Requirements from the LHC Experiments

- 1) "The nominal stuff"
 - the detectors and their aims
 - their location in the LHC
 - direct impact on the machine
- 2) "The immediate future"
 - The grand plan for 2009-2010
 - The experiment desiderata and our targets

1

The nominal stuff

The LHC Experiments

- "general purpose detector"
- roman pots + ZDC
- fwd detector
- - H expt, but also pp
 - 200
- - "general purpose detector"
 - ZOC

 - fwd det., roman pots
- - B physics
 - displaced IP, movable vertex detector

crossing

Vertical

Horizontal crossing

- □ "Frontier" physics at high energies and high lumi, direct search of new particles (Higgs, SUSY, ...), high p_T , high missing E_T
 - L~ 1e34 cm⁻²s⁻¹, "pile-up" μ ~26, bunch spacing 25 ns
- But also fwd physics (Roman Pots , 2011) and HI physics

LHCf

The LHCf detector at the CERN Large Hadron Collider The LHCf Collaboration, O Adriani *et al* 2008 JINST 3 S08006 <u>link</u>

IP1

- neutral particles in very fwd direction, calibration of cosmicray shower models
- □ run time O(hours)

- Located in TAN of IR1
- Movable vertically

- □ interference with BRAN and ATLAS ZDC
- □ Must go out after ~1 kGy (2 pb⁻¹ @3.5TeV/beam)

The ALICE experiment at the CERN LHC The ALICE Collaboration, K Aamodt *et al* 2008 JINST 3 S08002 link

- and QGP, extreme temperatures & energy densities
- □ Mostly HI: (~1 month per nominal year)
 - $L\sim 1e27 \text{ cm}^{-2}\text{s}^{-1}$, 100 ns bunch spacing > 100 ns , 7 TeV/beam (5.5 TeV NN)
- □ But also pp (reference data)
 - L~ 1e29-1e30 cm⁻²s⁻¹ , $\mu < \sim 0.15$, bunch spacing > 100 ns

ALICE

CMS The CMS Collaboration, S Chatrchyan *et al* 2008 JINST 3 S08004 Link P55 Very-forward Charineter Very-forward Commentation

- □ "Frontier" physics at high energies and high lumi, direct search of new particles (Higgs, SUSY, ...), high p_T , high missing E_T
 - L~ 1e34 cm⁻²s⁻¹ , μ ~26 , bunch spacing 25 ns
- But also fwd physics with TOTEM and HI physics

The TOTEM Experiment at the CERN Large Hadron Collider The TOTEM Collaboration, G Anelli *et al* 2008 JINST 3 S08007 <u>link</u>

symmetric

 elastic and diffractive physics, optical theorem, total cross section

high β^* (90 m, then

1.5 km): dedicated! ²²
 Focus: low-t elastic, σ_{tot}, minbias, soft diffraction

2V pots + 1H pot per station 2 RP1 stations + 2 RP2 stations per side Move to 10 sigma from beams

- L~ 1e29-1e30 cm⁻²s⁻¹ , fill scheme 156x156, α = 0, run time O(days)
- □ low β^* (0.5 11 m => CMS):
 - Focus: large-t elastic, hard diffraction

LHCb The LHCb Collaboration, A Augusto Alves Jr *et al* 2008 JINST 3 S08005 <u>link</u>

- L~ 2e32 cm⁻²s⁻¹, μ ~1, bunch spacing 25 ns
- IP displaced by 11.25 m , breaks "8-fold" symmetry
- No HI programme

LHC MAC

Typical Insertion Region (Region Around Experiment)

No TAS

presence of dipole magnet + compensators MBXW...

The immediate future

"New" 2009-2010 run strategy (Aug 09)

- "The LHC will run at 3.5 TeV per beam until a significant data sample has been collected and the operations team has gained experience in running the machine. Thereafter, with the benefit of that experience, we'll take the energy up towards 5 TeV per beam. At the end of 2010, we'll run the LHC with lead-ions "
- Main effect of energy reduction on luminosity reach: larger beams, but higher expected intensity limit
- Some expts expressed interest in taking a minimum amount of data at 3.5 TeV (~10-100/pb)
 - Transition from 3.5 TeV and 5 TeV to be rediscussed later on (early 2010?), based on experience

- □ ... are ready to take data!
- □ Very keen to see first collisions
- □ With >100 pb⁻¹ good data at E≥3.5 TeV/beam \Rightarrow LHC experiments can start competing at the physics frontier
 - new limits set on hypothetical particles, or even discoveries possible!
 - Higgs masses around 160 GeV, B-physics, top physics...
- □ With 1 fb⁻¹ g.d. at 5 TeV/beam \Rightarrow find Higgs if around 160 GeV mass
- □ Of course, the higher the energy, the faster it should go

What peak luminosity do we need ?

in order to well exceed 100 pb⁻¹ integrated luminosity

and assuming:

- run length = 10 months
- overall effficiency ~0.1
 (including lumi decay)

- luminosity of at least ~ 10^{32} s⁻¹ cm⁻²

$$L = \frac{f k_b N^2}{4\pi (\varepsilon_n / \gamma) \beta^*}$$

f = revolution frequency = 11245 Hz k_b = number of colliding bunch pairs N = bunch population ε_n = normalised transverse emittance γ = Lorentz factor β^* = optics function at IP negligible geometric factor for 2009-2010

A few initial fill patterns

□ 43x43

- $-\Delta T = 2us$
- α =0 possible
- IP8 max 21 collisions

□ 156x156

- $\Delta T = 0.5$ us
- α =0 possible
- IP8 max 72 collisions

displaced	0	4 (asym)	4 (sym)	11 (sym)	19 (sym)
IP1	43	39	43	43	43
IP2	42	38	34	21	4
IP5	43	39	43	43	43
IP8	0	4	4	11	19

Table 3: Number of collisions for 43 bunches in the four collision points.

	no bunches displaced	option 1	option 2
collisions in IP1 collisions in IP2 collisions in IP5 collisions in IP8	$156 \\ 152 \\ 156 \\ 0$	$156 \\ 76 \\ 156 \\ 36$	$156 \\ 16 \\ 156 \\ 68$

Table 4: Number of collisions for 156 bunches in the four collision points.

□ 50ns

- $-\Delta T = 50$ ns
- α =0 not possible

	a	b	с	d	e
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	2
IP5	1404	1404	1404	1404	1333
DELPHI	1368	684	0	72	2
IP8	0	655	1311	1242	1173

Table 5: Number of collisions with 50 ns spacing in the four collision points.

Input from the LHC expts...

... on lumi strategy

- □ **ATLAS and CMS**: highest possible lumi, even if average number of inelastic interactions of $\mu = 7$ (which we very probably never exceed in 2010)
- □ **ALICE**: two different running modes with typically very low lumi (2 to 10e28 and 1 to 5e30) and low pile-up per crossing ($\mu \sim 0.1$ or smaller), for example
 - in equidistant schemes: L = 2...10e28 , $\mu < 0.15$
 - $k_b=1-4$, N~5e10, $\beta^*=10m$ (largest possible bunch spacing)
 - in 50ns trains: L = 1...5e29 $\ ,\ \mu < 0.05$
 - $k_b=24$, N~1.5e10, $\beta^*=3m$, bunch spacing 150ns
- □ **LHCb**: "medium lumi" ~ few e32 => as much as ATLAS and CMS for this run, but keep pile-up at reasonable level (nominally μ ~ 1, but may try working with higher pile-up)
 - large benefit from going to 50ns trains asap
- **TOTEM and LHCf**: special short runs (typ. of order few days/hours)

Optimal number of bunches for peak lumi at 3.5 TeV

□ I_{max} = 6e13 ... 15e13 protons/beam □ N_{max} = 5e10 ... 10e10 protons/bunch

K_{opt} = I_{max} / N_{max}
 = ~ 3000 ... 600 bunches > 156
 => crossing angle should pay off quickly !!

Baseline for crossing angle: Truncated 50 ns

- Allows nicely sharing number of colliding pairs between all Expts
 - Add special ALICE bunches (150ns ?)
 - Tailored lumi w/o defocusing & separation ?
- □ Start with one 36-bunch train per quadrant
- All bunches see immediately the maximum number of long-range collisions
- Then add more trains to increase intensity without

increasing beam-beam effects

Grand plan

Up to date schedule till end of 2009

- □ complete HW cmg to 2 kA (1.1 TeV) by ~16 Nov and make beams
- 450 GeV collisions, study ramp (E<1.1 TeV), possibly collisions at 1.1 TeV/beam

	Technical Stop
	Beam commissioning
8	SPS et al physics

□ 2010: complete HW cmg to 6 kA and move on to 3.5 TeV

Filling schemes

□ "Standard Filling Schemes for Various LHC Operation Modes"

nominal

http://cdsweb.cern.ch/record/691782

- equidistant 43x43, 156x156
- 75 ns , 25 ns
- ions: equidistant 62x62, 100 ns
- "LHC bunch filling schemes for commissioning and initial luminosity optimization"

http://cdsweb.cern.ch/record/1114612

- revisited 43x43 and 156x156
- 50 ns

new sharing of collisions between IP2/IP8

- IP2: no defocusing/displacement required while keeping luminosity and pile-up acceptable
- IP8: more collisions
- Options and preferences for proton running

http://cdsweb.cern.ch/record/1172832?In=en

truncated 50ns

increase intensity while keeping long-range beam-beam effects unchanged

thank you

Experimental magnets (see also https://cern.ch/lpc)

- "The Effects of Solenoids and Dipole Magnets of LHC Experiments" <u>http://cdsweb.cern.ch/record/974594?ln=en</u>
- "How do we have to operate the LHCb spectrometer magnet?" <u>http://cdsweb.cern.ch/record/1159131?ln=en</u>