur	ne, 200	J Y	(WZ5).						

 \geq a complex chain of activities, 8 weeks from last magnet installation

QRL service modules: jumpers

- First diagnostic:
 - Q23, Q27 & Q31 bellows deformed from displacement
 - Q25 collapsed bellows from inner pressure
- Second diagnostic, more detailed:
 - Some internal bellows damaged
 - some 80K vacuum barriers collapsed due to external over pressure
 - Some soot in QRL piping
- In situ repair

Courtesy O. Pirotte

Collateral damage beam vacuum

Beam vacuum affected over entire 2.7 km length of the arc.

\approx 60% of the chambers \approx 20% of the chambers

Other shutdown activities

- 5-6: shutdown planned for warmup in Octo
 - 3 connection cryostats (lyra insulation)
 - He level guards in arc SSS
- 1-2: warmup to remove MB2334 (B16R1) 1
- 6-7: warmup to remove MB2303 (B32R6) 50
- 4-5: warmup to compare 80K and 300K 13k measurements
- Stand Alone helium level gauges (3 week v cold sectors with partial warmup)
- IR and 5L: triplets copper braid
- Connection cryostats (additional busbar insulation)
- RF ball test after warmup (no damage in 4-5!)
- 13kA splices consolidation
- and more ...

26 October, 2009

probably as much as we could handle ... (supervision, quality)

- Repairs Shutdown 2008-2009
- □ 13kA splices
- Consolidations Shutdown 2008-2009

13 kA splices: copper continuity

- In February 2009 (Chamonix meeting) an unprotected scenario for splice failure (in resistive state, i.e. quench conditions only) was discussed
- This important splice failure mechanism involves the simultaneous presence within the same cross-section of "lack of copper stabiliser continuity" and "naked SC cable" (i.e. non-stabilised)
- Previous experience (with X-rays, Cobalt or Iridium gamma sources, direction of exposure) had been unsuccessful (insufficient contrast): with Selenium it was finally possible to "see" inside splices
- A campaign of gamma-radiography showed that the "naked SC cable" situation was common: i.e. evidence of weakness in design
- Techniques (invasive and noninvasive) were developed to measure the copper continuity

Invasive methods

- "Invasive" means we need access to the splice,
 i.e. opening the interconnect W bellows,
 removing thermal screens and MLI, cutting the
 M sleeve and removing the electrical insulation
 - R16 measurements: use micro-Ohmmeter ("Megger", "Biddle")
 - Gamma-ray radiography (Se source)
 - Ultrasound
 - "local" measurements, most precise, giving physical insight into defects
- Possible future: X-ray tomography (noninvasive, usable at cold!)
 Int pr finders defect

Non invasive copper resistance measurement

- Simplified schematics for two adjacent dipoles
- Done on MB and MQ, at DC method (±1A) to measure bus segment resistance • 300K and/or 80K from external voltage taps
- Allows a "global" measurement

13kA splice interconnections 2009

	LHC2008 OLD	LHC2009 NEW
Qualifications	Equipment and operators	Re-qualified equipment and operators
Before soldering	Procedure for cable preparation	Added specific procedure for eventual desoldering Dimensional control of cables
Preparation of splice	Used standard pieces	Ad-hoc machining (length and transverse) Copper shims to fill gaps Additional Cu-Ag foil Kapton tape to minimise loss of molten Cu-Ag Records with photos
Heating	Inductive Record temperature and pressure of process	Inductive, higher temperature Added 2 nd independent temperature recording
Production samples and audits	done	Done, more frequently
Quality control after soldering	Ultrasonics x4 sections Visual	Ultrasonics x6 sections and ends Visual, dimensional measurements Records with photos Measure R16 Gamma-radiography

13kA splice interconnections OLD vs NEW

To be improved for the next long shutdown

- How to reinject solder in busbar ends (e.g. after desoldering)
- How to avoid tin loss during soldering (specifically at busbar ends)
- Mechanical clamping if possible

Dipole extremities in SMA18 (March 2009)

MB3118 M2 from the tunnel

Outline

Repairs Shutdown 2008-2009

□ 13kA splices

Consolidations Shutdown 2008-2009

- Pressure relief nozzles ("DN200")
- Ground anchoring SSS
- nQPS

DN200 warm sectors: new scheme

- Keep existing 2 DN90 relief devices
- Mount relief springs on 4 DN100 blank flanges
- Add 12 DN200 new relief devices (1 per dipole)

 \rightarrow Cross section increase: x 33

DN200 implementation protection

No. 1 Risk:

Fire of MLI during machining

IMPORTANT:

"Partial" opening of W bellows (bolts and O-rings)

¥

"full" opening

(cut welds of thermal screens, remove thermal screens and MLI, cut sleeves, remove insulation ...)

...and more risks

- Francesco Bertinelli

DN200 machining and welding

DN200 grinding of the sealing surface

DN200 consolidation

	SMA18	Sector 1-2	Sector 3-4	Sector 4-5	Sector 5-6	Sector 6-7	TOTAL
DN200	35	168	169	60	168	168	733
Magnets	30	156	156	47	156	156	701

DN200 consolidation costs

DN200 special cases

- DS and mid-arc cells (x2 DN200)
- DFBs, DSLC, <u>Stand Alone Magnets</u>, <u>Inner Triplets</u>
- Interim measures in cold sectors (until next long shutdown)
- Personnel safety:
 - staging of opening to lower risks associated to multiple helium jams (remove 1 spring)
 - helium deflectors
 - paint on the floor

A stronger, safer LHC in 2009

	LHC2008	LHC2009
Pressure relief nozzles Arc	x1 DN100 every 2 nd SSS	added x1 (x2 in places) DN200 every MB
<u>S</u> tand <u>A</u> lone <u>M</u> agnets	none	x1 DN160 and x1 DN200 on neighbouring DFBM
Triplets & DFBX	x3 DN63	added x3 DN200
DFBA	x2 DN100 on HCM & LCM	x4 DN230 on HCM, x1 DN200 on LCM
Floor anchoring Arc	none	each SSS with vacuum barrier
<u>S</u> tand <u>A</u> lone <u>M</u> agnets	none	added to semi-SAM (e.g. Q4, D2)
Triplets & DFBX	Bumpers on Q1 and Q3	strengthened bumpers on Q1
DFBA	Bumpers on HCM	strengthened anchors on HCM (7-8, 8-1, 2-3)
Quench Protection System magnets	Individual, 100mV	unchanged
busbars and IC splices	Global, 1V	Magnet segments, 0.3mV
symmetric quenches	none	Individual, 200mV
<u>Uninterrupted</u> Power Supply		Doubled lines redundancy for nQPS
Radiation protection		Improved shielding of tunnel electronics against <u>S</u> ingle <u>E</u> vent <u>U</u> psets
Cryogenics		Additional LHe storage on site
Tunnel ventilation		Improved sectorisation for safety
HWC Powering procedures		Phases I and II, tighter access conditions, use nQPS to measure splice resistances

Thank-you for your attention

Supporting slides

Sector 3-4 => some pics

Magnet transport logistics: no accidents !!!

3-4 Lowering of last magnet

Dipole MB2334 from Sector 1-2 (B16R1)

- 100 nΩ joint, internal to the dipole
 First identified by calorimetry at 1.9K, then by QPS snapshots (and visible also in original SM18 data)
- Decision to warm-up the whole sector 1-2 (December 2008)
- MB2334 returned to surface and opened
- Localised in internal inter-pole splice
- Gamma-ray radiography
- Lack of solder on joint, not properly brazed: first clear evidence of possible poor workmanship
- Also warmed-up Sector 6-7 (February 2009) to replace MB2303 (B32R6) with 50 n Ω joint (inter-pole)

Splice detection limits

circuit	S	plice type	splices per magnet	number of units	total splices				
RB		inter pole	2	1232	2464				
RB	in	Detection limit of splice resistance for MB and MQ (nano-Ohm) Red: thermal measurements, QPS							
RB			Interconnec	t splice	Magn	et splice			
RB	ii	Sector	MB	MQ	MB	MQ			
		A12	30 60		10	60			
RB	ir	A23	60	60	60	60			
PO		A34	60	60	60	60			
ĸų		A45	60	60	60	60			
RQ	iı	A56	30	30	5	5			
		A67	30	30	15	5			
RQ	ir	A78	30	30	10	5			
total		A81	30	30	10	5			
lotai									
		N. Catalan Lash	eras, Z. Charifoulline, M. Koratz	inos, A. Rijllart, A. Siemko, J. Strai	t, L. Tavian, R. Wolf				
		Electrical and c	alorimetric measurements and	related software					

Splices and stabiliser measurements

Sector	Status	Spli	ces	Stabi	lizers	Stabi	Stabilizers		
	on	Calori	metric	Biddl	Biddle R16		Biddle		
	June 5	Ohi	nic						
	2009	1.9K	7kA	Wa	rm	80K			
		Dipoles	Quads	Dipoles	Quads	Dipoles	Quads		
12	warm	Done	Done	Done	Done	No need	No need		
23	2K								
34	warm			Done	Done	No need	No need		
45	80K					Analysis	Problems		
56	warm	Done	Done	Done	Done	No need	No need		
67	warm	Done	Done	Done	Done	No need	No need		
78	40K	Done	Done						
81	40K	Done	Done						

Calorimetry analysis

- Logged cryogenic data revealed a temperature anomaly of some 40 mK in the cell of the incident during a previous (lower current) powering cycle.
- □ Data from other powering tests indicated the presence of another anomaly in sector 12. Calorimetry suggested a $\sim 100 \text{ n}\Omega \text{ resistance}$.

9.3 kA test on Sector 12

sensitivity ~40n Ω

"Snapshots" analysis: inner magnet splices

Plus data "mining" of cold test data in SM18 (PH collaboration), limit ~30nΩ

Cryostats protection and anchoring

The new Quench Protection System

20 OCtober, 2009

First results from SC-BB splice measurements

