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CHAPTER

ONE

INTRODUCTION

1.1 Scope of this manual

The User’s Guide for Toolkit Developers provides detailed information about the design of Geant4 classes as well as
the information required to extend the current functionality of the Geant4 toolkit. This manual is designed to:

• provide a repository of information for those who want to understand or refer to the detailed design of the toolkit,
and

• provide details and procedures for extending the functionality of the toolkit so that experienced users may
contribute code which is consistent with the overall design of Geant4.

This manual is intended for developers and experienced users of Geant4. It is assumed that the reader is already
familiar with functionality of the Geant4 toolkit as explained in the “User’s Guide For Application Developers”, and
also has a working knowledge of programming using C++. A knowledge of object-oriented analysis and design will
also be useful in understanding this manual. It is also useful to consult the ‘‘Software Reference Manual” which
provides a list of Geant4 classes and their major methods.

Detailed discussions of the physics included in Geant4 are provided in the ‘‘Physics Reference Manual’‘.

1.2 How to use this manual

Part I: to understand the goal of the software design of Geant4, it is useful to begin by reading the User Requirements
Document referred to in the next section.

Part II: ‘‘Design and Function of the Geant4 Categories” provides detailed information about the design of each class
category and the classes in it. Before considering an extension of one of the toolkit categories, a detailed understanding
of that category is required.

Part III: ‘‘Extending Toolkit Functionality” explains in some detail how to extend the functionality of Geant4. Most
of the class categories are covered and some, which are especially useful to most users, are covered in greater detail.

It is not necessary to understand the entire manual before adding a new functionality. To add a new physics process,
for example, only the following items must be read and understood:

• the design principle described in the ‘‘Physics processes” chapter of Part II
• techniques explained in the ‘‘Physics processes” chapter of Part III.

1.3 User Requirements Document

At the beginning of Geant4 development, a set of user requirements was collected in order to inform the object-
oriented analysis and design of the toolkit. The User Requirements Document follows the PSS-05 software engineering

1
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standards and is available at

http://cern.ch/geant4/OOAandD/URD.pdf .

This document provides a general description of the main capabilities and constraints of the toolkit. It also defines
three types of users characterized by their level of interaction with the system. Specific requirements are also listed
and classified.

2 Chapter 1. Introduction

http://cern.ch/geant4/OOAandD/URD.pdf


CHAPTER

TWO

DESIGN AND FUNCTION OF GEANT4 CATEGORIES

2.1 Introduction

Geant4 exploits advanced software engineering techniques based on the Booch/UML Object Oriented Methodology
and follows the evolution of the ESA Software Engineering Standards for the development process. The “spiral”,
or iterative, approach has been adopted. User requirements were collected in the initial phase and problem domain
decomposition, object-oriented methods, and CASE tools were used for analysis and design. This produced a clear
hierarchical structure of sub-domains linked by a uni-directional flow of dependencies. This led to a software product
which is modular and flexible (a toolkit) and in which the physics implementation is transparent and open to user
validation of physics predictions. It allows the user to understand, customize and extend the toolkit in all domains. At
the same time the modular architecture allows the user to load only needed components.

2.2 Run

2.2.1 Design Philosophy

The run category manages collections of events (runs). In a single run the events share the detector implementation,
physics conditions and primary generation.

The classes associated with the run category can be considered as the main and higher level application programming
interface (API) used in a Geant4 application. A simple applicaiton will use concrete classes provided with the toolkit,
the developer will provide the detector description a primary genertor (possibly using one of the general purpose ones
provided with the toolkit), define the physics for the application (the physics list, possibly one of the few provided
with the toolkit) and optional user actions to interact with the simulation itself.

In few cases it is however necessary to modify the default behavior of one or more classes in this category to allow for
a user-customization. As an example the class G4MTRunManager extends the basic run-manager class to take into
account event level parallelism via multi-threading.

During a run some states of the application are invariant and cannot be modified: the physics list (i.e. the list of
processes attached to each particle) and the detector layout (not that some geometry primitives allow for changing
parameters during the event run: parametrizations. However technically the class instances representing the detector
layout do not change during a run).

2.2.2 Class Design

The relevant classes for the run category are shown here. This show, in particular, the relation between classes
for the case of a multi-threaded application. For a sequential applicaiton the diagram is simplified since no
G4WorkerRunManager class exist and G4MTRunManager is replaced by G4RunManager:

3
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Fig. 2.1: Class diagram for main run category classes.

For a description of multi-threading functionality refer to Parallelism in Geant4: multi-threading capabilities chapter.

One of the main functions of the run category is to control the life-cycle of a Geant4 application, again with reference
to the case of a multi-threaded application the following schema describes it:

A list of the main classes for the category is provided:

• G4Run - This class represents a run. An object of this class is constructed and deleted by G4RunManager.
• G4RunManager - the run controller class. Users must register detector construction, physics list and primary

generator action classes to it. G4RunManager or a derived class must be a singleton. This class provides several
virtual methods that can be used to define user-specific behavior for a Geant4 application.

• G4RunManagerKernel - provides control of the Geant4 kernel. This class is constructed by G4RunManager.
This class does not provide virtual methods and user should not sub-class from it. The application
G4RunManager shold own an instance of a G4RunManagerKernel singleton.

• G4{MT,Worker}RunManager[Kernel] - specialized versions to provide a multi-threading enabled applica-
tion. Refer to chapter “Parallelism in Geant4: multi-threading capabilities” for additional information.

• G4VUserDetectorConstruction - pure virtual base class that represents the simulation setup.
• G4VUserParallelWorld - pure virtual base class of the user’s parallel world.
• G4VUserPhysicsList - pure virtual base class for a physcis list.
• G4VUserPrimaryGeneratorAction - pure virtual class used by user to define the primary generation.
• G4VModularPhysicsList - Pure virtual class to construct a physics list from G4VPhysicsConstructor. More

modern and modular approach preferred in current versions of pre-packaged physics lists.
• G4UserRunAction - user action class for run. Instantiate user-derived G4Run and provides user-hooks for

begin and end of run.
• G4UserWorkerInitialization and G4UserWorkerThreadInitialization - define here the concrete behavior for

threading model. Both classes provide several virtual methods that can be modified in derived classes.
• G4VUserActionInitialization - pure virtual class used by user to instantiate concrete instances of the user-

actions.
• G4WorkerThread - this class encapsulates thread-specific data.
• G4RNGHelper - helper class to register and use RNG seeds. Used by MT applicaitons to guarantee repro-

4 Chapter 2. Design and Function of Geant4 Categories
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Fig. 2.2: Life cycle of a Geant4 application and main run category classes.

2.2. Run 5
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ducibility.

2.3 Event

2.3.1 Design Philosophy

In high energy physics the primary unit of an experimental run is an event. The same concept is also known in other
fields as history. We retain the name from the HEP community. An event consists of a set of primary particles, and a
set of detector responses to these particles.

In Geant4, objects of the G4Event class are the primary units of a simulation run. Before the event is pro-
cessed, it contains primary vertices and primary particles produced by a generator (a concrete implementation of a
G4VPrimaryGenerator). After the event is processed, it may also contain hits, digitizations ,and optionally, trajec-
tories generated by the simulation and additional user information (a sub-class of G4VUserEventInformation). The
event category manages events and provides an abstract interface to the external generators.

G4Event and its content vertices and particles are independent of other classes. This isolation allows Geant4-based
simulation programs to be independent of specific choices for physics generators and of specific solutions for storing
the “Monte Carlo truth:. G4Event avoids keeping any transient information which is not meaningful after event
processing is complete. Thus the user can store objects of this class for processing further down the program chain. For
performance reasons, G4Event and its content classes are not persistent. Instead the user must provide the transient-
to-persistent conversion.

The current event being simulated is managed by G4EventManager, a singleton responsible of handling the simulation
of the event. The tracks being followed for the current event are stored in a stack managed by G4StackManager.
Different stacks allow for fine control of the simulation (urgent, waiting and postponed stacks).

User hooks allow for a customization of the simulation behavior via G4UserEventAction, G4UserStackingAction and
G4VUserEventInformation.

Event generation is performed via a concrete implementation of a G4VPrimaryGenerator class. This is usually in-
stantiated by the user in the user-defined concrete implementation of G4VUserPrimaryGeneratorAction (belonging to
the run category). Geant4 provides three concrete implementation of G4VPrimaryGenerator: G4ParticleGun, a sim-
ple generator that can shoot one or more primaries; G4HEPEvtInterface, specifically desinged for HEP experiments
to read /HEPEVT/ common block format; and the G4GeneralParticleSource able to generate primaries distributed
according to complex and configurable distributions. This last possibility is described in detail in the Application
Developers Guide.

2.3.2 Class Design

• G4Event - this class represents an event. It is constructed and deleted by G4RunManager or its derived class.
• G4EventManager - this class controls an event. It must be a singleton and should be constructed by

G4RunManager.
• G4TrajectoryContainer - this class can contain the concret G4VTrajectory objects defined by user or used to

display the current event.
• G4UserEventAction - the abstract base class to allow for a user to inject code at the beginning and end of an

event.
• G4UserStackingAction - the abstract base class to allow for the user to control and tune the stacking of particles.

See documentation in class and Geant4 examples.
• G4StackManager - controls the stacks of tracks belonging to the event currently being processed. The three

stacks are: urgent, waiting and postponed. The first is of type G4SmatrTrackStack while the other two are of
the simples G4TrackStack type.

6 Chapter 2. Design and Function of Geant4 Categories
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• G4VPrimaryGenerator - the abstract base class of all of primary generators. This class has only one pure vir-
tual method, GeneratePrimaryVertex(), which takes a G4Event object, generates a primary vertex and associates
primary particles with the vertex.

UML class diagrams for classes related to the event and event generator classes are shown in the figure.

Fig. 2.3: Event Category UML Diagram. Classes in grey are to be sub-classed by user.

2.4 Tracking

In Geant4 the term ‘tracking’ means propagating a particle through a geometrical structure. There are two class
categories closely related each other to describe the particle propagation:

• tracking category: manages the contribution of the physics processes to the evolution of a track’s state and
provides information in sensitive volumes for hits and digitization.

• track category: represents physical information of a particle to be propagated.

2.4.1 Design Philosophy

The tracking in Geant4 is based on stepwise propagation of the particle through a given geometry. The overall perfor-
mance of the Geant4 simulation depends critically on the CPU time spent to move the particle by one step. Therefore
the most important consideration in the object design of the tracking and track categories is maintaining high execution
speed of stepwise propagation of the particle while utilizing the power of the object-oriented approach.

During the design stage of tracking two possible approaches were investigated: ‘single-class’ versus ‘structured-
classes’. The ‘single-class’ approach is based on a class design of mimicking a particle in the real world. This
approach looks object-oriented because a particle in the real world propagates by itself while interacting with the
material surrounding it. The design would be to integrate all functionalities required for the propagation of a particle
into a single class, for example the ‘particle class’. Combining all the necessary functionalities into this single class
exposes all the data attributes to a large number of methods in the class. This is against the strategy of ‘data hiding’,
which is one of the most important ingredients in the object-oriented approach.

2.4. Tracking 7
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The simulation of a particle passing through matter is a complex task involving particles, detector geometry, physics
interactions and hits in the detector. In the ‘structured-classes’ approach the class design is based on the idea of man-
aging the complexity of the tracking task by separating it into structured multiple classes. Object-oriented techniques,
such as inheritance and aggregation, play the essential roles in this design. In this approach it is also possible to cate-
gorize the classes into multiple categories. This approach enables each class category to be designed independently to
others.

The ‘structured-classes’ approach was employed for the tracking design because it provides more flexibility in the
designing and implementing stages.

In order to maintain high-performance tracking, use of the inheritance (‘is-a’ relation) hierarchy in the tracking and
categories was avoided as much as possible. For example, track and particle classes might have been designed
so that a track ‘is a’ particle. In this scheme, however, whenever a track object is used, time is spent copying
the data from the particle object into the track object. Adopting the aggregation (‘has-a’ relation) hierarchy
requires only pointers to be copied, thus providing a performance advantage.

2.4.2 Class Design

Track Category

The class diagram shown in the figure describes the static structure of classes in the ‘track’ category and their relation
to closely coupled classes. The design is characterized by the hierarchic structure of three major classes, i.e. G4Track,
G4Step and G4StepPoint. Main features of these classes are explained below.

• G4Track represents a particle which is pushed by G4SteppingManager. It holds information required for
stepping a particle, for example, the current position, the time since the start of stepping, the identification of
the geometrical volume which contains the particle, etc.
Dynamic information, such as particle momentum and energy, is held in the class through a pointer to the
G4DynamicParticle class. Static information, such as the particle mass and charge is stored in the
G4DynamicParticle class through the pointer to the G4ParticleDefinition class. Here the ag-
gregation hierarchical design is extensively employed to maintain high tracking performance.
G4Track has information of the most recent step pushed by G4SteppingManager as a G4Step object.
For G4Step see the explanation below.

• G4Step keeps information of a step pushed by G4SteppingManager. It holds information, for example, the
step length and the deposited energy during a step. Information related to the begin/end points of a step are kept
in the aggregated objects of G4StepPoint, which is described below.

• G4StepPoint keeps information of either the beginning or the end points of a step. This includes the geometry
position, the volume to which the step point belongs, the global time when a step point is created, the physics
process which occurred at a step point, etc.
Two objects of G4StepPoint (PreStepPoint and PostStepPoint) are aggregated by a step.

Tracking Category

As mentioned already the tracking in Geant4 is based on stepwise propagation of the particle. The propagation is
steered by two major classes in the ‘tracking’ category - G4TrackingManager and G4SteppingManager.
G4TrackingManager propagates a particle from its start point to end. G4SteppingManager steers a single
step in the particle propagation.

The class diagram shown in the figure describes the static structure of classes in the tracking category and their
relation to closely coupled classes. The design is characterized by the hierarchic structure of two major classes,
i.e. G4TrackingManager and G4SteppingManager. Main features of these classes and their closely related ones are
explained below.

• G4TrackingManager is responsible for processing one track passed from the event manager
G4EventManager. G4EventManager belongs to the event class category and is the hierarchically
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Fig. 2.4: Tracking design.

upper manager class to G4TrackingManager - see the previous section ‘Event’ for details. Receiving one
track G4TrackingManager propagates it step-by-step. Steering each step is delegated to the stepping man-
ager G4SteppingManager, which is the the hierarchically lower manager class to G4TrackingManager.
G4TrackingManager aggregates the pointers to closely related classes:

– G4SteppingManager (composite aggregation)
– G4Trajectory (composite aggregation)
– G4UserTrackingAction (composite aggregation)
– G4Track (shared aggregation)

• G4SteppingManager plays an essential role in transporting a particle. Its public method Stepping() steers
propagation of the particle by one step. In this method messages are passed to objects in the categories which
are related to particle propagation, such as geometry and physics processes. In designing the message passing
scheme between G4SteppingManager and physics processes, the key feature is the abstraction of physics
processes utilizing the inheritance hierarchy. The hierarchical design of the physics interactions enables the
stepping manager to handle them as abstract objects. Hence, the manager need not interact directly with concrete
physics process objects such as bremsstrahlung, pair creation, etc. The actual invocations of various interactions
during the stepping are done through a dynamic binding mechanism. This mechanism shields the tracking
category from any change in the design of the physics process classes, including the addition or subtraction of
new processes.
G4SteppingManager aggregates pointers to to closely related classes:

– G4Navigator (geometry category)
– G4Track under the current tracking (track category)
– G4TrackVector for the list of secondaries created during the current tracking (track category)
– G4UserSteppingAction
– G4ProcessManager (physics processes category)
– G4ParticleChange (physics processes caregory)

• G4TrajectoryPoint holds information of the particle after propagating one step. Among other things, it includes
information on space-time, energy-momentum and geometrical volumes.

• G4Trajectory aggregates all G4TrajectoryPoint objects which belong to the particle being propagated.
G4TrackingManager takes care of adding the G4TrajectoryPoint to a G4Trajectory object if
the user requested it (see Geant4 User’s Guide - For Application Developers). The life of a G4Trajectory
object spans an event, contrary to G4Track objects, which are deleted from memory after being processed.
G4RichTrajectory and G4SmoothTrajectory are derived classes from G4Trajectory. These
classes are used for elaborate drawing of a trajectory on a graphic device.

• G4UserTrackingAction is a base class from which user actions at the beginning or end of tracking may be
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derived.
• G4UserSteppingAction is a base class from which user actions at the beginning or end of each step may be

derived.

2.4.3 Tracking Algorithm

The key classes for tracking in Geant4 are G4TrackingManager and G4SteppingManager. The singleton ob-
ject ‘TrackingManager’ created from the class G4TrackingManager keeps all information related to a particular
track, and it also manages all actions necessary to complete the tracking. The tracking proceeds by pushing a particle
by a step, the length of which is defined by one of the active physics processes. The ‘TrackingManager’ object dele-
gates the management of each step to the object ‘SteppingManager’ created from the class G4SteppingManager .
This object keeps all information related to a single step.

The public method ProcessOneTrack() in G4TrackingManager is the key of managing the tracking, while
the public method Stepping() in G4StepppingManager is the key of managing one step. The basic algorithms
used in these methods are described below.

ProcessOneTrack() in G4TrackingManager:

1. Clear the secondary particle vector before startng to track the particle.
2. Invoke pre-tracking user intervention process.
3. Construct a trajectory if it is requested.
4. Give SteppingManager the pointer to the track which will be tracked.
5. Inform ‘beginning of tracking’ to all the active physics processes.
6. Track the particle step-by-step while it is alive:

• Call the method ‘Stepping’ of G4SteppingManager.
• Append a trajectory point to the trajectory object if it is requested.

7. Invoke post-tracking user intervention process.
8. Delete the trajectory if it was created.

Stepping() in G4SteppingManager:

1. Initialize current step.
2. If the given particle has ‘zero’ kinetic energy, get the minimum life time from all the at rest processes and invoke

InvokeAtRestDoItProcs of the selected AtRest processes.
3. If particle has ‘non-zero’ kinetic energy:

• Invoke the method ‘DefinePhysicalStepLength’, that finds the minimum step length demanded by the
active processes.

• Invoke the method ‘InvokeAlongStepDoItProcs’.
• Update current track properties by taking into account all changes by ‘AlongStepDoIt’ methods of the

processes .
• Update the value ‘safety’.
• Invoke Invoke the method ‘PostStepDoItPrcs’ of the active discrete process.
• Update the track length.
• Send G4Step information to Hit/Dig if the volume is sensitive.
• Invoke the user intervention process.
• Return the value of the StepStatus.

2.4.4 Interaction with Physics Processes

The interaction of the tracking category with the physics processes is done in two stages by G4SteppingManager.
The first stage is to find minimum step length demanded by active discrete and continues physics processes. Also to
find the processes which will be invoked in the step. The second stage is to execute the selected processes by calling
their DoIt methods. More details of the interaction are explained below.
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The first stage of the interaction with the physics processes is to execute the private method
DefinePhysicalStepLength() of G4SteppingManager. The general flow in this method is as fol-
lows:

• Obtain ‘maximum allowed step’ in the volume define by the user through G4UserLimits.
• The PostStepGetPhysicalInteractionLength methods of all active processes are called. Each process returns a

step length and the process which proposed the minimum value is identified - sometimes this race of selection
is called the GPIL (Get Physical Interaction Length) selection. The method also returns the G4ForceCondition
flag which indicate if the process is forced for execution or not:

– Forced : Corresponding PostStepDoIt is forced.
– NotForced : Corresponding PostStepDoIt is not forced unless this process limits the step.
– Conditionally : Only when AlongStepDoIt limits the step, corresponding PoststepDoIt is invoked.
– ExclusivelyForced : Corresponding PostStepDoIt is exclusively forced.

• Then the AlongStepGetPhysicalInteractionLength methods of all active processes are called. Each process
returns a step length and the process which proposed the minimum value is identified. This method also returns
a fGPILSelection flag, to indicate if the process can join the race of selection:

– CandidateForSelection: this process can be the winner. If its step length is the smallest, it will be the
process defining the step

– NotCandidateForSelection: this process cannot be the winner. Even if its step length is taken as the
smallest, it will not be the process defining the step

The second stage of the interaction mentioned above is divided in three actions.

The first action is to invoke the AlongStepDoIt method of all processes by calling the private method
InvokeAlongStepDoIts() of G4SteppingManager. The general flow in this method is as follows:

• If the current step is defined by a process which returned ‘ExclusivelyForced’, no AlongStepDoIt method will
be invoked.

• Else, all the active continuous processes will be invoked, and they return the ParticleChange. Then the following
actions are taken:

– Update the G4Step information by using final state information of the track given by a physics process.
This is done through the UpdateStepForAlongStep method of the ParticleChange.

– Apply the production cut to all created secondries by invoking the private method ApplyProductionCut()
of G4SteppingManager . Actions taken in this method are as follows:

* Check if the kinetic energy of a secondary is smaller than the production threshold of the particle
set in the material. If it is smaller, the kinetic energy is added to the total energy deposit of the
parent track. Then the energy of the particle is assigned ‘zero’. This check is only done if the flag
ApplyCutFlag is set for the particle (by default it is set to ‘false’ for all particles - user may change it
in its G4VUserPhysicsList). If the track has the flag IsGoodForTracking ‘true’, this check will have
no effect (used mainly to track particles below threshold).

* The parentID and the process pointer which created this track are set.
* The secondary particle is added to the list of secondaries. If the particle has ‘zero’ kinetic energy, it is

added only if it has a rest process to be invoked at the beginning of its tracking.
– The track status is set according to what the process defined

The second action in the second stage is to invoke the method G4SteppingManager::InvokePostStepDoIts,
which is in charge of calling the PostStepDoIt methods of all processes.

• Invoke the PostStepDoIt methods of the specified discrete processes (the ones selected by the PostStepGetPhys-
icalInteractionLength, and they return the ParticleChange. The order of invocation of processes is inverse to the
order used for the GPIL selection. After the execution of all PostStepDoIt methods the following actions are
taken:

– Update PostStepPoint of the step according to ParticleChange.
– Update G4Track according to ParticleChange after each PostStepDoIt.
– Update safety after each invocation of PostStepDoIt.
– The secondaries from ParticleChange are stored to SecondaryList.
– Apply the production cut to all created secondaries by invoking the private method ApplyProductionCut()
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of G4SteppingManager . The details of this method is described in the previous paragraph of InvokeA-
longStepDoIts() .

– The track status is set according to what the process defined

The third action in the second stage is to invoke the method G4SteppingManager::InvokeAtRestDoIts.
This invocation is done only if the track passed from the event manager has the status ‘fStopAndALive’. If this the
case the two methods (InvokeAlongStepDoIts and InvokePostStepDoIts) mentioned above will not be
executed. In the method ‘InvokeAtRestDoIts’ the selection is executed to find the rest process which has the shortest
lifetime. After this selection, the corresponding rest process will be invoked:

• To select the process which has the shortest lifetime, the AtRestGPIL method of all active rest processes is called.
Each process returns an lifetime and the minimum one is chosen. This method return also the G4ForceCondition
flag, to indicate if the process is forced or not:

– Forced : Corresponding AtRestDoIt is forced.
– NotForced : Corresponding AtRestDoIt is not forced unless this process limits the step.

• Set the step length of current track and step to ‘zero’.
• Invoke the AtRestDoIt methods of rest processes selected in the above step. Each invocation returns the Parti-

cleChange. The order of invocation of processes is inverse to the one used for the GPIL methods.
Completing the previous step, the following actions are taken:

– Set the current process as a process which defined this step length.
– Update the G4Step information by using final state information of the track given by a physics process.

This is done through the UpdateStepForAtRest method of the ParticleChange.
– The secondaries from ParticleChange are stored to SecondaryList.
– Apply the production cut to all created secondaries by invoking the private method
ApplyProductionCut() of G4SteppingManager. The details of this method is described
in the previous paragraph of InvokeAlongStepDoIts().

– The track is updated and its status is set according to what the process defined

2.4.5 Ordering of Methods of Physics Processes

As shown in the figure, ‘G4Track’ has ‘G4ParticleDefinition’ through ‘G4DynamicParticle’. The class
‘G4ParticleDefinition’ aggregates an object of ‘G4ProcessManager’ which has information of ordering of physics
processes the particle undertakes. G4SteppingManager invokes the processes at each phase just following the
process ordering given by the ProcessManager.

For some processes the order is important. Geant4 provides by default the right ordering. It is always possible for
the user to choose the order of process invocations at the initial set up phase of Geant4. This default ordering is the
following:

1. Ordering of GetPhysicalInteractionLength
• In the loop of GetPhysicalInteractionLength of AlongStepDoIt, the transportation process has to be in-

voked at the end.
• In the loop of GetPhysicalInteractionLength of AlongStepDoIt, the multiple scattering process has to be

invoked just before the Transportation process.
2. Ordering of DoIts

• Most cases ordering does not matter, though there are some exceptions. For example, the Cerenkov process
needs the energy loss information of the current step for its DoIt invocation. Therefore, the EnergyLoss
process has to be invoked before the Cerenkov process. This ordering is provided by the process manager.
Energy loss information necessary for the Cerenkov process is passed using G4Step (or the static dE/dX
table is used together with the step length information in G4Step to obtain the energy loss information).
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2.5 Physics Processes

2.5.1 Design Philosophy

The processes category contains the implementations of particle transportation and physical interactions. All physics
process conform to the basic interface G4VProcess, but different approaches have been developed for the detailed
design of each sub-category.

For the decay sub-category, the decays of all long-lived, unstable particles are handled by a single process. This
process gets the step length from the mean life of the particle. The generation of decay products requires a knowledge
of the branching ratios and/or data distributions stored in the particle class.

The electromagnetic sub-category is divided further into the following packages:

• standard: handling basic properties for electron, positron, photon and hadron interactions,
• lowenergy: providing alternative models extended down to lower energies than the standard package,
• dna: providing DNA physics and chemistry simulation,
• highenergy: providing models for rare high energy processes,
• muons: handling muon interactions and energy loss propagator,
• adjoint: implementing reverse Monte Carlo approach,
• xrays: providing specific code for x-ray physics,
• optical: providing specific code for optical photons,
• utils: collecting utility classes used by the above packages.

It provides the features of openness and extensibilty resulting from the use of object-oriented technology; alternative
physics models, obeying the same process abstract interface, are often available for a given type of interaction.

For hadronic physics, an additional set of implementation frameworks was added to accommodate the large number
of possible modeling approaches. The top-level framework provides the basic interface to other Geant4 categories. It
satisfies the most general use-case for hadronic shower simulations, namely to provide inclusive cross sections and final
state generation. The frameworks are then refined for increasingly specific use-cases, building a hierarchy in which
each level implements the interface specified by the level above it. A given hadronic process may be implemented
at any one of these levels. For example, the process may be implemented by one of several models, and each of the
models may in turn be implemented by several sub-models at the lower framework levels.

The hadronic sub-category is divided into the following packages:

• management: providing the top level hadronic process classes;
• cross_sections: providing inelastic and elastic cross sections for hadron-nucleon, hadron-nucleus and

nucleus-nucleus interactions; it also contains inelastic cross sections for gamma- and lepto-nuclear interactions;
• models: providing hadronic final-state models; there is a further sub-level, corresponding to each model ( abla,

abrasion binary_cascade, cascade, coherent_elastic, de_excitation, em_dissociation, fission, im_r_matrix, in-
clxx, lend, lepto_nuclear, management, parton_string, pre_equilibrium, qmd, quasi_elastic, radioactive_decay,
rpg, theo_high_energy, util );

• processes: providing the in-flight hadronic physics processes: inelastic, elastic, capture and fission;
• stopping: providing the nuclear capture of hadrons and muon at rest;
• util: collecting utility classes used by the above packages.

2.5.2 Class Design

General

The object-oriented design of the generic physics process G4VProcess and its relation to the process manager is
shown in figure. The next figure shows how specific physics processes are related to G4VProcess.
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Fig. 2.5: Management of Physics Processes

Fig. 2.6: Management of Physics Processes
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2.5.3 Electromagnetic

The electromagnetic (EM) processes of Geant4 follow the basic interfaces:

• G4VEnergyLossProcess;
• G4VEmProcess;
• G4VMultipleScattering.

The class diagram is shown in the figure.

Fig. 2.7: Design of EM physics processes.

These base classes provide all management work of initialisation of processes, creation and filling of physics tables,
and generic run-time actions. Concrete process classes are responsible for the initialisation of parameters and defining
the set of models for the process. In some specific cases these interfaces are not applicable and the high level interface
G4VProcess is used.

Concrete physics models are implemented via EM model interfaces:

• G4VEmModel;
• G4VMscModel.

In the majority of use-cases when new EM physics is needed, it is enough to create only a new model class and use it
in the existing EM process class. A new model may be added to an existing process using AddEmModel(G4int,
G4VEmModel*, G4Region*) method. The class diagram is shown in the figure.

2.5.4 Hadronic

The hadronic physics of Geant4 has been designed to allow three basic types of modeling: data-driven,
parametrisation-driven, and theory-driven. Five implementation frameworks have been used to allow great flexibility
in these modeling approaches. An overview of the first two framework levels will be given here (for a wider and more
detailed coverage please refer to the next Chapter).
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Fig. 2.8: Design of EM physics processes.

The top-level framework defines the hadronic processes, and provides the basic interface to other Geant4 categories.
All processes have a common base-class G4VProcess, from which a set of specialised classes are derived. Two
of them are used as base classes for hadronic processes for particles (G4VDiscreteProcess), and for processes
like radioactive decay that can be both in-flight or at-rest (G4VRestDiscreteProcess). Each of these classes
declares two types of methods: one for calculating the time to interaction (for at-rest processes) or the physical
interaction length (for in-flight processes), allowing tracking to request the information necessary to decide on the
process responsible for final-state production.

Note on at-rest processes: starting with Geant4 version 9.6 - when the Bertini and Fritiof final-state models have been
extended down to zero kinetic energy and used also for simulating the nuclear capture at-rest - the at-rest processes de-
rive from G4HadronicProcess, hence from G4VDiscreteProcess, instead than from G4VRestProcess
as in the initial design of at-rest processes. This requires some adaptation a discrete process to handle an at-rest
one using top level interface G4VProcess. A different solution, under consideration but not yet implemented,
would be instead to have G4HadronicProcess inheriting from G4VRestDiscreteProcess: in this way,
G4HadronicProcess, and therefore any theory-driven final-state model, could be deployed for any kind of
hadronic process, including capture-at-rest processes and radioactive decays.

The class diagram is shown in the figure.

Whenever possible, it is preferable to add any new hadronic physics to Geant4 in terms of a model, and assign the
model to an existing process, rather than develop a new, specific process. However, in some cases, a directly imple-
mented hadronic process may be necessary. In these cases, the new process must derive from G4HadronicProcess
and the following three methods must be implemented:

virtual G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) ,
virtual G4bool IsApplicable(const G4ParticleDefinition&) , and
G4double GetMeanFreePath(const G4Track& aTrack, G4double, G4ForceCondition*) .

More details on these methods will be provided in the next Chapter.

At the next level of abstraction, only processes that occur for particles in flight are considered. For these, the main
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Fig. 2.9: First level implementation framework of the hadronic category of Geant4.

design requirement is to treat cross sections and the final-state models (i.e. the models responsible for the production
of the secondaries) independently, so that it is possible to change cross section while keeping a particular final-state
model, or, vice versa, to keep a given cross section while replacing the final-state model. Moroever, a set of cross
sections can be used for a single hadronic process to cover a wide kinematical range (e.g. from thermal energies up to
several tera-electronvolts of the projectile kinetic energy). Similarly, for the same reason, a set of different final-state
models can be used for a single hadronic process, allowing the overlapping between two models in an interval of the
projectile kinetic energy, to insure a smooth transition between these models.

The class diagram for hadronic cross-sections is shown in this figure and in this figure for final-state models.

Fig. 2.10: Second level implementation framework of the hadronic category of Geant4: cross-section aspect.

Each hadronic process is derived from G4HadronicProcess, which holds a list of “cross section data sets”. All
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Fig. 2.11: Second level implementation framework of the hadronic category of Geant4: final-state production aspect.

cross section data set classes are derived from the abstract class G4VCrossSectionDataSet. The process stores
and retrieves the data sets through a data store that acts like a FILO (First-In-Last-Out) stack. Details on how to write
a new hadronic cross section set will be provided in the next Chapter.

The G4HadronicProcess class provides a registration service for classes deriving from
G4HadronicInteraction, and delegates final-state production to the applicable model. Models inherit-
ing from G4HadronicInteraction can be restricted in applicability in projectile type and energy, and can be
activated/deactivated for individual materials and elements. Details on how to write a new hadronic final-state model
will be provided in the next Chapter.

2.6 Hits and Digitization

2.6.1 Design Philosophy

In Geant4 a hit is a snapshot of a physical interaction or an accumulation of interactions of a track or tracks in a
‘‘sensitive” detector component. A digitization, or digit, represents a detector output, such as an ADC/TDC count or
a trigger signal. A digit is created from one or more hits and/or other digits.

Given the wide variety of Geant4 applications, ways of describing detector sensitivity and the quantities to be stored
in the hits and digits vary greatly. This category therefore provides only abstract classes for both detector sensitivity
and hits/digits. It also provides tools for organizing the hits/digits into collections.

2.6.2 Class Design

• G4VHit - this class has all the information about a particular hit caused by a single step.
• G4VHitsCollection - base class for a collection of hits.
• G4THitsCollection - template class for a collection of hits of the (template) type. Implements

G4VHitsCollection interface providing efficient storage of hits via allocators.
• G4HCofThisEvent - container class for collections of hits for the current event.
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• G4VSensitiveDetector - pure virtual class representing a sensitive element responsible for creating and manag-
ing associated hits. The user should implement the method ProcessHits a filter and readout geometry (optional)
are also allowed.

• G4SDManager - singleton managing sensitive detectors.
• G4SDMessengerr - SD manager associated messenger.
• G4SDStructure - used exclusively used by G4SDManager for handling the tree structure of the user’s sensitive

detector names. Each branch represents the hits in given sub-detector. For example, the first level of branches
may consist of a tracker, ECAL, and HCAL, while the second level, in HCAL, consists of the barrel and endcaps.
Finally the barrel may have phi-slices, Z-slices, etc.

For digitization features a similar design as for hits is applied:

• G4VDigi - an abstract (base) class for all G4 digitizations. This could be data as simple as a singe byte, or as
complex as an Ntuple.

• G4VDigiCollection - base class for a collection of digits.
• G4TDigiCollection - template class for a collection of digits of the (template) type. Implements

G4VDigiCollection interface providing efficient storage of digits via allocators.
• G4DCofThisEvent - container class for collections of digits for the current event.
• G4VDigitizerModule - the class of objects which transform the hits deposited by particles into digitizations.
• G4DigiManager - singleton managing digitiser modules.
• G4DigiMessengerr - Digi manager associated messenger.

The UML class diagram for sensitivity related classes is shown in the following class diagram. The figure shows the
general management of hit classes.

Fig. 2.12: Overview of hit classes management. Classes in grey represent the main components that a user must
subclass to implement a sensitive detector. User is also responsible of creating the binding between G4THitsCollection
and its hit class.

2.7 Geometry

2.7.1 Design Philosopy

The geometry category provides the ability to describe a geometrical structure and propagate particles efficiently
through it. This is done in part with the aid of two central concepts, the logical and physical volumes. A logical
volume represents a detector element of a given shape which may contain other volumes, and which may have other
attributes. It has access to other information which is independent of its phyisical location in the detector, such as
material and sensitive detector behavior. A physical volume represents the spatial positioning or placement of the
logical volume with respect to an enclosing mother (logical) volume. Thus a hierarchical tree structure of volumes
can be built with each volume containing smaller volumes (which may not overlap). Repetitive structures can be
represented by specialized physical volumes, such as replicas and parameterized placements, sometimes resulting in a
large savings in memory.
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In Geant4 the logical volume has been refined by defining the shape as a separate entity, called a solid. Solids with
simple shapes, like rectilinear boxes, trapezoids, spherical or cylindrical sections or shells, each have their properties
coded separately, in accord with the concept of Constructed Solid Geometry (CSG). More complex solids are defined
for specific use, or having their surfaces approximated by facets (tessellated solids).

Another way to build solids is by Boolean combination - union, intersection and subtraction. The elemental solids
should be CSGs.

Although a detector is naturally and best described as by a hierarchy of volumes, efficiency is not critically dependent
on this. An optimization technique, called voxelization, allows efficient navigation even in “flat” geometries, typical
of those produced by CAD systems.

2.7.2 Class Design

• G4GeometryManager - responsible for managing “high level” objects in the geometry subdomain, notably
including opening and closing (“locking”) the geometry, and creating/deleting optimization information for
G4Navigator. The class is a “singleton”.

• G4LogicalVolumeStore - a container for optionally storing created logical volumes. It enables traversal of all
logical volumes by the UI/user/etc.

• G4LogicalVolume - represents a leaf node or unpositioned subtree in the geometry hierarchy. It may have
daughters ascribed to it, and is also responsible for retrieval of the physical and tracking attributes of the physical
volume that it represents. These attributes include solid, material, magnetic field, and optionally user limits,
sensitive detectors, etc. Logical volumes are optionally entered into the G4LogicalVolumeStore.

• G4MagneticField - a class responsible for the magnetic field in each volume, including the calculation of
particle trajectories along curved paths. In cases where the geometry step limits the particle’s step, the distance
calculated is guaranteed to be the distance to a volume boundary.

• G4Navigator - a class used by the tracking management, able to obtain/calculate tracking-time geometrical
information such as distance to the next volume, or to find the physical volume containing a given point in
the world reference system. The navigator maintains a transformation history and other information used to
optimize the tracking time performance.

• G4NavigationHistory - responsible for maintenance of the history of the path taken through the geometrical
hierarchy. It is principally a utility class for use by G4Navigator.

• G4NormalNavigation - a utility class for navigation in volumes containing only G4PVPlacement daughter
volumes.

• G4ParameterisedNavigation - a utility class for navigation in volumes containing a single G4PVParameterised
volume for which voxels for the replicated volumes have been constructed.

• G4VoxelNavigation - a utility class for navigation in volumes containing only G4PVPlacement daughter vol-
umes for which voxels have been constructed.

• G4ReplicaNavigation - a utility class for navigation in volumes containing a single G4PVParameterised volume
for which voxels for the replicated volumes have been constructed.

• G4PhysicalVolumeStore - a container for optionally storing created physical volumes. It enables traversal of all
physical volumes by the UI/user/etc. All solids should be registered with G4PhysicalVolumeStore, and removed
on their destruction. It is intended principally for the UI browser.

• G4VPhysicalVolume - a volume positioned within and relative to a given mother volume, and also represented
by a given logical volume. They are optionally entered into the G4PhysicalVolumeStore.

• G4PVPlacement - a physical volume corresponding to a single touchable detector element, positioned within
and relative to a mother volume.

• G4PVReplica - a physical volume representing many identically formed touchable detector elements, differing
only in their positioning. The elements’ positions are determined by means of a simple formula, and the elements
completely fill the containing mother volume.

• G4PVParameterised - a physical volume representing many touchable detector elements differing in their
positioning and dimensions. Both are calculated by means of a G4VParameterisation object. Each element’s
position is calculated as per G4PVReplica, and each element’s shape can be modified by means of a user supplied
formula.
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• G4VPVParameterisation - a parameterisation class able to compute the transformation and, indirectly, the
dimensions of parameterised volumes, given a replication number.

• G4SmartVoxelProxy - a class for proxying smart voxels. The class represents either a header (in turn refering
to more VoxelProxies) or a node. If created as a node, calls to GetHeader cause an exception, and likewise
GetNode when a header.

• G4SmartVoxelHeader - represents a single axis of virtual division. Contains the individual divisions which are
potentially further divided along different axes.

• G4SmartVoxelNode - a single virtual division, containing the physical volumes inside its boundaries and those
of its parents.

• G4VoxelLimits - represents limitation/restrictions of space, where restrictions are only made perpendicular to
the cartesian axes.

• G4SolidStore - a container for optionally storing created solids. It enables traversal of all/any solids by the
UI/user/etc. The class is a “singleton”.

• G4VSolid - position independent geometrical entities. They have only ‘shape’, and encompass both CSG and
boundary representations. They are optionally entered into the G4SolidStore. This class defines, but does not
implement, functions to compute distances to/from the shape. Functions are also defined to check whether a
point is inside the shape, to return the surface normal of the shape at a given point, and to compute the extent of
the shape.

• G4VTouchable - a class that maintains a “reference” on a given touchable element of the detector - a kind of
bookmark. It enables a given detector element to be saved during tracking (in case of booleans/user code/etc.)
and the corresponding G4PhysicalVolume retrieved later, with its “state” information (path through the tree)
optionally restored so that navigation can be restarted. G4Touchables provide fast access to the transformation
from the global reference system to that of the saved detector element.

• G4TouchableHistory - object representing a touchable detector element, and its history in the geomtrical hier-
archy, including its net resultant local->global transform.

• G4GRSSolid - object representing a touchable solid. It maintains the association between a solid and its net
resultant local-to-global transform.

• G4GRSVolume - object representing a touchable detector element. It maintains associations between a physical
volume and its net resultant local-to-global transform.

• G4AffineTransform - a class for geometric affine transformations. It supports efficient arbitrary rotation and
transformation of vectors and the computation of compound and inverse transformations. A “rotation flag” is
maintained internally for greater computational efficiency for transforms that do not involve rotation.

• G4UserLimits - responsible for user limits on step size, ascribable to individual volumes.

The figure shows a general overview, in UML notation, of the geometry design. A detailed collection of class diagrams
from the geometry category is found in the Appendix.

2.7.3 Additional Geometry Diagrams

Additional diagrams for the object-oriented design of the ‘geometry’ related classes are included here. The figure
shows the class diagram for smart voxels. The figure shows the class diagram for the navigator.

2.8 Electromagnetic Fields

2.8.1 Class Design

• G4TransportationManager - singleton class storing the (volume) navigator used by the transportation process
to do the geometrical tracking. It also stores a pointer to the propagator used in a (magnetic) field and to the field
manager. The class instance is created before main() is called, and in turn creates the navigator and the rest.

• G4PropagatorInField - class performing the navigation/propagation of a particle/track in a magnetic field. The
field is in general non-uniform. For the calculation of the path, it relies on the class G4ChordFinder.

2.8. Electromagnetic Fields 21



Book For Toolkit Developers, Release 10.3

Fig. 2.13: Overview of the geometry.

Fig. 2.14: Class diagram for smart voxels
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Fig. 2.15: Class diagram for the navigator

• G4FieldManager - class managing (storing) a pointer to the Field subclass that describes the field of a detector
(magnetic, electric or other). Also stores a reference to the chord finder. The G4FieldManager class exists to
allow the user program to specify the electric, magnetic and/or other field(s) of the detector. A field manager
can be set to a logical volume (or to more than one), in order to vary its field from that of the world. In this
manner a zero or constant field can override a global field, a more or less exact version can override the external
approximation, lower or higher precision for tracking can be specified, a different stepper can be chosen for
different volumes, . . . It also stores a pointer to the G4ChordFinder object that can do the propagation in this
field. G4FieldManager allows the other classes/object (of the MagneticField and other class categories) to find
out whether a detector field object exists and what that object is. A default G4FieldManager is created by the
singleton class G4NavigatorForTracking and exists before main is called. However a new one can be created
and given to G4NavigatorForTracking. Our current design envisions that one G4FieldManager is valid for each
region detector.

• G4ChordFinder - class providing the integration of motion using the ODE solver’s driver to find the end-point
that satisfies the chord length criterion. It also returns an Approximate point on the curve near to a (chord)
point. The G4ChordFinder handles all geometrical track “advancements” in the field. The G4ChordFinder
must be created either by calling CreateChordFinder() for a Magnetic Field from G4FieldManageror by the user
creating a G4ChordFinder object “manually” and setting the pointer.

The object-oriented design of the classes related to the electromagnetic field is shown in the class diagram of figure.
The diagram is described in UML notation.

2.9 Particles

2.9.1 Design Philosophy

The particles category implements the facilities necessary to describe the physical properties of particles for the simu-
lation of particle-matter interactions. All particles are based on the G4ParticleDefinition class, which describes basic
properties such as mass, charge, etc., and also allows the particle to carry a list of processes to which it is sensitive.
A first-level extension of this class defines the interface for particles that carry cuts information, for example range
cut versus energy cut equivalence. A set of virtual, intermediate classes for leptons, bosons, mesons, baryons, etc.,
allows the implementation of concrete particle classes which define the actual particle properties and, in particular,
implement the actual range versus energy cuts equivalence. All concrete particle classes are instantiated as singletons
to ensure that all physics processes refer to the same particle properties.
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Fig. 2.16: Electromagnetic Field

2.9.2 Class Design

The object-oriented design of the ‘particles’ related classes is shown in the following class diagrams. The diagrams
are described in the Booch notation. The figure shows a general overview of the particle classes. The next figure shows
classes related to the particle table and figure shows the classes related to the ion table in the particle table. Figure
shows the classes related to the particle decay table in the G4ParticleDefinition. This decay tabele is used by decay
process and figure shows the classes related to the decay process and decay channels

2.10 Materials

2.10.1 Design Philosophy

The design of the materials category reflects what exists in nature: materials are made of a single element or a mixture
of elements, and elements are made of a single isotope or a mixture of isotopes.

Materials have been initially designed as amorphous, with properties obtained by linear combinations of the properties
of the elements or isotopes building them, like radiation and interaction lengths, etc. Provision was taken though to
allow their ionisation parameters for departing from this assumption with the ability to overide the default calculations,
like the mean ionisation potential for example. Since 10.3, materials have been extended to allow for crystalline and
molecular structures to be freely defined and associated with a material.

The materials category also defines optical surface properties used in the tracking of optical photons.

2.10.2 Design

Classes For Material Description

The material description is based on three main classes:
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Fig. 2.17: Particle classes

Fig. 2.18: Particle Table
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Fig. 2.19: Particle Table

Fig. 2.20: Decay Table
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Fig. 2.21: Particle Decay

• G4Isotope: used to define isotopes by name, atomic number Z and number of nucleons N. The molar mass
A can be specified, and is otherwise taken from Geant4 NIST database. The isomer state can also be specified.
This class is essentially a “simple data container” and does not perform any physics calculations.

• G4Element: defines elements as isotopes composition, with relative abundance. This class also holds the
atomic electron shell structure, that it retrieves for itself using the G4AtomicShells utility class.
G4AtomicShells is a “database” class holding the atomic shells and subshells, number of electrons in each
and related binding energies, for the first 100 elements.
Similarly, G4Element also retrieves the element ionisation data, using the other utility and database class
G4IonisParamElm.
The class computes derived quantities : Coulomb correction and Tsai radiation length factors (Phys Rev. D50
3-1 (1994) page 1254). These calculations are triggered in the constructor, or in the AddIsotope method.

• G4Material: defines a material as a collection of elements -directly, or by mixture of materials- adding, on
top of the element composition, the physical properties density, state, temperature, pressure.
A material has also ionisation properties, gathered in an G4IonisParamMat object. The material creates
this object, referencing itself to this ionisation object. This one extract properties from the element material
composition. For the mean ionisation energy, it may use values defined for chemical formulaes, or deduce from
the element composition, or accept a value set directly.
When the composition of the material is changed (adding an element or a material), derived quantities are
computed, including radiation and nuclear interaction lengths.

These three classes hold each a static vector holding all created objects of the class.

The diagram of the these three main classes for material description together with their utility classes is shown in the
figure.
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Fig. 2.22: The three main classes used for material description, together with their utility classes.

The NIST Manager Utility

The G4NistManager utility singleton class provides elements and materials construction according to the NIST
database on Atomic Weights and Isotope Compositions, http://physics.nist.gov/PhysRefData/Compositions/index.
html . The G4NistManager is an interface class holding and steering one instance of the following classes:

• G4NistElementBuilder ,
• G4NistMaterialBuilder ,
• G4NistMessenger .

The G4NistElementBuilder and G4NistMaterialBuilder classes proceed in a similar manner, with an
initialization phase in which known elements and materials are essentially “registered” (under std::vector’s of
names, properties, etc.) but without actual creation of the G4Element, G4Isotope and G4Material objects.
These creation happen on user’s calls FindOrBuildElement or FindOrBuildMaterial.

During the initialization phase of these NIST builder objects, vectors of elements and materials names and properties
are hence created. They may be used by the material construction classes exposed in the previous section, which
explains the dependencies on G4NistManager shown in the figure.

Optical Classes

The classes for describing optical properties are:

• G4SurfaceProperty: the base class for optical properties, which consists essentially in the enumeration
G4SurfaceType, and which holds a static std::vector<G4SurfaceProperty*> of the properties
created, accessible by the static method GetSurfacePropertyTable() ,

• G4OpticalSurface : which specializes G4SurfaceProperty, defining the enumerations
G4OpticalSurfaceFinish and G4OpticalSurfaceModel (this is presented in details in the

28 Chapter 2. Design and Function of Geant4 Categories

http://physics.nist.gov/PhysRefData/Compositions/index.html
http://physics.nist.gov/PhysRefData/Compositions/index.html


Book For Toolkit Developers, Release 10.3

user’s guide for application developer),
• G4MaterialPropertiesTable : which holds the various optical properties as associations of a string

key and a G4PhysicsOrderedFreeVector; this key is used by the optical physics processes to get the
properties they need for the simulation.

Material Extension

Since 10.3, a material extension capability has been introduced. The idea is to allow a material to get an arbitrary
number of extensions, freely defined, that specialized processes may consume for their physics calculations. Examples
of such extensions are crystal structures -for channeling-, and molecular properties -for low energy processes-.

The G4Material class has been made abstract, introducing the virtual method G4bool IsExtended()
that responds “false” for a genuine G4Material object. The class G4ExtendedMaterial class inherits from
G4Material, overriding IsExtended(), to make it responding “true”. This method is checked at tracking time
by the specialized processes. The constructors of G4ExtendedMaterial have the same signatures than the ones
of G4Material.

The extended properties (eg: crystal structure, molecular properties) are to be implemented in concrete classes inherit-
ing from the interface class G4VMaterialExtension. A G4ExtendedMaterial object can hold an arbitrary
number of G4VMaterialExtension pointers, managed by a hash map. Each G4VMaterialExtension con-
crete class object is associated to a string key, that is used to retrieve the object.

The diagram showing the relation between these three classes is shown in the figure.

Fig. 2.23: Classes involved in material extension capability.
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The first concrete implementation of G4VMaterialExtension is G4CrystalExtension.

2.11 Global Usage

2.11.1 Design Philosophy

The global category covers the system of units, constants, numerics and random number handling. It can be considered
a place-holder for “general purpose” classes used by all categories defined in Geant4. No back-dependencies to
other Geant4 categories affect the “global” domain. There are direct dependencies of the global category on external
packages, such as CLHEP, STL, and miscellaneous system utilities.

Within the management sub-category are “utility” classes generally used within the Geant4 kernel. They are, for the
most part, uncorrelated with one another and include:

• G4Allocator
• G4FastVector
• G4ReferenceCountedHandle
• G4PhysicsVector, G4LPhysicsFreeVector, G4PhysicsOrderedFreeVector
• G4Timer
• G4UserLimits
• G4UnitsTable

A general description of these classes is given in section 3.2 of the Geant4 User’s Guide for Application Developers.

The module includes wrappers to most CLHEP classes used in Geant4, and tools for memory
management (G4Cache, G4AutoDelete) and for threading (G4AutoLock, G4Threading,
G4ThreadLocalSingleton, G4TWorkspacePool). It also provides specialised fast implementations
for some heavily used mathematical functions, like G4Exp, G4Log, G4Pow.

In applications where it is necessary to generate random numbers (normally from the same engine) in many different
methods and parts of the program, it is highly desirable not to rely on or require knowledge of the global objects
instantiated. By using static methods via a unique generator, the randomness of a sequence of numbers is best assured.
Hence the use of a static generator has been introduced in the original design of HEPRandom as a project requirement
in Geant4.

2.11.2 Class Design

Analysis and design of the HEPRandom module have been achieved following the Booch Object-Oriented methodol-
ogy. Some of the original design diagrams in Booch notation are reported below. The figure is a general picture of the
static class diagram.

• HepRandomEngine - abstract class defining the interface for each Random engine. Its pure virtual methods
must be defined by its subclasses representing the concrete Random engines.

• HepJamesRandom - class inheriting from HepRandomEngine and defining a flat random number generator
according to the algorithm described in “F.James, Comp.Phys.Comm. 60 (1990) 329”. This class is instantiated
by default as the default random engine.

• DRand48Engine - class inheriting from HepRandomEngine and defining a flat random number generator ac-
cording to the drand48() and srand48() system functions from the C standard library.

• RandEngine - class inheriting from HepRandomEngine and defining a flat random number generator according
to the rand() and srand() system functions from the C standard library.

• RanluxEngine - class inheriting from HepRandomEngine and defining a flat random number generator accord-
ing to the algorithm described in “F.James, Comp.Phys.Comm. 60 (1990) 329-344” and originally implemented
in FORTRAN 77 as part of the MATHLIB HEP library. It provides 5 different “luxury” levels [0..4].
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• RanecuEngine - class inheriting from HepRandomEngine and defining a flat random number generator accord-
ing to the algorithm RANECU originally written in FORTRAN 77 as part of the MATHLIB HEP library. It uses
a table of seeds which provides uncorrelated couples of seed values.

• MixMaxRng - class inheriting from HepRandomEngine and interfacing the MixMax Matrix PseudoRandom
Number Generator described in J.Comput.Phys. 97, 573 (1991).

• HepRandom - the main class collecting all the methods defining the different random generators applied to
HepRandomEngine. It is a singleton class which all the distribution classes derive from. This singleton is
instantiated by default.

• RandFlat - distribution class for flat random number generation. It also provides methods to fill an array of flat
random values, given its size or shoot bits.

• RandExponential - distribution class defining exponential random number distribution, given a mean. It also
provides a method to fill an array of flat random values, given its size.

• RandGauss - distribution class defining Gauss random number distribution, given a mean or specifying also a
deviation. It also provides a method to fill an array of flat random values, given its size.

• RandBreitWigner - distribution class defining the Breit-Wigner random number distribution. It also provides
a method to fill an array of flat random values, given its size.

• RandPoisson - distribution class defining Poisson random number distribution, given a mean. It also provides
a method to fill an array of flat random values, given its size.

Fig. 2.24: HEPRandom module
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For detailed documentation about the HEPRandom classes see the CLHEP Reference Guide or the CLHEP User
Manual.

Informations written in this manual are extracted from the original manifesto distributed with the HEPRandom pack-
age.

HEPNumerics

The HEPNumerics module includes a set of classes which implement numerical algorithms for general use in Geant4.
The User’s Guide for Application Developers contains a description of each class. Most of the algorithms were
implemented using methods from the following books:

• B.H. Flowers, “An introduction to Numerical Methods In C++”, Claredon Press, Oxford 1995.
• M. Abramowitz, I. Stegun, “Handbook of mathematical functions”, DOVER Publications INC, New York 1965;

chapters 9, 10, and 22.

The HEPNUmerics module provides general mathematical methods supporting Geant4 Monte-Carlo simulation pro-
cesses. Among these, there are methods for function and array interpolations using known special functions, class
method integration solving polynomial equation (up to 4th order) and some others.

Of particular interest is the templated class G4Integrator which consists of methods allowing to integrate class
methods. Since the type whose method should be integrated is not known in advance, G4Integrator uses tem-
plated signatures and pointers to functions in its API. It provides both usual numerical methods like adaptive Gauss
or Simpson integration, and more sofisticated (faster and at the same accurate) methods based on the orthogonal
polynomials.

Among the different integration methods involving orthogonal polynomials there are: Gauss-Legendre, Gauss-
Chebyshev, Gauss-Hermite and Gauss-Jacobi methods:

template <class T, class F>
G4double G4Integrator<T,F>::Legendre( T& typeT, F f, G4double a,

G4double b, G4int nLegendre )
//
// The value nLegendre set the accuracy required, i.e the number of points
// where the function pFunction will be evaluated during integration.
// The function creates the arrays for abscissas and weights that used
// in Gauss-Legendre quadrature method.
// The values a and b are the limits of integration of the function f.
// nLegendre MUST BE EVEN !!!
// Returns the integral of the function f between a and b, by 2*fNumber point
// Gauss-Legendre integration: the function is evaluated exactly
// 2*fNumber times at interior points in the range of integration.
// Since the weights and abscissas are, in this case, symmetric around
// the midpoint of the range of integration, there are actually only
// fNumber distinct values of each.
// Convenient for using with some class object dataT

template <class T, class F>
G4double G4Integrator<T,F>::Legendre10( T& typeT, F f,G4double a,

G4double b )
//
// Returns the integral of the function to be pointed by T::f between a and b,
// by ten point Gauss-Legendre integration: the function is evaluated exactly
// ten times at interior points in the range of integration. Since the weights
// and abscissas are, in this case, symmetric around the midpoint of the
// range of integration, there are actually only five distinct values of each
// Convenient for using with class object typeT. The method is very fast and accurate enough.
// Roots and weights are from Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916

template <class T, class F>
G4double G4Integrator<T,F>::Legendre96( T& typeT, F f,G4double a,

G4double b )
//
// Returns the integral of the function to be pointed by T::f between a and b,
// by 96 point Gauss-Legendre integration: the function is evaluated exactly
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// ten Times at interior points in the range of integration. Since the weights
// and abscissas are, in this case, symmetric around the midpoint of the
// range of integration, there are actually only five distinct values of each
// Convenient for using with some class object typeT. The method is very accurate and fast
→˓enough.
// Roots and weights are from Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919

template <class T, class F>
G4double G4Integrator<T,F>::Chebyshev( T& typeT, F f, G4double a,

G4double b, G4int nChebyshev )
//
// Integrates function pointed by T::f from a to b by Gauss-Chebyshev
// quadrature method.
// Convenient for using with class object typeT

template <class T, class F>
G4double G4Integrator<T,F>::Laguerre( T& typeT, F f, G4double alpha,

G4int nLaguerre )
//
// Integral from zero to infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
// The value of nLaguerre sets the accuracy.
// The function creates arrays fAbscissa[0,..,nLaguerre-1] and
// fWeight[0,..,nLaguerre-1] .
// Convenient for using with class object 'typeT' and (typeT.*f) function
// (T::f)

template <class T, class F>
G4double G4Integrator<T,F>::Hermite( T& typeT, F f, G4int nHermite )
//
// Gauss-Hermite method for integration of std::exp(-x*x)*f(x)
// from minus infinity to plus infinity.

template <class T, class F>
G4double G4Integrator<T,F>::Jacobi( T& typeT, F f, G4double alpha,

G4double beta, G4int nJacobi )
//
// Gauss-Jacobi method for integration of ((1-x)^alpha)*((1+x)^beta)*f(x)
// from minus unit to plus unit (-1,+1).

HEPGeometry

Documentation for the HEPGeometry module is provided in the CLHEP Reference Guide or the CLHEP User Manual.

2.12 Visualisation

2.12.1 Design Philosophy

The visualisation category consists of the classes required to display detector geometry, particle trajectories, tracking
steps, and hits. It also provides visualisation drivers, which are interfaces to external graphics systems.

A wide variety of user requirements went into the design of the visualisation category, for example:

• very quick response in surveying successive events,
• high-quality output for presentation and documentation,
• flexible camera control for debugging detector geometry and physics,
• selection of visualisable objects,
• interactive picking of graphical objects for attribute editing or feedback to the associated data,
• highlighting incorrect intersections of physical volumes,
• co-working with graphical user interfaces.

Because it is very difficult to respond to all of these requirements with only one built-in visualiser, an abstract interface
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was developed which supports several complementary graphics systems. Here the term graphics system means either
an application running as a process independent of Geant4 or a graphics library to be compiled with Geant4. A
concrete implementation of the interface is called a visualisation driver, which can use a graphics library directly,
communicate with an independent process via pipe or socket, or simply write an intermediate file for a separate viewer.

2.12.2 The Graphics Interfaces

• G4VVisManager: All user code writes to the graphics systems through this pure abstract interface. It contains
Draw methods for all the graphics primitives in the graphics_reps category (G4Polyline, G4Circle, etc.), ge-
ometry objects (through their base classes, G4VSolid, G4PhysicalVolume and G4LogicalVolume) and hits and
trajectories (through their base classes, G4VHit and G4VTrajectory).
Since this is an abstract interface, all user code must check that there exists a concrete instantiation of it. A static
method is provided, so a typical user code fragment is:

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
if(pVVisManager) {

pVVisManager->Draw(G4Circle...
...

Note that this allows the building an application without a concrete implementation, for example for a batch
job, even if some code, like the above, is still included. Most of the novice examples can be built this way if
G4VIS_NONE is specified.
The concrete implementation of this interface is hereafter referred to as the visualisation manager.

• G4VGraphicsScene: The visualisation manager must also provide a concrete implementation of the subsidiary
interface, G4VGraphicsScene. It is only for use by the kernel and the modeling category. It offers direct access
to a “scene handler” through a reference provided by the visualisation manager. It is described in more detail in
the section on extending the toolkit functionality.

The Geant4 distribution includes implementations of the above interfaces, namely G4VisManager and
G4VSceneHandler respectively, and their associated classes. These define further abstract base classes for visual-
isation drivers. Together they form the Geant4 Visualisation System. A variety of concrete visualisation drivers are
also included in the distribution. Details of how to implement a visualisation driver are given in Visualisation. Of
course, it is always possible for a user to implement his or her own concrete implementations of G4VVisManager and
G4VGraphicsScene replacing the Geant4 Visualisation System altogether.

2.12.3 The Geant4 Visualisation System

The Geant4 Visualisation System consists of

• G4VisManager: An implementation of the G4VVisManager interface. It manages multiple graphics systems
and defines three more concepts – the scene (G4Scene), the scene handler (base class G4VSceneHandler, it-
self a sub-class of G4VGraphicsScene) and the viewer (base class G4VViewer) – see below. G4VisManager
is a singleton and an abstract class, requiring the user to derive from it a concrete visualisation manager
(G4VisExecutive is provided – see below). Roles and structure of the visualisation manager are described
in Chapter 8 of the User’s Guide for Application Developers.

• G4VisExecutive: A concrete visualisation manager that implements the virtual functions RegisterGraphicsSys-
tems and RegisterModelFactories. These functions must be in the users’ domain, since the graphics systems
and models that are instantiated by them are, in many cases, provided by the user (graphics libraries, etc.). It is
therefore implemented as a .hh-.icc combination that is designed to be included in the users’ code. Of course,
the user may write his or her own.

• G4Scene The scene is a list if models for physical volumes, axes, hits, trajectories, etc. - see Section Modeling
sub-category. They are distinguished according to their lifetime – “run-duration” for physical volumes, etc.,
“end-of-event” for hits and trajectories, etc. The end-of-event models are only to be used when the Geant4 state
indicates the end of event has been reached. The scene has an extent (G4VisExtent), which is updated by the
scene when a new model is added (each model itself has an extent), and a “standard” target point; these are used
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to define the standard view – see below. In addition, the scene keeps flags which indicate whether end-of-event
objects should be accumulated or refreshed for each event or run.

• G4VGraphicsSystem: This is an abstract base class for scene handler and viewer factories. It is used by the
visualisation manager to create scene handlers and viewers on request.

• G4VSceneHandler: A sub-class of G4VGraphicsScene, itself an abstract base class for specific scene han-
dlers, whose job is to convert the scene into graphics-system-specific code for the viewer. For example, the
scene handler may create a graphical database, taking care to separate run-duration (persistent) and end-of-event
(transient) information (this is described further in Dealing with transient objects

• G4VViewer: An abstract base class for specific viewers. Its job is to create windows or files and identify where
and how the final view should be rendered. It has view parameters (G4ViewParameters) which specify view-
point direction, type of rendering (wireframe or surface), etc. It is the view’s responsibility, noting the scene’s
extent and target point, to choose a camera position and magnification that ensures that the scene is automatically
and comfortably rendered in the viewing window. This is then the standard view, and any further operations
requested by the user - zoom, pan, etc. - are relative to this standard view. The class G4ViewParameters has
utility routines to assist this procedure; it is strongly advised that toolkit developers writing a viewer should
study the G4ViewParameters class, whose header file contains much useful information (also preserved in the
Software Reference Manual).
The viewer is messaged by the vis manager when the user issues commands, such as /vis/viewer/
refresh. This invokes methods such as SetView, ClearView and DrawView. A detailed description of the
call sequences is given in sections Important Command Actions to What happens in ProcessScene?.

Note there is no restriction on the number or type of scene handlers or viewers. There may be several scene han-
dlers processing the same or different scenes, each with several viewers (for example, the same scene from differing
viewpoints).

By defining a set of three C++ classes inheriting from the virtual base classes - G4VGraphicsSystem,
G4VSceneHandler and G4VViewer - an arbitrary graphics system can easily be plugged in to Geant4. The plugged-in
graphics system is then available for visualising detector simulations. Together, this set of three concrete classes is
called a “visualisation driver”. The DAWN-File driver, for example, is the interface to the Fukui Renderer DAWN,
and is implemented by the following set of classes:

1. G4DAWNFILE : public G4VGraphicsSystem for creation of the scene handlers and viewers
2. G4DAWNFILESceneHandler : public G4VSceneHandler for modeling 3D scenes
3. G4DAWNFILEView : public G4VView for rendering 3D scenes

Several visualisation drivers are distributed with Geant4. They are complementary to each other in many aspects. For
details, see Chapter 8 of the User’s Guide for Application Developers.

2.12.4 Modeling sub-category

• G4VModel - a base class for visualisation models. A model is a graphics-system-independent description of a
Geant4 component.
The sub-category visualisation/modeling defines how to model a 3D scene for visualisation. The term “3D
scene” indicates a set of visualisable component objects put in a 3D world. A concrete class inheriting from the
abstract base class G4VModel defines a “model”, which describes how to visualise the corresponding compo-
nent object belonging to a 3D scene. G4ModelingParameters defines various associated parameters.
For example, G4PhysicalVolumeModel knows how to visualise a physical volume. It describes a physical
volume and its daughters to any desired depth. G4HitsModel knows how to visualise hits. G4TrajectoriesModel
knows how to visualise trajectories.
The main task of a model is to describe itself to a 3D scene by giving a concrete implementation of the following
virtual method of G4VModel:

virtual void DescribeYourselfTo (G4VGraphicsScene&) = 0;

The argument class G4VGraphicsScene is a minimal abstract interface of a 3D scene for the Geant4 kernel
defined in the graphics_reps category. Since G4VSceneHandler and its concrete descendants inherit from
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G4VGraphicsScene, the method DescribeYourselfTo() can pass information of a 3D scene to a visualisation
driver.
It is easy for a toolkit developer of Geant4 to add a new kind of visualisable component object. It is done by
implementing a new class inheriting from G4VModel.

• G4VTrajectoryModel - an abstract base class for trajectory drawing models.
A trajectory model governs how an individual trajectory is drawn. Concrete models inheriting from
G4VTrajectoryModel must implement two pure virtual functions:

virtual void Draw(const G4VTrajectory&, G4int i_mode = 0) const = 0;
virtual void Print(std::ostream& ostr) const = 0;

See for example G4TrajectoryDrawByParticleID.
• G4VModelFactory - an abstract base class for factories creating models and associated messengers.

It is not necessary to generate messengers for a trajectory model that will be constructed and configured directly
in compiled code. If the user requires model creation and configuration features through interactive commands,
however, there must be a mechanism to generate both models and their associated messengers. This is the
role of G4VModelFactory. Concrete factories inheriting from G4VModelFactory are responsible for creating
a concrete model and concrete messengers. To help ensure a type safe messenger to model interaction on the
command line, the messengers should inherit from G4VModelCommand.
Concrete factories must implement one pure virtual function:

virtual ModelAndMessengers
Create(const G4String& placement, const G4String& modelName) = 0;

where placement indicates which directory space the commands should occupy. See for example
G4TrajectoryDrawByParticleIDFactory.

2.12.5 View parameters

View parameters such as camera parameters, drawing styles (wireframe/surface etc) are held by G4ViewParameters.
Each viewer holds a view parameters object which can be changed interactively and a default object (for use in the
/vis/viewer/reset command).

If a toolkit developer of Geant4 wants to add entries of view parameters, he should add fields and methods to
G4ViewParameters.

2.12.6 Visualisation Attributes

All drawable objects (should) have a method:

const G4VisAttributes* GetVisAttributes() const;

A drawable object might be:

• a “visible” (i.e., inheriting G4Visible), such as a polyhedron, polyline, circle, etc. (note that text is a slightly
special case - see below) or

• a solid whose vis attributes are held in its logical volume.

Finding the applicable vis attributes

This is an issue for all scene handlers. The scene handler is where the colour, style, auxiliary edge visibility, marker
size, etc., of individual drawable objects are needed.
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Visibles

If the vis attributes pointer is zero, drivers should pick up the default vis attributes from the viewer:

const G4VisAttributes* pVisAtts = visible.GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpViewer->GetViewParameters().GetDefaultVisAttributes();

where visible denotes any visible object (polyhedron, circle, etc.).

There is a utility function G4VViewer::GetApplicableVisAttributes which does this, so an alternative is:

const G4VisAttributes* pVisAtts =
fpViewer->GetApplicableVisAttributes(visible.GetVisAttributes());

Confusingly, there is a utility function G4VSceneHandler::GetColour which also does this, so if it’s only colour you
need, the following suffices:

const G4Colour& colour GetColour(visible);

but equally well:

const G4VisAttributes* pVisAtts =
fpViewer->GetApplicableVisAttributes(visible.GetVisAttributes());

const G4Colour& colour pVisAtts->GetColour();

or even:

const G4VisAttributes* pVisAtts = visible.GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpViewer->GetViewParameters().GetDefaultVisAttributes();
const G4Colour& colour pVisAtts->GetColour();

Text

Text is a special case because it has its own default vis attributes:

const G4VisAttributes* pVisAtts = text.GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpViewer->GetViewParameters().GetDefaultTextVisAttributes();
const G4Colour& colour pVisAtts->GetColour();

and there is a utility function G4VSceneHandler::GetTextColour:

const G4Colour& colour GetTextColour(text);

Solids

For specific solids, the G4PhysicalVolumeModel that provides the solids also provides, via PreAddSolid, a pointer
to its vis attributes. If the vis attribites pointer in the logical volume is zero, it provides a pointer to the
default vis attributes in the model, which in turn is (currently) provided by the viewer’s vis attributes (see
G4VSceneHandler::CreateModelingParameters). So the vis attributes pointer is guaranteed to be pertinent.

If the concrete driver does not implement AddSolid for any particular solid, the base class converts it to primitives
(usually a G4Polyhedron) and again, the vis attributes pointer is guaranteed.
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Drawing style

The drawing style is normally determined by the view parameters but for individual drawable objects it may be over-
ridden by the forced drawing style flags in the vis attributes. A utility function G4ViewParameters::DrawingStyle
G4VSceneHandler::GetDrawingStyle is provided:

G4ViewParameters::DrawingStyle drawing_style = GetDrawingStyle(pVisAtts);

Auxiliary edges

Similarly, the visibility of auxiliary/soft edges is normally determined by the view parameters but may
be overridden by the forced auxiliary edge visible flag in the vis attributes. Again, a utility function
G4VSceneHandler::GetAuxEdgeVisible is provided:

G4bool isAuxEdgeVisible = GetAuxEdgeVisible (pVisAtts);

LineSegmentsPerCircle

Also, the precision of rendering curved edges in the polyhedral representation of volumes is normally deter-
mined by the view parameters but may be overridden by a forced attribute. A utility function that respects this,
G4VSceneHandler::GetNoOfSides, is provided. For example:

G4Polyhedron::SetNumberOfRotationSteps (GetNoOfSides (pVisAttribs));

Marker size

These have nothing to do with vis attributes; they are an extra property of markers, i.e., objects that inherit G4VMarker
(circles, squares, text, etc.). However, the algorithm for the actual size is quite complicated and a utility function
G4VSceneHandler::GetMarkerSize is provided:

MarkerSizeType sizeType;
G4double size = GetMarkerSize (text, sizeType);

sizeType is world or screen, signifying that the size is in world coordinates or screen coordinates respectively.

2.13 Intercoms

2.13.1 Design Philosophy

The intercoms category implements an expandable command interpreter which is the key mechanism in Geant4 for
realizing customizable and state-dependent user interactions with all categories without being perturbed by the depen-
dencies among classes. The capturing of commands is handled by a C++ abstract class G4UIsession. Various concrete
implementations of the command capturer are contained in the [user] interfaces category. Taking into account the
rapid evolution of graphical user interface (GUI) technology and consequent dependence on external facilities, plural
and extensible GUIs are offered.

Programmers need only know how to register the commands and parameters appropriate to their problem domain; no
knowledge of GUI programming is required to allow an application to use them through one of the available GUIs.

The intercoms category also provides the virtual base classes
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• G4VVisManager,
• G4VGraphicsScene, and
• G4VGlobalFastSimulationManager.

2.13.2 Class Design

• G4UISession -
• G4UIBatch -
• G4UICommand -
• G4UIparameter -
• G4UImessenger -
• G4UIExecutive: A concrete interface manager. It will register the UI selected by the environment variable

set. It will take first by defaul the following order : G4UI_USE_QT, G4UI_USE_XM, G4UI_USE_WIN32,
G4UI_USE_TCSH, Terminal

The object-oriented design of the ‘user interface’ related classes is shown in the class diagram figure. The diagram is
described in the Booch notation.

Fig. 2.25: Overview of intercom classes

2.14 Parallelism in Geant4: multi-threading capabilities

2.14.1 Event level parallelism

Geant4 event-level parallelism is based on a master-worker model in which a set of threads (the workers) are spawned
and are responsible for the simulation of events, while the steering and control of the simulation is given to an addi-
tional entity (the master).

Multi-threading functionalities are implemented with new classes or modifications of existing classes in the run cate-
gory:
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• The new run-manager class G4MTRunManager (that inherits from G4RunManager) implements the
master model. It uses the mandatory class G4MTRunManagerKernel, a multi-threaded equivalent of
G4RunManagerKernel

• The new run-manager class G4WorkerRunManager (that inherits from G4RunManager) implements the
worker model. It uses the mandatory class G4WorkerRunManagerKernel, the worker equivalent of
G4RunManagerKernel

• The new user-initialization class G4VUserActionInitialization is responsible for the instantiation of thread-
local user actions

• The new user-initialization class G4UserWorkerInitialization is responsible for the initialization of worker
threads

Additional information on Geant4 multi-threading model can be found in General Design.

In this chapter, after a brief reminder of basic design choices, we will concentrate on aspects that are important for
kernel developers, particularly the most critical aspects for multi-threading in Geant4: memory handling, split-classes
and thread-local storage. In the following it is assumed that the user is already familiar with the general aspects of
multi-threading. The section Additional material provides more information on this topic.

2.14.2 General Design

Geant4 Version 10.0 introduces parallelism at the event level: events are tracked concurrently by independent threads.
The parallelism model is master-worker in which one or more threads are responsible of performing the simulation,
while a separate control flow controls and steers the work. A diagram of the general overview of a multi-threaded
Geant4 application is shown here:

Fig. 2.26: Simplified schema of the master-worker model employed in Geant4

The user interacts with the master which is responsible for creating and controlling worker threads. Before the simu-
lation is started per-event seeds are generated by the master. This operation guarantees reproducibility. Once threads
are spawned and configured, each worker is responsible for creating a new G4Run and for simulating a subset of the
events. At the end of the run the results from each run are merged into the global run. Details on how to interact with
a multi-threaded simulation are discussed in the Guide for Application Developers.

Geant4 parallelization makes use of the POSIX standard. The use of this standard in Geant4 guarantees maximum
portability between systems and integration with advanced parallelization frameworks (for example we have verified
that this model co-works with TBB and MPI).

To effectively reduce the memory consumption in a multi-threaded application, workers share instances of objects that
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consume the majority of memory (geometry and physics tables); workers own thread-private instances of the other
classes (e.g. SensitiveDetectors, hits, etc). This choice allowed the design of a lock-free code (i.e. no use of mutex
during the event loop), which guarantees maximum scalability (cfr: Euro-Par2010, Part II LNCS6272, pp.287-303).
Thread safety is obtained via Thread Local Storage.

Similar to the sequential version of Geant4, master and workers are represented by instances of classes inheriting
from G4RunManager: the G4MTRunManager class represents the master model, while G4WorkerRunManager
instances represent worker models. The user is responsible for instantiating a single G4MTRunManager (or derived
user-class) instance. This class will instantiatiate and control one or more G4WorkerRunManager instances. Users
should never instantiate directly an instance of the G4WorkerRunMAnager class.

A simplified class-diagram of the relevant classes for multi-threading and their relationship is shown here:

Fig. 2.27: Relevant classes and their interaction for multi-threaded applications

As in sequential Geant4 users interact with the Geant4 kernel via user initializations and user actions. User initial-
izations (G4VUserDetectorConstruction, GVUserPhysicsList and the new G4VUserActionInitializtion) instances
are shared among all threads (as such they are registered to the G4MTRunManager instance); while user actions
(G4VUserPrimaryGeneratorAction, G4UserRunAction, G4UserSteppingAction and G4UserTrackingAction)
are not shared and a separate instance exists for each thread. Since the master does not perform simulation of events
user actions do not have functions for G4MTRunManager and should not be assigned to it. G4RunAction is the
exception to this rule since it can be attached to the master G4MTRunManager to allow for merging of partial results
produced by workers.

2.14.3 Memory handling in Geant4 Version 10.0

Introduction

In Geant4 we distinguish two broad types of classes: ones whose instances are separate for each thread (such as a
physics process, which has a state), and ones whose instances are shared between threads (e.g. an element G4Element
which holds constant data).

A few cases classes exist which have mixed behavior - part of their state is constant, and part is per-worker. A simple
example of this is a particle definition, such as G4Electron, which holds both data (which is constant) and a pointer
to the G4ProcessManager object for electrons - which must be different for each worker (thread).

We handle these ‘split’ classes specially, to enable data members and methods which correspond to the per-thread state
to give a different result on each worker thread. The implementation of this requires an array for each worker (thread)
and an additional indirection - which imposes a cost each time the method is called. However this overhead is small
and has been measured to be about 1%. In this section we will discuss the details of how we achieve thread-safety
for different use-cases. The information contained here is of particular relevance for toolkit developers that need to
adapt code to multi-threading to increase performances (typically to reduce the memory footprint of an application
sharing between threads’ memory consuming objects). It is however of general interest to understand some of the
more delicate aspects of multi-threading.
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Thread safety and sharing of objects

To better understand how memory is handled and what are the issues introduced by multi-threading it is easier to
proceed with a simplified example.

Let us consider the simplest possible class G4Class that consists of a single data member:

class G4Class {
[static] G4double fValue; //static keyword is optional

};

Our goal is to transform the code of G4Class to make it thread-safe. A class (or better, a method of a class) is thread-
safe if more than one thread can simultaneously operate on the class data member or its methods without interfering
with each other in an unpredictable way. For example if two threads concurrently write and read the value of the data
field fValue and this data field is shared among threads, the two threads can interfere with each other if no special code
to synchronize the thread is added. This condition is called data-race and is particularly dangerous and difficult to
debug.

A classical way to solve the data-race problem is to protect the critical section of the code and the concurrent access to
a shared memory location using a lock or a mutex (see section Threading model utilities and functions). However this
technique can reduce overall performance because only one thread at a time is allowed to be executed. It is important
to reduce to a minimum the use of locks and mutexes, especially in the event loop. In Geant4 we have achieved thread-
safety via the use of thread local storage. This allows for virtually lock-free code at the price of an increased memory
footprint and a small CPU penalty. Explanations of thread-local storage are provided by several external resources.
For a very simple introduction, but adequate for our discussion, web resources give sufficient detail (e.g. wikipedia).

Before going into the details of how to use the thread-local storage mechanism we need to introduce some terminology.

We define an instance of a variable to be thread-local (or thread-private) if each thread owns a copy of the variable.
A thread-shared variable, on the contrary, is an instance of a variable that is shared among the threads (i.e. all threads
have access to the same memory location holding the value of the variable). If we need to share the same memory
location containing the value of fValue between several instances of G4Class we call the data field instance-shared
otherwise (the majority of cases) it is instance-local. These defintions are an over-simplification that does not take into
account pointers and sharing/ownership of the pointee, however the issues that we will discuss in the following can be
extended to the case of pointers and the (shared) pointee.

It is clear that, for the case of thread-shared variables, all threads need synchronization to avoid data-race conditions
(it is worth recalling that there are no race conditions if the variable is accessed only to be read, for example in the
case that the variable is marked as const.

One or more instances of G4Class can exist at the same time in our application. These instances can be thread-local
(e.g. G4VProcess) or thread-shared (e.g. G4LogicalVolume). In addition the class data field fValue can be by itself
thread-local or thread-shared. The actions to be taken to transform the code depend on three key aspects:

• Do we need to make the instance(s) of G4Class, thread-local or thread-shared ?
• Do we need to make the data field fValue , thread-local or thread-shared ?
• In case more than one instance of G4Class exits at the same time, do we need fValue to be instance-local or

instance-shared?

This gives rise to 8 different possible combinations, summarized in the following figures, each one discussed in detail
in the following.

Case A: thread-local class instance(s), thread-shared and instance-shared data field

In this case each thread has its own instance(s) of type G4Class. We need to share fValue both among threads and
among instances. As for a sequential application, we can simply add the static keyword to the declaration of fValue.
This technique is common in Geant4 but has the disadvantage that the resulting code is thread-unsafe (unless locks are
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Fig. 2.28: Four of the eight possible scenarios for sharing of objects

Fig. 2.29: Four of the eight possible scenarios for sharing of objects
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used). Trying to add const or modify its value (with the use of a lock) only outside of the event loop is the simplest
and best solution:

class G4Class {
static const G4double fValue;

};

Case B: thread-local class instance(s), thread-local and instance-shared data field.

This scenario is also common in Geant4: we need to share a variable (e.g. a data table) between instances of the same
class. However it is impractical or it would lead to incorrect results if we share among threads fValue (i.e. the penalty
due to the need of locks is high or the data field holds a event-dependent information). To make the code thread-safe
we mark the data field thread-local via the keyword G4ThreadLocal:

#include "G4Types.hh"
class G4Class {

static G4ThreadLocal G4double fValue;
};

It should be noted that only simple data types can be declared G4ThreadLocal. More information and the procedures
to make an object instance thread-safe via thread-local-storage are explained in this web-page.

Case C: thread-local class instance(s), thread-shared and instance-local data field

One possible use-case is the need to reduce the application memory footprint, providing a component to the thread-
local instances of G4Class that is shared among threads (e.g. a large cross-section data table that is different for each
instance). Since this scenario strongly depends on the implementation details it is not possible to define a common
strategy that guarantees thread-safety. The best option is to try to make this shared component const.

Case D: thread-local class instance(s), thread-local and instance-local data field

This case is the simplest; nothing has to be changed in the original code.

Case E: thread-shared class instance(s), thread-shared and instance-shared data field

With respect to thread-safety this case is equivalent to Case A, and the same recommendations and comments hold.

Case F: thread-shared class instance(s), thread-local and instance-shared data field

Concerning thread-safety this case is equivalent to Case B, and the same recommendations and comments hold.

Case G: thread-shared class instance(s), thread-shared and instance-shared data field

Since the class instances are shared among threads the data fields are automatically thread-shared. No action is needed,
however access to the data fields is in general thread unsafe, and the same comments and recommendations for Case
A are valid.
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Case H: thread-shared class instance(s), thread-local and instance-local data field

This is the most complex case and it is relatively common in Geant4 Version 10.0. For example G4ParticleDefinition
instances are shared among the threads, but the G4ProcessManager pointer data field needs to be thread- and instance-
local. To obtain thread-safe code two possible solutions exist:

• Use the split-class mechanism. This requires some deep understanding of Geant4 multi-threading and coordina-
tion with the kernel developers. Split-classes result in thread-safe code with good CPU performance, however
they also require modification in other aspects of the kernel category (in particular the run category). The idea
behind the split-class mechanism is that each thread-shared instance of G4Class initializes the thread-local data
fields by copying the initial status from the equivalent instance of the master, which is guaranteed to be fully
configured. Additional details on split classes are available in a dedicated section. An important side effect of
the split-class mechanism is that exactly the same number of instances of G4Class must exist in each thread
(e.g. the full set of G4Particles owned by the master is shared by threads. If a new particle is created, this has to
be shared by all threads).

• If performance is not a concern a simpler solution is available. This is a simplified version of the split-class
mechanism that does not copy the initial status of the thread-local data field from the master thread. A typical
example is a cache variable that reduces CPU usage, storing in memory the value of a CPU intensive calculation
for several events. In such a case the G4Cache utility class can be employed (see G4Cache).

Details on the split classes mechanism

We describe here the split-class mechanism, central to Geant4 multi-threading, by developing a thread-safe split-class
starting from our simplified example of G4Class. It will be clear that this technique allows for minimal changes
of the public API of the classes and thus is very suitable for making thread-safe code without breaking backward
compatibility.

To better describe the changes we introduce a setter and getter methods in the sequential version of our class (e.g.
before migration to multi-threading):

class G4Class
{
private:

G4double fValue;
public:

G4Class() { }
void SetMyData( G4double aValue ) { fValue = aValue; }
G4double GetMyData() const { return fValue; }

};

Instances of this class will be shared among threads (because they are memory-consuming objects) and we want to
transform this class into a split-class.

As a first step we add to the declaration of fValue the TLS keyword G4ThreadLocal (in a POSIX system, this is a
typedef to __thread). Unfortunately there are several constraints on what can be specified as TLS. In particular the
data member has to be declared static (or be a global variable):

#include "tls.hh"
class G4Class
{
private:

static G4ThreadLocal G4double fValue;
public:

G4Class() { }
void SetMyData( G4double aValue ) { fValue = aValue; }
G4double GetMyData() const { return fValue; }

};
G4ThreadLocal G4double G4Class::fValue = -1;
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The problem occurs if we need more than one instance of type G4Class with an instance-local different value of
fValue. How can this behavior be obtained now that the we have declared the data member as static? The method
used to solve this problem is called the split class mechanism. The idea is to collect all thread-local data fields into a
separate new class, instances of which (one per original instance of G4Class) are organized in an array. This array is
accessed via an index representing a unique identifier of a given class instance.

We can modify the code as follows:

class G4ClassData {
public:

G4double fValue;
void initialize() {

fValue = -1;
}

};

typedef G4Splitter>G4ClassData< G4ClassManager;
typedef G4ClassManager G4ClassSubInstanceManager;

#define G4MT_fValue ((subInstanceManager.offset[gClassInstanceId]).fValue)
class G4Class {
private:

G4int gClassInstanceId;
static G4ClassSubInstanceManager subInstanceManager;

public:
G4Class()
{

gClassInstanceId = subInstanceManager.CreateSubInstance();
}
void SetMyData( G4double aValue ) { G4MT_fValue = aValue; }
G4double GetMyData() const { return G4MT_fValue; }

};

G4ClassSubInstanceManager G4Class::subInstanceManager;
template >class G4ClassData< G4ThreadLocal G4int G4Splitter>G4ClassData<::workertotalspace = 0;
template >class G4ClassData< G4ThreadLocal G4int G4Splitter>G4ClassData<::offset = 0;

As one can see, the use of the value of fValue variable is very similar to how we use it in the original sequential mode,
all the handling of the TLS is done in the template class G4Splitter that can be implemented as:

template <class T>
class G4Splitter
{

private:
G4int totalobj;

public:
static G4ThreadLocal G4int workertotalspace;
static G4ThreadLocal T* offset;

public:
G4Splitter() : totalobj(0) {}
G4int CreateSubInstance()
{

totalobj++;
if ( totalobj > workertotalspace ) { NewSubInstances(); }
return (totalobj-1);

}
void NewSubInstances()
{

if ( workertotalspace >=totalobj ) { return; }
G4int originaltotalspace = workertotalspace;
workertotalspace = totalobj + 512;
offset = (T*) realloc( offset , workertotalspace * sizeof(T) );
if ( offset == 0 )
{

G4Exception( "G4Splitter::NewSubInstances","OutOfMemory",FatalException,"Cannot
→˓malloc space!");
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}
for ( G4int i = originaltotalspace; i&lt; workertotalspace ; i++)
{

offset[i].initialize();
}

}
void FreeWorker()
{

if ( offset == 0 ) { return; }
delete offset;

}
};

Let’s consider a function that can be called concurrently by more than one thread:

#include "G4Class.hh"
//Variables at global scope
G4Class a;
G4Class b;

void foo()
{

a.SetMyData(0.1); //First instance
b.SetMyData(0.2); //Second instance
G4cout << a.GetMyData()<< " "<< b.GetMyData() << G4endl;

}

We expect that each thread will write on the screen: “0.1 0.2”

When we declare the variable a, the static object subInstanceManager in memory has the state:

totalobj = 0
TLS workertotalspace = 0
TLS offset = NULL

The constructor of G4Class calls CreateSubInstance, and since at this point totalobj equals 1,
G4Splitter::NewSubInstances() is called. This will create a buffer of 512 pointers of type G4ClassData, each
of which is initialized (via G4ClassData::initialize()) to the value -1. Finally, G4Splitter::CreateSubInstance()
returns 0 and a.gClassInstanceId equals 0. When a.SetMyData(0.1) is called, the call is equivalent to:

subInstanceManager.offset[0].fValue = 0.1;

When now we declare the instance b the procedure is repeated, except that, since totalobj now equals 1 and workerto-
talspace is 512, there is no need to call G4Splitter::NewSubInstances() and we use the next available array position in
offset. Only if we create more than 512 instances of G4Class is the memory array reallocated with more space for the
new G4ClassData instances.

Since offset and workertotalspace are marked G4ThreadLocal this mechanism allows each thread to have its own copy
of fValue. The function foo() can be called from different threads and they will use the thread-shared a and b to access
a thread-local fValue data field. No data-race condition occurs and there is no need for mutexes and locks.

An additional complication is that if the initialization of the thread-local part is not trivial and we want to copy some
values from the corresponding values of the master thread (in our example, how is fValue to be initialized to a value
that depends on the run condition?). The initial status of the thread-local data field must be initialized, for each worker,
in a controlled way. The run cateogory classes must be modified to preapre the TLS space of each thread before any
work is performed.

The following diagram shows the chain of calls in G4ParticleDefinition when a thread needs to access a process
pointer:

Note: A note on content of split classes. Data fields of the split class should have a size that is known at compile
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Fig. 2.30: Simplified view of the split-class mechanism

time. Thus objects like std::vector cannot be contained in split class data, but pointers to these object can.

List of split-classes

In Geant4 Version 10.0 the following are split-classes:

• For geometry related split classes the class G4GeomSplitter implements the split-class mechanism. These are
the geometry-related split-classes:

1. G4LogicalVolume
2. G4PhysicalVolume
3. G4PVReplica
4. G4Region
5. G4PloyconeSide
6. G4PolyhedraSide

• For Physics related split-classes the classes G4PDefSplitter and G4VUPLSplitter implement the split-class
mechanism. These are the physics-related split-classes:

1. G4ParticleDefinition
2. G4VUserPhysicsList
3. G4VModularPhysicsList
4. G4VPhysicsConstructor

Explicit memory handling

In the following, some utility classes and functions to help memory handling are discussed. Before going into detail it
should be noted that all of these utilities have a (small) CPU and memory performance penalty; they should be used
with caution and only if other simpler methods are not possible. In some cases limitations are present.

The template class G4Cache

In many cases the full functionality of split-classes is not needed and what we really want are independent thread-local
and instance-local data fields in thread-shared instances of G4Class. A concrete example would be a class representing
a cross-section that is made shared because of its memory footprint. It requires a data field to act as a cache to store
the value of a CPU intensive calculation. Since different threads share this instance we need to transform the code in
a manner similar to what we do for the split-class mechanism. The helper class G4Cache can be used for this purpose
(note that the complication of the initial value of the thread-local data field is not present in this case).

G4Cache is a template class that implements a light-weight split-classes mechanism. Being a template it allows for
storing any user-defined type. The public API of this class is very simple and it provides two methods:
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T& G4Cache<T>::Get() const;
void G4Cache<T>::Put(const T& val) const;

to access a thread-local instance of the cached object. For example:

#include "G4Cache.hh"
class G4Class {

G4Cache<G4double> fValue;
void foo() {

// Store a thread-local value
G4double val = someHeavyCalc();
fValue.Put( val );

}
void bar() {

//Get a thread-local value:
G4double local = fValue.Get();

}
};

Since Get returns a reference to the cached object is possible to avoid the use of Put to update the cache:

void G4Class::bar() {
//Get a reference to the thread-local value:
G4double &local = fValue.Get();
// Use local as in the original sequential code, cache is updated, without the need to use Put
local++;

}

In case the cache holds an instance of an object it is possible to implement lazy initialization, as in the following
example:

#include "G4Cache.hh"
class G4Class {

G4Cache<G4Something*> fValue;
void bar() {

//Get a thread-local value:
G4Something* local = fValue.Get();
if ( local == 0 ) {

local = new G4Something( .... );
//warning this may cause a memory leak. Use of G4AutoDelete can help, see

→˓later
}

}
};

Since the use of G4Cache implies some CPU penalty, it is good practice to try to minimize its use. For example, do
not use a single G4Cache for several data fields; instead use a helper structure as the template parameter for G4Cache:

class G4Class {
struct {

G4double fValue1;
G4Something* fValue2;

} ToBeCached_t;
G4Cache<ToBeCached_t> fCache;

};

Two specialized versions of G4Cache exist that implement the semantics of std::vector and std::map

• G4VectorCache<T> implements a thread-local std::vector<T> with methods Push_back(. . . ), operator[], Be-
gin(), End(), Clear(), Size() and Pop_back()

• G4MapCache<K,V> implements a thread-local std::map<K,V> with methods Insert(. . . ), Begin(), End(),
Find(. . . ), Size(), Get(. . . ), Erase(. . . ), operator[] and introduces the method Has(. . . )
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A detailed example of the use of these cache classes is discussed in the unit test
source/global/management/test/testG4Cache.cc.

G4AutoDelete namespace

During the discussion of G4Cache we have shown the example of storing a pointer to a dynamically created object.
A common problem is to correctly delete this object at the end of its life-cycle. Since the G4Class instance is thread-
shared, it is not possible to delete the cached object in the destructor of G4Class because it is called by the master
and the thread-local instances of the cached object will not be deleted. In some cases, to solve this problem, it is
possible to use a helper introduced in the namespace G4AutoDelete. A simplified garbage collection mechanism
without reference counting is implemented:

#include "G4AutoDelete.hh"
void G4Class::bar() {

//Get a thread-local value:
G4Something* local = fValue.Get();
if ( local == 0 ) {

local = new G4Something( .... );
G4AutoDelete::Register( local ); //All thread instances will be delete automatically

}
}

This technique will delete all instances of the registered objects at the end of the program, after the main function
has returned (if they were declared static).

This method has several limitations:

1. Registered objects will be deleted only at the end of the program
2. The order in which objects of different type will be deleted is not specified
3. Once an object is registered it cannot be deleted anymore explicitly by user
4. The objects that are registered with this method cannot contain data filed marked G4ThreadLocal and cannot be

a split-classes
5. Registered object cannot make use of G4Allocator functionalities
6. These restrictions apply to all data members for which the class owns property

In addition, since the objects will be deleted in a non-specified order after the main program exit, it is recommended
to provide a very simple destructor that does not depend on other objects (in particular should not call any kernel
functionality).

Thread Private singleton

In Geant4 the singleton pattern is used in several cases. The majority of the managers are implemented via the singleton
pattern, the simplest of which is:

class G4Singleton {
public:

G4Singleton* GetInstance() {
static G4Singleton anInstance;
return&anInstance;

}
};

With multi-threading, many managers and singletons are thread-local. For this reason they have been transformed to:

class G4Singleton {
private:

static G4ThreadLocal* instance;
public:
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G4Singleton* GetInstance() {
if ( instance == 0 ) instance = new G4Singleton;
return instance;

}
};

This causes a memory leak: it is not possible to delete thread-local instances of the singletons. To solve this problem
the class G4ThreadLocalSingleton has been added to the toolkit. This template class has a single public method
T* G4ThreadLocalSingleton<T>::Instance() that returns a pointer to a thread-local instance of T. The thread-local
instances of T will be deleted, as in the case of G4Cache, at the end of the program.

The example code can be transformed to:

#include "G4ThreadLocalSingleton.hh"
class G4Singleton {

friend class G4ThreadLocalSingleton<G4Singleton>;
public:

G4Singleton* GetInstance() {
static G4ThreadLocalSingleton<G4Singleton> theInstance;
return theInstance.Instance();

}
};

2.14.4 Threading model utilities and functions

Geant4 parallelism is based on POSIX standards and in particular on the pthreads library. However all functionalities
have been wrapped around Geant4 specific names. This allows the inclusion of the WIN32 threading model. In the
following, the main functionalities available in the global/management category are discussed.

Types and functions related to the use of threads

G4Thread defines the type for threads (POSIX pthread_t). The types G4ThreadFunReturnType and
G4ThreadFunArgType define respectively the return value and the argument type for a function executed in a thread.
Use G4THREADCREATE and G4THREADJOIN macros to respecively create and join a thread. G4Pid_t is the
type for the PID of a thread.

Example:

#include "G4Threading.hh"

//Define a thread-function using G4 types
G4ThreadFunReturnType myfunc( G4ThreadFunArgType val) {

double value = *(double*)val;
MESSAGE("value is:"<<value);
return /*(G4ThreadFunReturnType)*/NULL;

}

//Example: spawn 10 threads that execute myfunc
int main(int,char**) {
MESSAGE( "Starting program ");
int nthreads = 10;
G4Thread* tid = new G4Thread[nthreads];
double *valss = new double[nthreads];
for ( int idx = 0 ; idx < nthreads ; ++idx ) {
valss[idx] = (double)idx;
G4THREADCREATE(&(tid[idx]) , myfunc,&(valss[idx]) );

}
for ( int idx = 0 ; idx < nthreads ; ++idx ) {

G4THREADJOIN( (tid[idx]) );
}
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MESSAGE( "Program ended ");
return 0;

}

Types and functions related to the use of mutexes and conditions

G4Mutex is the type for mutexes in Geant4 (POSIX pthread_mutex_t). The G4MUTEX_INITIALIZER and
G4MUTEXINIT macros are used to initialize a mutex. Use G4MUTEXLOCK and G4MUTEXUNLOCK func-
tions to lock/unlock a mutex. The G4AutoLock class helps the locking/unlocking of a mutex and should be always be
used instead of G4MUTEXLOCK/UNLOCK.

Example:

#include "G4Threading.hh"
#include "G4AutoLock.hh"

//Create a global mutex
G4Mutex mutex = G4MUTEX_INITIALIZER;
//Alternatively, call in the main function G4MUTEXINIT(mutex);

//A shared resource (i.e. manipulated by all threads)
G4int aValue = 1;

G4ThreadFunReturnType myfunc( G4ThreadFunArgType ) {
//Explicit lock/unlock
G4MUTEXLOCK(&mutex );
++aValue;
G4MUTEXUNLOCK(&mutex );
//The following should be used instead of the previous because it guarantees automatic
//unlock of mutex.
//When variable l goes out of scope, G4MUTEXUNLOCK is automatically called
G4AtuoLock l(&mutex);
--aValue;
//Explicit lock/unlock. Note that lock/unlock is only tried if mutex is already locked/unlock
l.lock();
l.lock();//No problem here
++aValue;
l.unlock();
l.lock();
--aValue;
return /*(G4ThreadFunReturnType)*/NULL;

}

A complete example of the usage of these functionalities is discussed in the unit test
source/global/management/test/ThreadingTest.cc.

Conditions are also available via the G4Condition type, the G4CONDITION_INITIALIZER macro and the two
functions G4CONDITIONWAIT and G4CONDITIONBORADCAST. The use of conditions allows the barrier
mechanism (e.g. synchronization point for threads) to be implemented. A detailed example on the use of con-
ditions and how to implement correctly a barrier is discussed in G4MTRunManager code (at the end of file
source/run/src/G4MTRunManager.cc). In general there should be no need for kernel classes (with the exception of run
category) to use conditions since threads are considered independent and do not need to communicate between them.

2.14.5 Random Number Generation Seeding in MT

The seeding strategy in MT mode is based on the requirement to guarantee full reproducibility. This means that each
even has to be preassigned a seed that allows the simulation of that particular event to be run independently on the job
configuration (e.g. number of threads).
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Before worker threads are spawned, the master thread pre-generates random number seeds that are coupled to the
event number. For efficiency reasons the seeds are generated for a block of events (the event modulo, see UI com-
mand /run/eventModulo). In addition the user can derive from the G4MTRunManager class and implement their
own strategy re-implementing the function, called by the master thread during run initialization: virtual G4bool
G4MTRunManager::InitializeSeeds(G4int) { return false; }.

In this function the user should do:

G4bool MyRunManager::InitializeSeeds(G4int nEvents ) {
//Generate as desired seeds for the run w/ nEvents
//...
auto helper = G4RNGHelper::GetInstance();
helper->Clear();//To remove any seed from previous run
//Fill seeds one by one, use:
helper->AddOneSeed( seed );
//Or fill many:
assert( size(seedsArray) == numEvents*number_seeds_per_event );
helper->Fill( seedsArray , numEvents , numEvents , number_seeds_per_event);
//Next line is very important, to avoid retriggers of fills from kernel with default strategy/
//Communicate how many events are ready
G4MTRunManager::nSeedsFilled = numEvents;
return true;

}

It is important to note that the MIXMAX random number generator (available since version 10.3) is the recommended
engine for MT jobs since it guarantees divergent number histories even for consecutive random number seeds.

2.14.6 Additional material

In this chapter we discussed in detail what are probably the most critical aspects of multi-threading capabilities in
Geant4. Additional material can be found in online resources. The main entry point is the Geant4 multi-threading
task-force twiki page. The Application Developers Guide contains general information regarding multi-threading that
is also relevant for Toolkit Developers.

A beginner’s guide to multi-threading targeted to Geant4 developers has been presented during the 18th Collaboration
Meeting: agenda

For additional information consult this page and this page

Several contributions at the 18th Collaboration Meeting discuss multi-threading:

• Plenary Session 3 - Geant4 version 10 (part 1): agenda
• Hadronics issues related to MT: agenda
• Developments for multi-threading: work-spaces: contribution
• Status of the planned developments: coding guidelines, MT migration, g4tools migration, code review: contri-

bution
• G4MT CP on MIC Architecture: contribution

Finally, a few articles and proceedings have been prepared:

• X. Dong et al, Creating and Improving Multi-Threaded Geant4, Journal of Physics: Conference Series 396, no.
5, p. 052029.

• X. Dong et al, Multithreaded Geant4: Semi-automatic Transformation into Scalable Thread-Parallel Software,
Euro-Par 2010 - Parallel Pro- cessing (2010), vol. 6272, pp. 287-303.

• S. Ahn et al, Geant4-MT: bringing multi-threaded Geant4 into production, to be published in SNA&MC2013
proceeding
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CHAPTER

THREE

EXTENDING TOOLKIT FUNCTIONALITY

3.1 Geometry

3.1.1 What can be extended ?

Geant4 already allows a user to describe any desired solid, and to use it in a detector description, in some cases,
however, the user may want or need to extend Geant4’s geometry. One reason can be that some methods and types in
the geometry are general and the user can utilise specialised knowledge about his or her geometry to gain a speedup.
The most evident case where this can happen is when a particular type of solid is a key element for a specific detector
geometry and an investment in improving its runtime performance may be worthwhile.

To extend the functionality of the Geometry in this way, a toolkit developer must write a small number of methods for
the new solid. We will document below these methods and their specifications. Note that the implementation details
for some methods are not a trivial matter: these methods must provide the functionality of finding whether a point
is inside a solid, finding the intersection of a line with it, and finding the distance to the solid along any direction.
However once the solid class has been created with all its specifications fulfilled, it can be used like any Geant4 solid,
as it implements the abstract interface of G4VSolid.

Other additions can also potentially be achieved. For example, an advanced user could add a new way of creating
physical volumes. However, because each type of volume has a corresponding navigator helper, this would require
to create a new Navigator as well. To do this the user would have to inherit from G4Navigator and modify the new
Navigator to handle this type of volumes. This can certainly be done, but will probably be made easier to achieve in
the future versions of the Geant4 toolkit.

3.1.2 Adding a new type of Solid

We list below the required methods for integrating a new type of solid in Geant4. Note that Geant4’s specifications for
a solid pay significant attention to what happens at points that are within a small distance (tolerance, kCarTolerance
in the code) of the surface. So special care must be taken to handle these cases in considering all different possible
scenarios, in order to respect the specifications and allow the solid to be used correctly by the other components of the
geometry module.

Creating a derived class of G4VSolid

The solid must inherit from G4VSolid or one of its derived classes and implement its virtual functions.

Mandatory member functions you must define are the following pure virtual of G4VSolid:

EInside Inside(const G4ThreeVector& p)
G4double DistanceToIn(const G4ThreeVector& p)
G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v)
G4ThreeVector SurfaceNormal(const G4ThreeVector& p)
G4double DistanceToOut(const G4ThreeVector& p)
G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
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const G4bool calcNorm=false,
G4bool *validNorm=0, G4ThreeVector *n)

G4bool CalculateExtent(const EAxis pAxis,
const G4VoxelLimits& pVoxelLimit,
const G4AffineTransform& pTransform,

G4double& pMin,
G4double& pMax) const

G4GeometryType GetEntityType() const
std::ostream& StreamInfo(std::ostream& os) const

They must perform the following functions

EInside Inside(const G4ThreeVector& p)

This method must return:

• kOutside if the point at offset p is outside the shape boundaries plus Tolerance/2,
• kSurface if the point is <= Tolerance/2 from a surface, or
• kInside otherwise.

G4ThreeVector SurfaceNormal(const G4ThreeVector& p)

Return the outwards pointing unit normal of the shape for the surface closest to the point at offset p.

G4double DistanceToIn(const G4ThreeVector& p)

Calculate distance to nearest surface of shape from an outside point p. The distance can be an underestimate.

G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v)

Return the distance along the normalised vector v to the shape, from the point at offset p. If there is no intersection,
return kInfinity. The first intersection resulting from ‘leaving’ a surface/volume is discarded. Hence, this is tolerant of
points on surface of shape.

G4double DistanceToOut(const G4ThreeVector& p)

Calculate distance to nearest surface of shape from an inside point. The distance can be an underestimate.

G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
const G4bool calcNorm=false,
G4bool *validNorm=0, G4ThreeVector *n=0);

Return distance along the normalised vector v to the shape, from a point at an offset p inside or on the surface of the
shape. Intersections with surfaces, when the point is not greater than kCarTolerance/2 from a surface, must be ignored.

If calcNorm is true, then it must also set validNorm to either

• true, if the solid lies entirely behind or on the exiting surface. Then it must set n to the outwards normal vector
(the Magnitude of the vector is not defined).

• false, if the solid does not lie entirely behind or on the exiting surface.

If calcNorm is false, then validNorm and n are unused.

G4bool CalculateExtent(const EAxis pAxis,
const G4VoxelLimits& pVoxelLimit,
const G4AffineTransform& pTransform,

G4double& pMin,
G4double& pMax) const

Calculate the minimum and maximum extent of the solid, when under the specified transform, and within the specified
limits. If the solid is not intersected by the region, return false, else return true.
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G4GeometryType GetEntityType() const;

Provide identification of the class of an object (required for persistency and STEP interface).

std::ostream& StreamInfo(std::ostream& os) const

Should dump the contents of the solid to an output stream.

The method:

G4VSolid* Clone() const

should be implemented for every solid to provide a way to clone themselves in a new object with same specifications.

The method:

G4ThreeVector GetPointOnSurface() const

returns a random point located on the surface of the solid. Points returned should not necessarily be uniformly dis-
tributed.

The method:

G4double GetCubicVolume()

should be implemented for every solid in order to cache the computed value (and therefore reuse it for future calls
to the method) and to eventually implement a precise computation of the solid’s volume. If the method will not be
overloaded, the default implementation from the base class will be used (estimation through a Monte Carlo algorithm)
and the computed value will not be stored.

The method:

G4double GetSurfaceArea()

should be implemented for every solid in order to cache the computed value (and therefore reuse it for future calls to
the method) and to eventually implement a precise computation of the solid’s surface area. If the method will not be
overloaded, the default implementation from the base class will be used (estimation through a Monte Carlo algorithm)
and the computed value will not be stored.

There are a few member functions to be defined for the purpose of visualisation. The first method is mandatory, and
the next four are not.

// Mandatory
virtual void DescribeYourselfTo (G4VGraphicsScene& scene) const = 0;

// Not mandatory
virtual G4VisExtent GetExtent() const;
virtual G4Polyhedron* CreatePolyhedron () const;
virtual G4NURBS* CreateNURBS () const;
virtual G4Polyhedron* GetPolyhedron () const;

What these methods should do and how they should be implemented is described here.

void DescribeYourselfTo (G4VGraphicsScene& scene) const;

This method is required in order to identify the solid to the graphics scene. It is used for the purposes of “double
dispatch”. All implementations should be similar to the one for G4Box:

void G4Box::DescribeYourselfTo (G4VGraphicsScene& scene) const
{
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scene.AddSolid (*this);
}

The method:

G4VisExtent GetExtent() const;

provides extent (bounding box) as a possible hint to the graphics view. You must create it by finding a box that encloses
your solid, and returning a VisExtent that is created from this. The G4VisExtent must presumably be given the minus
x, plus x, minus y, plus y, minus z and plus z extents of this “box”. For example a cylinder can say

G4VisExtent G4Tubs::GetExtent() const
{

// Define the sides of the box into which the G4Tubs instance would fit.
return G4VisExtent (-fRMax, fRMax, -fRMax, fRMax, -fDz, fDz);

}

The method:

G4Polyhedron* CreatePolyhedron () const;

is required by the visualisation system, in order to create a realistic rendering of your solid. To create a G4Polyhedron
for your solid, consult G4Polyhedron.

While the method:

G4Polyhedron* GetPolyhedron () const;

is a “smart” access function that creates on requests a polyhedron and stores it for future access and should be cus-
tomised for every solid.

3.1.3 Modifying the Navigator

For the vast majority of use-cases, it is not indeed necessary (and definitely not advised) to extend or modify the
existing classes for navigation in the geometry. A possible use-case for which this may apply, is for the description
of a new kind of physical volume to be integrated. We believe that our set of choices for creating physical volumes is
varied enough for nearly all needs. Future extensions of the Geant4 toolkit will probably make easier exchanging or
extending the G4Navigator, by introducing an abstraction level simplifying the customisation. At this time, a simple
abstraction level of the navigator is provided by allowing overloading of the relevant functionalities.

Extending the Navigator

The main responsibilities of the Navigator are:

• locate a point in the tree of the geometrical volumes;
• compute the length a particle can travel from a point in a certain direction before encountering a volume bound-

ary.

The Navigator utilises one helper class for each type of physical volume that exists. You will have to reuse the helper
classes provided in the base Navigator or create new ones for the new type of physical volume.

To extend G4Navigator you will have then to inherit from it and modify these functions in your ModifiedNavigator
to request the answers for your new physical volume type from the new helper class. The ModifiedNavigator should
delegate other cases to the Geant4’s standard Navigator.

Replacing the Navigator

Replacing the Navigator is another possible operation. It is similar to extending the Navigator, in that any types of
physical volume that will be allowed must be handled by it. The same functionality is required as described in the
previous section.
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However the amount of work is probably potentially larger, if support for all the current types of physical volumes is
required.

The Navigator utilises one helper class for each type of physical volume that exists. These could also potentially be
replaced, allowing a simpler way to create a new navigation system.

3.2 Electromagnetic Fields

3.2.1 Creating a New Type of Field

Geant4 currently handles magnetic and electric fields and, in future releases, will handle combined electromagnetic
fields. Fields due to other forces, not yet included in Geant4, can be provided by describing the new field and the force
it exerts on a particle passing through it. For the time being, all fields must be time-independent. This restriction may
be lifted in the future.

In order to accommodate a new type of field, two classes must be created: a field type and a class that determines the
force. The Geant4 system must then be informed of the new field.

A new Field class

A new type of Field class may be created by inheriting from G4Field

class NewField : public G4Field
{

public:
void GetFieldValue( const double Point[3],

double *pField )=0;
}

and deciding how many components your field will have, and what each component represents. For example, three
components are required to describe a vector field while only one component is required to describe a scalar field.

If you want your field to be a combination of different fields, you must choose your convention for which field goes
first, which second etc. For example, to define an electromagnetic field we follow the convention that components 0,1
and 2 refer to the magnetic field and components 3, 4 and 5 refer to the electric field.

By leaving the GetFieldValue method pure virtual, you force those users who want to describe their field to create
a class that implements it for their detector’s instance of this field. So documenting what each component means is
required, to give them the necessary information.

For example someone can describe DetectorAbc’s field by creating a class DetectorAbcField, that derives from your
NewField

class DetectorAbcField : public NewField
{

public:
void MyFieldGradient::GetFieldValue( const double Point[3],

double *pField );
}

They then implement the function GetFieldValue

void MyFieldGradient::GetFieldValue( const double Point[3],
double *pField )

{
// We expect pField to point to pField[9];
// This & the order of the components of pField is your own
// convention
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// We calculate the value of pField at Point ...
}

A new Equation of Motion for the new Field

Once you have created a new type of field, you must create an Equation of Motion for this Field. This is required in
order to obtain the force that a particle feels.

To do this you must inherit from G4Mag_EqRhs and create your own equation of motion that understands your field.
In it you must implement the virtual function EvaluateRhsGivenB. Given the value of the field, this function calculates
the value of the generalised force. This is the only function that a subclass must define.

virtual void EvaluateRhsGivenB( const G4double y[],
const G4double B[3],

G4double dydx[] ) const = 0;

In particular, the derivative vector dydx is a vector with six components. The first three are the derivative of the
position with respect to the curve length. Thus they should set equal to the normalised velocity, which is components
3, 4 and 5 of y.

(dydx[0], dydx[1], dydx[2]) = (y[3], y[4], y[5])

The next three components are the derivatives of the velocity vector with respect to the path length. So you should
write the “force” components for

dydx[3], dydx[4] and dydx[5]

for your field.

Get a G4FieldManager to use your field

In order to inform the Geant4 system that you want it to use your field as the global field, you must do the following
steps:

1. Create a Stepper of your choice:

yourStepper = new G4ClassicalRK( yourEquationOfMotion );
// or if your field is not smooth eg
// new G4ImplicitEuler( yourEquationOfMotion );

2. Create a chord finder that uses your Field and Stepper. You must also give it a minimum step size, below which
it does not make sense to attempt to integrate:

yourChordFinder= new G4ChordFinder( yourField,
yourMininumStep, // say 0.01*mm
yourStepper );

3. Next create a G4FieldManager and give it that chord finder,

yourFieldManager= new G4FieldManager();
yourFieldManager.SetChordFinder(yourChordFinder);

4. Finally we tell the Geometry that this FieldManager is responsible for creating a field for the detector.

G4TransportationManager::GetTransportationManager()
-> SetFieldManager( yourFieldManager );

Changes for non-electromagnetic fields

If the field you are interested in simulating is not electromagnetic, another minor modification may be required. The
transportation currently chooses whether to propagate a particle in a field or rectilinearly based on whether the particle
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is charged or not. If your field affects non-charged particles, you must inherit from the G4Transportation and re-
implement the part of GetAlongStepPhysicalInteractionLength that decides whether the particles is affected by your
force.

In particular the relevant section of code does the following:

// Does the particle have an (EM) field force exerting upon it?
//
if( (particleCharge!=0.0) ){

fieldExertsForce= this->DoesGlobalFieldExist();
// Future: will/can also check whether current volume's field is Zero or
// set by the user (in the logical volume) to be zero.

}

and you want it to ask whether it feels your force. If, for the sake of an example, you wanted to see the effects of
gravity on a heavy hypothetical particle, you could say

// Does the particle have my field's force exerted on it?
//
if (particle->GetName() == "VeryHeavyWIMP") {

fieldExertsForce= this->DoesGlobalFieldExist(); // For gravity
}

After doing all these steps, you will be able to see the effects of your force on a particle’s motion.

3.3 Particles

3.3.1 Properties of particles

The G4ParticleDefinition class contains the properties which characterize individual particles, such as name, mass,
charge, spin, and so on. Properties of particles are set during the initialization of each particle type. The default values
of these properties are described in each particle class. In the case of heavy nuclei properties may be given by external
files. Once initialized, particle properties cannot be changed except for those related to its decay; these are life time,
branching ratio of each decay mode and the ‘‘stable” flag. Geant4 proivides a method to override these properties by
using external files.

Properties of nuclei

Individual classes are provided for light nuclei (i.e. deuteron, triton, He3, and He4) with default values of their
properties. Other nuclei are dynamically created by requests from processes (and users). G4IonTable class handles the
creation of such ions. Default properties of nuclei are determined with help of G4NuclearProperties.

Users can register a G4IsotopeTable to the G4IonTable. G4IsotopeTable which describes the properties used
to create ions. Excitation energy, decay modes, and life times for relatively long-lived nuclei can be obtained
by using G4RIsotopeTable and data files such as those pointed to by the G4RADIOACTIVEDATA environment
variable. G4IsotopeMagneticMomentTable provides a table of nuclear magnetic moments using the data file
G4IsotopeMagneticMoment.table. The environment variable G4IONMAGNETICMOMENT should be set to point
to this file.

Changing particle properties

Only in the ‘‘PreInit” phase can properties be modified with the help of the G4ParticlePropertyTable class. Particle
properties can be overridden with the method

G4bool SetParticleProperty(const G4ParticlePropertyData& newProperty)
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by setting new values in G4ParticlePropertyData. In addition, the current particle property values can be extracted to
text files by using G4TextPPReporter. On the other hand, G4TextPPRetriever can change particle properties according
to text files.

3.3.2 Adding New Particles

A new particle can be added by creating a new class for it. The new class should be derived from G4ParticleDefinition.
You can find an example under examples/extended/exoticphysics/monopole. There, the new class for the monopole is
defined as follows:

class G4Monopole : public G4ParticleDefinition
{
private:
static G4Monopole* theMonopole;

G4Monopole(
const G4String& aName, G4double mass,
G4double width, G4double charge,
G4int iSpin, G4int iParity,
G4int iConjugation, G4int iIsospin,
G4int iIsospin3, G4int gParity,
const G4String& pType, G4int lepton,
G4int baryon, G4int encoding,
G4bool stable, G4double lifetime,
G4DecayTable *decaytable );

public:
virtual ~G4Monopole();
static G4Monopole* MonopoleDefinition();
static G4Monopole* Monopole();

}

The static methods above must be defined and implemented so that the new particle instance will be created in the
ConstructParticles method of your physics list. New properties may be added if necessary (G4Monopole has a a
property for magnetic charge). Values of properties need to be given in the static method as other particle classes.

G4Monopole* G4Monopole::MonopoleDefinition(G4double mass, G4int mCharge, G4int eCharge)
{

if(!theMonopole) {
theMonopole = new G4Monopole(

"monopole", mass, 0.0*MeV, 0,
0, 0, 0,
0, 0, 0,

"boson", 0, 0, 0,
true, -1.0, 0);

}
return theMonopole;

}

3.3.3 Nuclide properties from the Evaluated Nuclear Structure Data File

G4NuclideTable

G4NuclideTable was introduced in Geant4 v10 to provide properties of nuclides. The excitation energy and decay
constant of each of 25,497 states are listed in the table and the spin and dipole magnetic moments are available for
some states. The source of these data is ENSDF as of February 2015. In Geant4 v10.02 the hard-coded list of the
nuclide states was removed and it now uses only the ENSDFSTATE.dat. G4NuclideTable fills this array by scanning
the file and selecting all nuclides with half-lives greater than 1.0 microsecond.
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The user may set the minimum half-life of states that will be selected during the scan of ENSDFSTATE.dat. If that
value is less than the default of 1 microsecond, more states will be read into G4NuclideTable. If it is larger, fewer
states will be included. Any nuclide thus read into G4NuclideTable will be treated as a track-able particle, which will
travel some distance as sampled from its decay time. For each state, G4NuclideTable assigns a level number ranging
from 0 to the PDG limit of 9. All ground states are assigned the value 0. In a given nucleus, the selected state with
the smallest excitation energy is assigned to be level 1, and so on for the subsequent higher selected excitation energy
states up to level 8. Note that the ordering of states in a given nucleus will change depending on the minimum half-life
value chosen. If more than 8 excited states are found, the excess states are all assigned to level 9. The above action is
taken at initialization time and may be invoked in two ways:

• G4NuclideTable::SetThresholdOfHalfLife (G4double)

• /particle/manage/nuclideTable/min_halflife 0.001 ns

Note that while setting a small minimum half-life will provide a more precise decay chain with more short-lived
nuclides, the increased number of states will reduce CPU performance and increase memory footprint.

Adding states

User may add states with user specified values of excitation energy, decay constant, spin and dipole magnetic moment
by:

AddState (G4int Z, G4int A , G4double excitation_energy, G4double lifetime, G4int ionJ=0,
G4double ionMu=0.0)

This is done at initialization time and all values are read into the G4NuclideTable array regardless of the minimum
half-life value. These user states are all assigned to level number 9.

In addition to the minimum half-life value, G4NuclideTable also allows the user to set the tolerance level of the
excitation energy used to identify the state. The default value of the tolerance is 1 eV which the user may modify in
one of two ways:

• G4NuclideTable::SetLevelTolerance(G4double)

• /particle/manage/nuclideTable/level_tolerance 1 keV

This modification is also done during the initialization phase. Note that in adding states a user must specify excited
states with a precision that matches the tolerance. Thus, if the tolerance is 1 eV, the level in keV would be given, for
example, by 2505.531, otherwise that state will be missed. If it is not desirable to specify levels to such a precision,
the tolerance value can be increased. If, however, there are two levels in a nucleus which are closer to one another than
the value of the tolerance, one of the levels will be missed. Currently G4RadioactiveDecay and G4PhotoEvporation
models share the state information with G4NuclideTable. Other models are encouraged to do lifewise.

3.4 Electromagnetic Physics

3.4.1 Introduction

The Geant4 set of electromagnetic (EM) physics processes and models are used in practically all types of simulation
applications including high energy and nuclear physics experiments, beam transport, medical physics, cosmic ray
interactions and radiation effects in space. In addition to models for low and high energy EM physics for simulation
of radiation effects in media, a sub-library of very low energy models was developed within the framework of the
Geant4-DNA project, with the goal of simulating radiation effects involving physics and chemistry at the sub-cellular
level.

In the early stages of Geant4, low and high energy EM processes were developed independently, with the result that
these processes could not be used in the same run. To resolve this problem, the interfaces were unified so that the

3.4. Electromagnetic Physics 63



Book For Toolkit Developers, Release 10.3

standard, muons, highenergy, lowenergy, and dna EM physics sub-packages now follow the same design. Migration to
this common design resulted in an improvement of overall CPU performance, and made it possible to provide several
helper classes which are useful for a variety of user applications (for example G4EmCalculator).

3.4.2 General design

The electromagnetic processes of Geant4 follow the basic interfaces:

• G4VEnergyLossProcess;
• G4VEmProcess;
• G4VMultipleScattering.

The class diagram is shown in the figure.

Fig. 3.1: Design of EM physics processes.

These common interfaces for all EM sub-packages enabled the full migration of EM classes to multi-threading without
significant modification of existing physics model codes. Initialization of the energy loss, stopping power and cross
section tables is carried out only once in the master thread at the beginning of simulation. These tables are shared
between threads in run time.

3.4.3 Electromagnetic processes

These base classes provide all management work of initialisation of processes, creation and filling of physics tables,
and generic run-time actions. Concrete process classes are responsible for the initialisation of parameters and defining
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the set of models for the process. It is strongly recommented to use existing processes and not create a new one for
each new model. Here is a list of main EM processes:

• G4PhotoelectricEffect;
• G4ComptonScattering;
• G4GammaConversion;
• G4GammaConversion;
• G4RayleighScattering;
• G4eIonisation;
• G4eBremsstrahlung;
• G4hIonisation;
• G4MuIonisation;
• G4hIonisation;
• G4MuBremsstrahlung;
• G4eMultipleScattering;
• G4MuMultipleScattering.

More processes are provided in lowenergy, polarisation, and adjoint sub-libraries. In some specific cases, interfaces
described above are not applicable and the high level interface G4VProcess is used.

Any concrete physics process class may need custom parameters. It is recommended to define following parameters
specific to the class in the class constructor:

• process sub-type;
• buildTables flag;
• secondary particle type;
• min/max energy of cross section tables;
• number of bins in tables;
• flag to force zero cross section in the low edge of a table.

Any EM process should implement following methods:

• IsApplicable(const G4ParticleDefinition& p)
• PrintInfo()

Main initialisation of a process is performed by initialisation methods:

• InitialiseEnergyLossProcess(const G4ParticleDefinition* part,const
G4ParticleDefinition*basePart)

• InitialiseProcess(const G4ParticleDefinition*)

In these methods a default set of EM models and their energy intervals of applicability may be defined. It is strongly
recommended that a process class cannot change EM parameters in G4EmParameters class or status of the de-
excitation module. EM parameters can be modifided in physics lists or via UI commands.

3.4.4 Electromagnetic models

Concrete physics models are implemented via EM model interfaces:

• G4VEmModel;
• G4VMscModel.

In the majority of use-cases when new EM physics is needed, it is enough to create only a new model class and use it
in the existing EM process class. A new model may be added to an existing process using AddEmModel(G4int,
G4VEmModel*, G4Region*) method. The class diagram is shown in the figure.

The base class G4VEmModel has a lot of virtual methods mostly with the default implementation. Pure virtual
methods to be implemented in each model class are following:

• Initialise(const G4ParticleDefinition*, const G4DataVector&);

3.4. Electromagnetic Physics 65



Book For Toolkit Developers, Release 10.3

Fig. 3.2: Design of EM physics models.

• SampleSecondaries(std::vector<G4DynamicParticle*>*,const
G4MaterialCutsCouple*,const G4DynamicParticle*,G4double tmin=0.0,G4double
tmax=DBL_MAX).

Any model may have its own data structure or physics table. It is optimal to share data between threads in multi-
threaded mode. For that at initialisation it is possible to check if initialisation is performed in master thread us-
ing a method IsMaster(). In the master thread data of the model should be initilized. A model initialisation
may be performed between runs. In that case, potentially materials and cuts may be changed, so re-initialisation of
model data should be foreseen. In worker thread it is possible to access shared data implementing virtual method
InitialiseLocal(const G4ParticleDefinition*, G4VEmModel* masterModel). It is strongly
recommended that a model class cannot change EM parameters in G4EmParameters class or status of the de-
excitation module. EM parameters can be modifided in physics lists or via UI commands.

3.5 Hadronic Physics

3.5.1 Introduction

Optimal exploitation of hadronic final states played a key role in successes of all recent collider experiment in HEP,
and the ability to use hadronic final states will continue to be one of the decisive issues during the analysis phase of
the LHC experiments. Monte Carlo programs like Geant4 facilitate the use of hadronic final states, and have been
developed for many years.

We give an overview of the Object Oriented frameworks for hadronic generators in Geant4, and illustrate the physics
models underlying hadronic shower simulation on examples, including the three basic types of modeling; data-driven,
parametrisation-driven, and theory-driven modeling, and their possible realisations in the Object Oriented component
system of Geant4. We put particular focus on the level of extendibility that can and has been achieved by our Russian
dolls approach to Object Oriented design, and the role and importance of the frameworks in a component system.
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3.5.2 Principal Considerations

The purpose of this section is to explain the implementation frameworks used in and provided by Geant4 for hadronic
shower simulation as in the 1.1 release of the program. The implementation frameworks follow the Russian dolls
approach to implementation framework design. A top-level, very abstracting implementation framework provides the
basic interface to the other Geant4 categories, and fulfils the most general use-case for hadronic shower simulation. It
is refined for more specific use-cases by implementing a hierarchy of implementation frameworks, each level imple-
menting the common logic of a particular use-case package in a concrete implementation of the interface specification
of one framework level above, this way refining the granularity of abstraction and delegation. This defines the Russian
dolls architectural pattern. Abstract classes are used as the delegation mechanism1 .

All framework functional requirements were obtained through use-case analysis. In the following we present for each
framework level the compressed use-cases, requirements, designs including the flexibility provided, and illustrate the
framework functionality with examples. All design patterns cited are to be read as defined in [BIBITEM] ???.

3.5.3 Level 1 Framework - processes

There are two principal use-cases of the level 1 framework. A user will want to choose the processes used for his
particular simulation run, and a physicist will want to write code for processes of his own and use these together with
the rest of the system in a seamless manner.

Requirements

1. Provide a standard interface to be used by process implementations.
2. Provide registration mechanisms for processes.

Design and interfaces

Both requirements are implemented in a sub-set of the tracking-physics interface in Geant4}. The class diagram is
shown in the figure.

All processes have a common base-class G4VProcess, from which a set of specialised classes are derived.
Two of them are used as base classes for hadronic processes at rest and in flight (G4VDiscreteProcess),
and for processes like radioactive decay where the same implementation can represent both these extreme cases
(G4VRestDiscreteProcess).

Each of these classes declares two types of methods; one for calculating the time to interaction or the physical interac-
tion length, allowing tracking to request the information necessary to decide on the process responsible for final state
production, and one to compute the final state. These are pure virtual methods, and have to be implemented in each
individual derived class, as enforced by the compiler.

Note on at-rest processes: starting with Geant4 version 9.6 - when the Bertini and Fritiof final-state models have been
extended down to zero kinetic energy and used also for simulating the nuclear capture at-rest - the at-rest processes de-
rive from G4HadronicProcess, hence from G4VDiscreteProcess, instead than from G4VRestProcess
as in the initial design of at-rest processes. This requires some adaptation a discrete process to handle an at-rest
one using top level interface G4VProcess. A different solution, under consideration but not yet implemented,
would be instead to have G4HadronicProcess inheriting from G4VRestDiscreteProcess: in this way,
G4HadronicProcess, and therefore any theory-driven final-state model, could be deployed for any kind of
hadronic process, including capture-at-rest processes and radioactive decays.

Framework functionality

The functionality provided is through the use of process base-class pointers in the tracking-physics interface, and the
G4Process-Manager. All functionality is implemented in abstract, and registration of derived process classes with

1 The same can be achieved with template specialisations with slightly improved CPU performance but at the cost of significantly more complex
designs and, with present compilers, significantly reduced portability.
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Fig. 3.3: Level 1 implementation framework of the hadronic category of GEANT4.

the G4Process-Manager of an individual particle allows for arbitrary combination of both Geant4 provided pro-
cesses, and user-implemented processes. This registration mechanism is a modification on a Chain of Responsibility.
It is outside the scope of the current paper, and its description is available from G4Manual.

3.5.4 Level 2 Framework - Cross Sections and Models

At the next level of abstraction, only processes that occur for particles in flight are considered. For these, it is easily
observed that the sources of cross sections and final state production are rarely the same. Also, different sources will
come with different restrictions. The principal use-cases of the framework are addressing these commonalities. A user
might want to combine different cross sections and final state or isotope production models as provided by Geant4,
and a physicist might want to implement his own model for particular situation, and add cross-section data sets that
are relevant for his particular analysis to the system in a seamless manner.

Requirements

1. Flexible choice of inclusive scattering cross-sections.
2. Ability to use different data-sets for different parts of the simulation, depending on the conditions at the point

of interaction.
3. Ability to add user-defined data-sets in a seamless manner.
4. Flexible, unconstrained choice of final state production models.
5. Ability to use different final state production codes for different parts of the simulation, depending on the con-

ditions at the point of interaction.
6. Ability to add user-defined final state production models in a seamless manner.
7. Flexible choice of isotope production models, to run in parasitic mode to any kind of transport models.
8. Ability to use different isotope production codes for different parts of the simulation, depending on the condi-

tions at the point of interaction.
9. Ability to add user-defined isotope production models in a seamless manner.
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Design and interfaces

The above requirements are implemented in three framework components, one for cross-sections, final state produc-
tion, and isotope production each. The class diagrams are shown in the figure for the cross-section aspects, figure
<fig_ExtdFuncHadPhys_3> for the final state production aspects, and figure for the isotope production aspects.

Fig. 3.4: Level 2 implementation framework of the hadronic category of GEANT4.

The three parts are integrated in the G4Hadronic-Process class, that serves as base-class for all hadronic pro-
cesses of particles in flight.

Cross-sections

Each hadronic process is derived from G4Hadronic-Process, which holds a list of “cross section data
sets”. The term “data set” is representing an object that encapsulates methods and data for calculating total
cross sections for a given process in a certain range of validity. The implementations may take any form. It
can be a simple equation as well as sophisticated parameterisations, or evaluated data. All cross section data
set classes are derived from the abstract class G4VCrossSection-DataSet, which declares methods that
allow the process inquire, about the applicability of an individual data-set through IsApplicable(const
G4DynamicParticle*, const G4Element*), and to delegate the calculation of the actual cross-section
value through GetCrossSection(const G4DynamicParticle*, const G4Element*).

Final state production

The G4HadronicInteraction base class is provided for final state generation. It declares a minimal in-
terface of only one pure virtual method: G4VParticleChange* ApplyYourself(const G4Track &,
G4Nucleus &)}. `` ``G4HadronicProcess provides a registry for final state production models inher-
iting from G4Hadronic-Interaction. Again, final state production model is meant in very general terms. This
can be an implementation of a quark gluon string model ???, a sampling code for ENDF/B data formats ???, or a
parametrisation describing only neutron elastic scattering off Silicon up to 300 MeV.

Isotope production

For isotope production, a base class (G4VIsotope-Production) is provided. It declares a method
G4IsoResult * GetIsotope(const G4Track &, const G4Nucleus &) that calculates and returns
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Fig. 3.5: Level 2 implementation framework of the hadronic category of Geant4; final state production aspect.

Fig. 3.6: Level 2 implementation framework of the hadronic category of Geant4; isotope production aspect
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the isotope production information. Any concrete isotope production model will inherit from this class, and imple-
ment the method. Again, the modeling possibilities are not limited, and the implementation of concrete production
models is not restricted in any way. By convention, the GetIsotope method returns NULL, if the model is not
applicable for the current projectile target combination.

Framework functionality

Cross Sections

G4HadronicProcess provides registering possibilities for data sets. A default is provided covering all possible
conditions to some approximation. The process stores and retrieves the data sets through a data store that acts like
a FILO stack (a Chain of Responsibility with a First In Last Out decision strategy). This allows the user to map
out the entire parameter space by overlaying cross section data sets to optimise the overall result. Examples are the
cross sections for low energy neutron transport. If these are registered last by the user, they will be used whenever
low energy neutrons are encountered. In all other conditions the system falls back on the default, or data sets with
earlier registration dates. The fact that the registration is done through abstract base classes with no side-effects allows
the user to implement and use his own cross sections. Examples are special reaction cross sections of K0 nuclear
interactions that might be used for 𝜖/𝜖′ analysis at LHC to control the systematic error.

Final state production

The G4HadronicProcess class provides a registration service for classes deriving from
G4Hadronic-Interaction, and delegates final state production to the applicable model.
G4Hadronic-Interaction provides the functionality needed to define and enforce the applicability of a
particular model. Models inheriting from G4Hadronic-Interaction can be restricted in applicability in
projectile type and energy, and can be activated/deactivated for individual materials and elements. This allows a user
to use final state production models in arbitrary combinations, and to write his own models for final state production.
The design is a variant of a Chain of Responsibility. An example would be the likely CMS scenario - the combination
of low energy neutron transport with a quantum molecular dynamics ???, invariant phase space decay ???, and fast
parametrised models for calorimeter materials, with user defined modeling of interactions of spallation nucleons with
the most abundant tracker and calorimeter materials.

Isotope production

The G4HadronicProcess by default calculates the isotope production information from the final state given by
the transport model. In addition, it provides a registering mechanism for isotope production models that run in par-
asitic mode to the transport models and inherit from G4VIsotope-Production. The registering mechanism
behaves like a FILO stack, again based on Chain of Responsibility. The models will be asked for isotope production
information in inverse order of registration. The first model that returns a non-NULL value will be applied. In addi-
tion, the G4Hadronic-Process provides the basic infrastructure for accessing and steering of isotope-production
information. It allows to enable and disable the calculation of isotope production information globally, or for in-
dividual processes, and to retrieve the isotope production information through the G4IsoParticleChange *
GetIsotopeProductionInfo() method at the end of each step. The G4HadronicProcess is a finite state
machine that will ensure the GetIsotope-ProductionInfo returns a non-zero value only at the first call after
isotope production occurred. An example of the use of this functionality is the study of activation of a Germanium
detector in a high precision, low background experiment.

3.5.5 Level 3 Framework - Theoretical Models

Geant4 provides at present one implementation framework for theory driven models. The main use-case is that of a
user wishing to use theoretical models in general, and to use various intra-nuclear transport or pre-compound models
together with models simulating the initial interactions at very high energies.

Requirements

1. Allow to use or adapt any string-parton or parton transport ??? biblio.VNI.abbrev,

3.5. Hadronic Physics 71



Book For Toolkit Developers, Release 10.3

Fig. 3.7: Level 3 implementation framework of the hadronic category of Geant4; theoretical model aspect.

2. Allow to adapt event generators, ex. ??? biblio.PYTHIA7.abbrev, state production in shower simulation.
3. Allow for combination of the above with any intra-nuclear transport (INT).
4. Allow stand-alone use of intra-nuclear transport.
5. Allow for combination of the above with any pre-compound model.
6. Allow stand-alone use of any pre-compound model.
7. Allow for use of any evaporation code.
8. Allow for seamless integration of user defined components for any of the above.

Design and interfaces

To provide the above flexibility, the following abstract base classes have been implemented:

• G4VHighEnergyGenerator
• G4VIntranuclearTransportModel
• G4VPreCompoundModel
• G4VExcitationHandler

In addition, the class G4TheoFS-Generator is provided to orchestrate interactions between these classes. The
class diagram is shown in the figure.

G4VHighEnergy-Generator serves as base class for parton transport or parton string models, and for Adapters
to event generators. This class declares two methods, Scatter, and GetWoundedNucleus.

The base class for INT inherits from G4Hadronic-Interaction, making any concrete implementation usable as
a stand-alone model. In doing so, it re-declares the ApplyYourself interface of G4Hadronic-Interaction,
and adds a second interface, Propagate, for further propagation after high energy interactions. Propagate takes
as arguments a three-dimensional model of a wounded nucleus, and a set of secondaries with energies and positions.

The base class for pre-equilibrium decay models, G4VPre-CompoundModel, inherits from
G4Hadronic-Interaction, again making any concrete implementation usable as stand-alone model. It
adds a pure virtual DeExcite method for further evolution of the system when intra-nuclear transport assumptions
break down. DeExcite takes a G4Fragment, the Geant4 representation of an excited nucleus, as argument.

The base class for evaporation phases, G4VExcitation-Handler, declares an abstract method, BreakItUP(),
for compound decay.

Framework functionality

The G4TheoFSGenerator class inherits from G4Hadronic-Interaction, and hence can be registered
as a model for final state production with a hadronic process. It allows a concrete implementation of
G4VIntranuclear-TransportModel and G4VHighEnergy-Generator to be registered, and delegates
initial interactions, and intra-nuclear transport of the corresponding secondaries to the respective classes. The design
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is a complex variant of a Strategy. The most spectacular application of this pattern is the use of parton-string mod-
els for string excitation, quark molecular dynamics for correlated string decay, and quantum molecular dynamics for
transport, a combination which promises to result in a coherent description of quark gluon plasma in high energy
nucleus-nucleus interactions.

The class G4VIntranuclearTransportModel provides registering mechanisms for concrete implementations
of G4VPreCompound-Model, and provides concrete intra-nuclear transports with the possibility of delegating pre-
compound decay to these models.

G4VPreCompoundModel provides a registering mechanism for compound decay through the
G4VExcitation-Handler interface, and provides concrete implementations with the possibility of dele-
gating the decay of a compound nucleus.

The concrete scenario of G4TheoFS-Generator using a dual parton model and a classical cascade, which
in turn uses an exciton pre-compound model that delegates to an evaporation phase, would be the following:
G4TheoFS-Generator receives the conditions of the interaction; a primary particle and a nucleus. It asks the
dual parton model to perform the initial scatterings, and return the final state, along with the by then damaged nucleus.
The nucleus records all information on the damage sustained. G4TheoFS-Generator forwards all information to
the classical cascade, that propagates the particles in the already damaged nucleus, keeping track of interactions, fur-
ther damage to the nucleus, etc.. Once the cascade assumptions break down, the cascade will collect the information
of the current state of the hadronic system, like excitation energy and number of excited particles, and interpret it as a
pre-compound system. It delegates the decay of this to the exciton model. The exciton model will take the information
provided, and calculate transitions and emissions, until the number of excitons in the system equals the mean number
of excitons expected in equilibrium for the current excitation energy. Then it hands over to the evaporation phase. The
evaporation phase decays the residual nucleus, and the Chain of Command rolls back to G4TheoFS-Generator,
accumulating the information produced in the various levels of delegation.

3.5.6 Level 4 Frameworks - String Parton Models and Intra-Nuclear Cascade

The use-cases of this level are related to commonalities and detailed choices in string-parton models and cascade
models. They are use-cases of an expert user wishing to alter details of a model, or a theoretical physicist, wishing to
study details of a particular model.

Requirements

1. Allow to select string decay algorithm
2. Allow to select string excitation.
3. Allow the selection of concrete implementations of three-dimensional models of the nucleus
4. Allow the selection of concrete implementations of final state and cross sections in intra-nuclear scattering.

Design and interfaces

To fulfil the requirements on string models, two abstract classes are provided, the G4VParton-StringModel
and the G4VString-Fragmentation. The base class for parton string models, G4VParton-StringModel,
declares the GetStrings() pure virtual method. G4VString-Fragmentation, the pure abstract base class
for string fragmentation, declares the interface for string fragmentation.

To fulfill the requirements on intra-nuclear transport, two abstract classes are provided, G4V3DNucleus, and
G4VScatterer. At this point in time, the usage of these intra-nuclear transport related classes by concrete codes
is not enforced by designs, as the details of the cascade loop are still model dependent, and more experience has to
be gathered to achieve standardisation. It is within the responsibility of the implementers of concrete intra-nuclear
transport codes to use the abstract interfaces as defined in these classes.

The class diagram is shown in the figure <fig_ExtdFuncHadPhys_6> for the string parton model aspects, and in the
:ref: figure <fig_ExtdFuncHadPhys_7> for the intra-nuclear transport.

Framework functionality
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Fig. 3.8: Level 4 implementation framework of the hadronic category of Geant4; parton string aspect.

Fig. 3.9: Level 4 implementation framework of the hadronic category of Geant4; intra-nuclear transport aspect.
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Again variants of Strategy, Bridge and Chain of Responsibility are used. G4VParton-StringModel implements
the initialisation of a three-dimensional model of a nucleus, and the logic of scattering. It delegates secondary produc-
tion to string fragmentation through a G4VString-Fragmentation pointer. It provides a registering service for
the concrete string fragmentation, and delegates the string excitation to derived classes. Selection of string excitation
is through selection of derived class. Selection of string fragmentation is through registration.

3.5.7 Level 5 Framework - String De-excitation

The use-case of this level is that of a user or theoretical physicist wishing to understand the systematic effects involved
in combining various fragmentation functions with individual types of string fragmentation. Note that this framework
level is meeting the current state of the art, making extensions and changes of interfaces in subsequent releases likely.

Requirements

1. Allow the selection of fragmentation function.

Design and interfaces

A base class for fragmentation functions, G4VFragmentation-Function, is provided. It declares the
GetLightConeZ() interface.

Framework functionality

The design is a basic Strategy. The class diagram is shown in the figure. At this point in time, the
usage of the G4VFragmentation-Function is not enforced by design, but made available from the
G4VString-Fragmentation to an implementer of a concrete string decay. G4VString-Fragmentation
provides a registering mechanism for the concrete fragmentation function. It delegates the calculation of zf of the
hadron to split of the string to the concrete implementation. Standardisation in this area is expected.

Fig. 3.10: Level 5 implementation framework of the hadronic category of Geant4; string fragmentation aspect.

3.5.8 Creating Your Own Hadronic Process

For some applications Geant4 might not provide the most appropriate physics implementantion or, in fact, any physics
implementation at all. In such cases, it is up to the user to develop the necessary processes, models and cross sections
and integrate them into his version of the Geant4 toolkit. The user’s process, model or cross section may then be used
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in a physics list to replace some of those already provided by the toolkit. This modularity requires that user classes be
derived from a set of base classes which have been provided to aid integration with the toolkit and to spare the user
from consideration of many details not related to the physics at hand.

Processes communicate with Geant4 tracking, telling it where or when an interaction is supposed to occur, and what is
supposed to happen at that point. A hadronic process may be implemented directly, or through the use af a framework
of classes that modularize physics functionality, make available several utilities and reduce unneccesary code dupli-
cation. In the latter, recommended, approach the user must in general develop as many as three classes: a process, a
cross section and a model. Instances of the cross section and model classes must then be assigned to the process. In
practice it is usually necessary to develop only a model class or a cross section class, since a number of processes are
already provided by Geant4. Before writing any code, users should check that Geant4 has not already povided the
necessary models, cross sections or processes.

A hadronic model is repsonsible for the generation of a set of final state four-vectors, given an initial projectile and
target. New models should derive from the G4HadronicInteraction base class and at least two methods in this class
must be implemented:

virtual G4HadFinalState*
ApplyYourself(const G4HadProjectile& aProjectile, G4Nucleus& targetNucleus)

which is responsible for generating the final state of the interaction including the specification of all particle types and
four-momenta, and

virtual G4bool IsApplicable(const G4HadProjectile& aProjectile, G4Nucleus& targetNucleus)

which is responsible for checking that the incident particle type and energy, and the Z and A of the target nucleus, can
be adequately handled by the model. G4HadronicInteraction provides a number of utilities to aid in the implementa-
tion of these methods.

When implementing ApplyYourself(), the Get() methods of the G4HadProjectile and G4Nucleus classes provide all the
initial state information necessary for the generation of the final state. For G4HadProjectile, GetDefinition() provides
the particle type, and Get4Momentum() provides the total energy and momentum. For G4Nucleus, GetZ_asInt(),
GetN_asInt() and GetA_asInt() provide Z, N and A, while AtomicMass() provides the mass. Additional utility methods
are available for both G4HadProjectile and G4Nucleus .

Coordinate systems

The inputs to the model assume that the incident particle (G4HadProjectile) travels along the z axis and interacts with
the target (G4Nucleus) which is at rest in the lab frame. Before invoking the ApplyYourself() method, the process
rotates the direction of the projectile to be along the z axis and then performs the inverse rotation on the final state
particles produced by the model.

The model must perform two additional transformations: into the CM frame, and back out of it after the interaction is
complete.

Writing the ApplyYourself() method

It is thus the model developer’s responsibility to:

• boost the projectile and target into the CM frame using the necessary Lorentz transformations,
• perform all calculations required to generate the final state set of particles,
• boost the final state particles back to the lab frame with the inverse transformation, and
• send the final state particles to the process by filling G4HadFinalState and setting its status.

Step 4) is accomplished by using the various Get() and Set() methods provided by the class G4HadFinalState. The
developer must also decide whether the original projectile survives the interaction, disappears or is suspended. This
is done with the SetStatusChange() method. If the projectile survives, the change in its energy and momentum must
be set with the provided methods and it must be flagged as “isAlive”. If the particle disappears it must be flagged as
“stopAndKill”.
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Geant4 provides a large number of Lorentz transformation tools which may be used to complete steps 1) and 3).

How step 2) is accomplished is entirely up to the developer. This could be as simple as a look-up table which assigns
a final state to an initial state, or as complex as a theoretical high energy generator. Typically, the user will have to
provide methods of sampling final state multiplicities, energies and angles using random number generators provided
by Geant4. For example, the cosine of the polar angle of an isotropic angular distribution could be sampled as follows:

G4double cosTheta = 2.*G4UniformRandom() - 1.;

The developer must also see to it that the model conserves energy and momentum. Currently the hadronic framework
checks that final states do not exceed reasonably small limits of non-conservation.

Using the hadronic framework

For complex models it is recommended that the user become familiar with the Geant4 hadronic framework. This is
covered in detail in the chapter on Extended Functionality in this manual. The framework uses the object-oriented
principles of abstraction and re-use to provide a number of services to the developer. The part of the framework used
will depend on the type of model. For example, high energy models can take advantage of already-developed string
excitation and decay functions and medium energy models can use the intra-nuclear propagation base class and the
nuclear de-excitation handler.

Writing the IsApplicable() method

The is a straightforward, but important, method. Most models are quite specific in their range of use and the developer
must codify this. It is recommended that this method test for ranges of projectile energy, particle type and target atomic
number and weight, and return false when these ranges are exceeded.

New cross section sets should derive from G4VCrossSectionDataSet . This class serves as a container of cross section
data and provides a number of access methods that must be implemented by the developer. The essential methods are:

G4double GetElementCrossSection(const G4DynamicParticle*, G4int Z)

which retrieves element-based cross sections,

G4double GetIsoCrossSection(const G4DynamicParticle*, G4int Z, G4int A)

which retrieves isotope-based cross sections,

G4bool IsElementApplicable(const G4DynamicParticle*, G4int Z)

which sets the Z range of the element-based data set,

G4bool IsIsoApplicable(const G4DynamicParticle*, G4int, G4int A)

which sets the Z and A range of the isotope-based data set, and

SetMinKinEnergy(G4double)
SetMaxKinEnergy(G4double)
GetMinKinEnergy()
and GetMaxKinEnergy()

for defining the applicable energy range of the data set.

As mentioned above, it is preferable to add new physics in terms of a model, and assign the model to an existing
process, rather than develop a new, specific process. Under certain circumstances though, a directly implemented
process may be necessary. In that case it must derive from G4HadronicProcess and three methods of that class must
be implemented:

virtual G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&) ,
virtual G4bool IsApplicable(const G4ParticleDefinition&) , and
G4double GetMeanFreePath(const G4Track& aTrack, G4double, G4ForceCondition*).
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PostStepDoIt() is responsible for generating the final state of an interaction given the track and step information. It
must update the state of the track, flagging it as “Alive”, “StopButAlive”, “StopAndKill”, “KillTrackAndSecondaries”,
“Suspend”, or “PostponeToNextEvent”. It is roughly analagous to the ApplyYourself() method in models.

IsApplicable() serves the same purpose in processes as it does in models.

GetMeanFreePath() gets the cross section as a function of particle type, energy, and target material, and converts it to
a mean free path, which is in turn passed on to the tracking. This method can be quite simple:

G4double particle = aTrack.GetDynamicParticle();
G4double material = aTrack.GetMaterial();
return factor/theCrossSectionDataStore->GetCrossSection(particle, material);

provided an appropriate cross section data set is already available in the data store.

The above discussion refers to in-flight processes. At-rest hadronic processes do not currently derive from
G4HadronicProcess, but from G4VRestProcess or G4VRestDiscreteProcess. As such they do not employ the full
hadronic framework and must be implemented directly without models. The methods to be implemented are similar
to those in the in-flight case:

virtual G4VParticleChange* AtRestDoIt(const G4Track&, const G4Step&) , and
G4bool IsApplicable(const G4ParticleDefinition&) .

3.5.9 Changing parameters of an existing model: Fritiof (FTF) use-case

Total, elastic, inelastic and annihilation cross sections

Parameters of the FTF model are concentrated in G4FTFParameters.cc located in geant4/source/
processes/hadronic/models/parton_string/diffraction/src

Input parameters of the code are: type of the projectile particle, mass number and charge of the target nucleus, and
the projectile momentum for elementary projectiles, or momentum per nucleon in the case of a projectile nucleus
(MeV/c).

A simplified Glauber model is used in the code for calculation of the multiplicity of intra-nuclear collisions. Thus, it
is needed to estimate the average total, elastic and inelastic cross sections for interactions of a projectile with target
protons and neutrons. In the case of nucleus-nucleus interactions it is needed to know average NN cross sections
(averaged over PP, PN, and NN collisions). According to the Glauber approximation, changes of the cross sections
during a collision are not considered.

Chips cross sections of elementary interactions is used in the code. A pointer to the cross sections (FTFxsManager) is
determined in the lines 178 -- 183.

The average cross sections of a projectile interactions with protons and neutrons are determined in the lines 192
-- 475. A special calculations for projectile anti-baryons are presented in the lines 236 -- 357.

According to a developed approach for antibaryon-nucleon interactions the list of processes shown in the figure is
considered.

As usual, quarks and anti-quarks are shown by solid lines. Dashed lines present so-called string junctions. It is
assumed that the gluon field in baryons has a non-trivial topology. This heterogeneity is called a “string junction”.
Quark-gluon strings produced in the reaction are shown by wavy lines.

The diagram of figure (a) represents a process with a string junction annihilation and the creation of three strings.
Diagram figure (b) describes quark-antiquark annihilation and string creation between the di-quark and anti-di-quark.
Quark-anti-quark and string junction annihilation is shown in figure (c). Finally, one string is created in the process of
figure (e). Hadrons appear at the fragmentation of the strings in the same way that they appear in 𝑒+𝑒−-annihilation.
One can assume that excited strings with complicated gluonic field configurations are created in processes figure (d)
and figure (f). If the collision energy is sufficiently small, glueballs can be formed in the process figure (f). Mesons
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Fig. 3.11: Quark flow diagrams of 𝑝𝑝-interactions.
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with constituent gluons or with hidden baryon number can be created in process figure (f). Of course the standard FTF
processes shown in the bottom of the figure are also allowed.

In the simplest approach it is assumed that the energy dependence of the cross sections of these processes vary inversely
with a power of 𝑠 as depicted in figure. Here 𝑠 is the center-of-mass energy squared. This is dictated by the reggeon
phenomenology. Calculating the cross sections of binary reactions is a rather complicated procedure (see [BIBITEM])
because there can be interactions in the initial and final states. These interactions reflect also on cross sections of other
reactions [BIBITEM].

The annihilation cross section is given as:

𝜎𝑎𝑛𝑛 = 𝜎𝑎 + 𝐵 𝑋𝑏 + 𝐶 𝑋𝑐 + 𝐷 𝑋𝑑,

where 𝑋𝑖 are yields of the diagrams of figure. All cross sections are given in mb.
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𝑋𝑑 = 23.3/𝑠.

𝑝𝑝 𝑝𝑛 �̄�𝑝 �̄�𝑛 Λ̄𝑝 Λ̄𝑛 Σ̄−𝑝 Σ̄−𝑛 Σ̄0𝑝 Σ̄0𝑛 Σ̄+𝑝 Σ̄+𝑛
B 5 4 4 5 3 3 2 4 3 3 4 2
C 5 4 4 5 3 3 2 4 3 3 4 2
D 6 4 4 6 3 3 2 2 2 2 2 0

Ξ̄−𝑝 Ξ̄−𝑛 Ξ̄0𝑝 Ξ̄0𝑛 Ω̄−𝑝 Ω̄−𝑛
B 1 2 2 1 0 0
C 1 2 2 1 0 0
D 0 0 0 0 0 0

Table of the coefficients B, C and D.

The coefficients B, C and D are pure combinatorial coefficients calculated on the assumption that the same conditions
apply to all quarks and anti-quarks. For example, in 𝑝𝑝 interactions there are five possibilities to annihilate a quark
and an anti-quark, and six possibilities to annihilate two quarks and two anti-quarks. Thus, 𝐵 = 𝐶 = 5 and 𝐷 = 6.
Note that final state particles in the process of figure (b) can coincide with initial state particles. Thus the true elastic
cross section is not given by the experimental cross section.

At 𝑃𝑙𝑎𝑏 < 40MeV/c anti-proton-nucleon cross sections are:

𝜎𝑡𝑜𝑡 = 1512.9, 𝜎𝑒𝑙 = 473.2, 𝜎𝑎 = 625.1, 𝜎𝑏 = 9.78, 𝜎𝑐 = 49.99, 𝜎𝑑 = 6.61.

All cross sections are given in [mb].

At 𝑃𝑙𝑎𝑏 < 40 MeV/c, 𝜎𝑏 must be equal 0 for 𝑝𝑝-interactions because the process 𝑝𝑝 → �̄�𝑛 is impossible at these
energies. It is not so for �̄�𝑛 interactions because the process �̄�𝑛 → 𝑝𝑝 can take place. In the case �̄�𝑝 interactions, the
process “b” will lead to elastic scattering which is not considered. The parameterizations are presented in the lines
236 -- 357. Their changes influence on 𝑝𝑝 channel cross sections. Thus, the changes must be done with caution.
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To complete the cross section calculations, 𝜎𝐹𝑇𝐹 responsible for processes presented in bottom row of figure is
determined (line 346) as:

𝜎𝐹𝑇𝐹 = 36 (1 − 𝑠𝑡ℎ/𝑠), [𝑚𝑏],

where 𝑠𝑡ℎ is the threshold energy of meson production (𝑚𝑝𝑟 + 𝑚𝑡𝑟 + 𝑚𝜋 + 80)
2 [MeV].

After that, after line 478, needed quantities are stored in G4FTFParameters class:

SetTotalCrossSection( Xtotal );
SetElastisCrossSection( Xelastic );
SetInelasticCrossSection( Xtotal - Xelastic );

SetProbabilityOfElasticScatt( Xtotal, Xelastic );
SetRadiusOfHNinteractions2( Xtotal/pi/10.0 );

SetProbabilityOfAnnihilation( Xannihilation / (Xtotal - Xelastic) );

SetSlope( Xtotal*Xtotal/16.0/pi/Xelastic/0.3894 );
SetGamma0( GetSlope()*Xtotal/10.0/2.0/pi );

// Parameters of elastic scattering
// Gaussian parametrization of elastic scattering amplitude assumed
SetAvaragePt2ofElasticScattering( 1.0/( Xtotal*Xtotal/16.0/pi/Xelastic/0.3894 )

G4double Xinel = Xtotal - Xelastic;

Cross sections of elementary processes

The Fritiof model [BIBITEM, BIBITEM] assumes that all hadron-hadron interactions are binary reactions, ℎ1 +ℎ2 →
ℎ′
1 +ℎ′

2 where ℎ′
1 and ℎ′

2 are excited states of the hadrons with discrete or continuous mass spectra (see figure). If one
of the final hadrons is in its ground state (ℎ1 + ℎ2 → ℎ1 + ℎ′

2) the reaction is called “single diffraction dissociation”,
and if neither hadron is in its ground state it is called a “non-diffractive” interaction.

Fig. 3.12: Non-diffractive and diffractive interactions considered in the Fritiof model.

The excited hadrons are considered as QCD-strings, and the corresponding LUND-string fragmentation model is
applied in order to simulate their decays.

The key ingredient of the Fritiof model is the sampling of the string masses. In general, the set of final states for
the interactions can be represented by figure, where samples of possible string masses are shown. There is a point
corresponding to elastic scattering, a group of points which represents final states of binary hadron-hadron interactions,
lines corresponding to the diffractive interactions, and various intermediate regions. The region populated with the
red points is responsible for the non-diffractive interactions. In the model, the mass sampling threshold is set equal to
the ground state hadron masses, but in principle the threshold can be lower than these masses. The string masses are
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sampled in the triangular region restricted by the diagonal line corresponding to the kinematical limit 𝑀1+𝑀2 = 𝐸𝑐𝑚𝑠

where 𝑀1 and 𝑀2 are the masses of the ℎ′
1 and ℎ′

2 hadrons, and also of the threshold lines. If a point is below the
string mass threshold, it is shifted to the nearest diffraction line.

Fig. 3.13: Diagram of the final states of hadron-hadron interactions.

Unlike the original Fritiof model, the final state diagram of the current model is complicated, which leads to a non-
straightforward mass sampling algorithm. This will be considered below. The original model had no points corre-
sponding to elastic scattering or to the binary final states. As it was known at the time, the mass of an object produced
by diffraction dissociation, 𝑀𝑥, for example from the reaction 𝑝+𝑝 → 𝑝+𝑋 , is distributed as 𝑑𝑀𝑥/𝑀𝑥 ∝ 𝑑𝑀2

𝑥/𝑀
2
𝑥 ,

so it was natural to assume that the object mass distributions in all inelastic interactions obey the same law. This can
be re-written using the light-cone momentum variables, 𝑃+ or 𝑃−,

𝑃+ = 𝐸 + 𝑝𝑧, 𝑃− = 𝐸 − 𝑝𝑧,

where 𝐸 is the energy of a particle, and 𝑝𝑧 is its longitudinal momentum along the collision axis. At large energy and
positive 𝑝𝑧 , 𝑃− ≃ (𝑀2 + 𝑃 2

𝑇 )/2𝑝𝑧 . At negative 𝑝𝑧 , 𝑃+ ≃ (𝑀2 + 𝑃 2
𝑇 )/2|𝑝𝑧|. Usually, the transferred transverse

momentum, 𝑃𝑇 , is small and can be neglected. Thus, it was assumed that 𝑃− and 𝑃+ of a projectile and target
associated hadron, respectively, are distributed as

𝑑𝑃−/𝑃−, 𝑑𝑃+/𝑃+.

A gaussian distribution was used to sample 𝑃𝑇 .

In the case of hadron-nucleus or nucleus-nucleus interactions it was assumed that the created objects can interact
further with other nuclear nucleons and create new objects. Assuming equal masses of the objects, the multiplicity of
particles produced in these interactions will be proportional to the number of participating nuclear nucleons, or to the
multiplicity of intra-nuclear collisions. Due to this, the multiplicity of particles produced in hadron-nucleus or nucleus-
nucleus interactions is larger than that in hadron-hadron ones. The probabilities of multiple intra-nuclear collisions
were sampled with the help of a simplified Glauber model. Cascading of secondary particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple manner, the original Fritiof model could not
work at 𝑃𝑙𝑎𝑏 < 10 – 20 GeV/c.

82 Chapter 3. Extending Toolkit Functionality



Book For Toolkit Developers, Release 10.3

It was assumed in the model that the created objects are quark-gluon strings with constituent quarks at their ends orig-
inating from the primary colliding hadrons. Thus, the LUND-string fragmentation model was applied for a simulation
of the object decays. It was assumed also that the strings with sufficiently large masses have “kinks” – additional
radiated gluons. This is very important for a correct reproduction of particle multiplicities in the interactions.

All of the above assumptions were reconsidered in the implementation of the Geant4 Fritiof model, and new features
were added. These will be presented below.

Fig. 3.14: Quark flow diagrams of PI N interactions.

The original Fritiof model contains only the pomeron exchange process shown in figure (d). It would be useful to
extend the model by adding the exchange processes shown in figure (b) and figure (c) , and the annihilation process
of figure (a). This could probably be done by introducing a restricted set of mesonic and baryonic resonances and
a corresponding set of parameters. This procedure was employed in the binary cascade model of Geant4 (BIC)
[BIBITEM] and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model (UrQMD) [BIBITEM]. However, it is
complicated to use this solution for the simulation of hadron-nucleus and nucleus-nucleus interactions. The problem
is that one has to consider resonance propagation in the nuclear medium and take into account their possible decays
which enormously increases computing time. Thus, in the current version of the FTF model only quark exchange
processes have been added to account for meson and baryon interactions with nucleons, without considering resonance
propagation and decay. This is a reasonable hypothesis at sufficiently high energies.

For each projectile hadrons the following probabilities are set up:

• Probability of quark exchange process without excitation of participants (figure (b));
• Probability of quark exchange process with excitation of participants (figure (c));
• Probability of projectile diffraction dissociation;
• Probability of target diffraction dissociation.

All these probabilities have the same functional form:

𝑃𝑝 = 𝐴1 𝑒
𝐵1 𝑦 + 𝐴2 𝑒

𝐴2 𝑦 + 𝐴3,

where 𝑦 is the projectile rapidity in the target rest frame.

For each projectile hadron and for each possible process, SetParams method is called for setting up the parameters
𝐴1 , 𝐵1 , 𝐴2 , 𝐵2, 𝐴3 . For projectile baryons, this is implemented in lines 524 -- 542 .

// Proc# A1 B1 A2 B2 A3 Atop Ymin
SetParams( 0, 13.71, 1.75, -214.5, 4.25, 0.0, 0.5 , 1.1 );
SetParams( 1, 25.0 , 1.0 , -50.34, 1.5 , 0.0, 0.0 , 1.4 );
if ( Xinel > 0.0 ) {

SetParams( 2, 6.0/Xinel, 0.0 ,-6.0/Xinel*16.28, 3.0 , 0.0, 0.0 , 0.93 );
SetParams( 3, 6.0/Xinel, 0.0 ,-6.0/Xinel*16.28, 3.0 , 0.0, 0.0 , 0.93 );
SetParams( 4, 1.0 , 0.0 , -2.01, 0.5 , 0.0, 0.0 , 1.4 );

} else {
SetParams( 2, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0 );
SetParams( 3, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0 );
SetParams( 4, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 0.0 );

}
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if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
SetParams( 2, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 );
//SetParams( 3, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 );

}

Proc# are the quark exchange without participant excitation (0), the quark exchange with participant excitation (1),
projectile diffraction (2), target diffraction (3). The probability of the quark exchange with participant excitation has
an additional multiplier ( Proc#=4). Probability of non-diffractive interactions is 𝑃𝑛𝑑 = 1−𝑃0−𝑃1 *𝑃4−𝑃2−𝑃3

.

If the target is a nucleus, 𝑃2 is set to zero, because it is not clear up to now how to deal with projectile diffraction on
nuclei. This is implemented in lines 537 -- 542.

Due to quark exchange without participant excitation one or two final particles can be in ∆ resonance state. The
probability of this is set up in the line 543: SetDeltaProbAtQuarkExchange( 0.0 );.

Next lines: 544 -- 548, set up a probability of the same quark’s exchange between interacting hadrons.

if ( NumberOfTargetNucleons > 26 ) {
SetProbOfSameQuarkExchange( 1.0);

} else {
SetProbOfSameQuarkExchange( 0.0 );

}

An exchange with the same quark in baryon-baryon interactions is expected to be suppressed at low energies. It cannot
be so at high energies. The energy dependence of the parameter and its influence on final results is not yet well studied.

Using the probability of the same quark’s exchange, one can obtain the yield to the elastic scattering cross section.
Thus, self-consistent change of the parametrization of the elastic cross section can be needed.

Parameters of participating hadron excitations

In the lines 549 -- 555 the parameters of the excitations are set up.:

SetProjMinDiffMass( 1.16 ); // GeV
SetProjMinNonDiffMass( 1.16 ); // GeV
SetTarMinDiffMass( 1.16 ); // GeV
SetTarMinNonDiffMass( 1.16 ); // GeV
SetAveragePt2( 0.15 ); // GeV^2
SetProbLogDistrPrD( 0.3 );
SetProbLogDistr( 0.3 );

The first line determines the string mass sampling threshold (see Diagram of the final states of hadron-hadron inter-
actions.) in diffractive processes. For baryons, it is 1160 = 𝑚𝑁 + 𝑚𝜋 + 80[MeV]. The second line is the analogous
threshold for non-diffractive processes. The third and fourth lines set up analogous values for the target nucleon.
A change of the parameters will lead to a change of the threshold behaviour of mass distribution in the reaction
𝑝 + 𝑝 → 𝑝 + 𝑋 .

An average transverse momentum in the excitation is set up in the fifth line. Its change will change behaviour of
particle distributions at large 𝑥𝐹 . For pure diffractive processes the average is determined in G4ElasticHNScattering
as for the elastic scattering. It is known that the slope of 𝑝𝑇 distribution in diffraction processes (𝑝 + 𝑝 → 𝑝 + 𝑋 , for
example) depends on the produced mass of system 𝑋 . Here an improvement can be introduced.

Parameters set up in lines sixth and seventh are very important for a correct description of produced particles multiplic-
ity in non-diffractive interactions. It is assumed in the code that mass distribution of strings produced in non-diffractive
interactions has the form:

𝑑𝑊/𝑑𝑃− = 𝛼
𝑙𝑛(𝑀𝑚𝑎𝑥/𝑀𝑚𝑖𝑛)

𝑀2
+ (1 − 𝛼)/(𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛).
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𝛼 can be different for projectile and target hadrons. The sixth line sets up the parameter for a projectile hadron, and
the seventh line for a target hadron. A variation of the parameters can have an essential influence on multiplicity of
produced particles.

The analogous lines are presented for each type of projectile hadron.

Nuclear destruction parameters

The nuclear destruction parameters are set up in the lines 672 -- 717 . For a meson projectile they are:

if ( ProjectileabsPDGcode < 1000 ) { // Meson projectile
SetMaxNumberOfCollisions( Plab, 2.0 );
SetCofNuclearDestruction( 1.0*

G4Exp( 4.0*(Ylab - 2.1) )/( 1.0 + G4Exp( 4.0*(Ylab - 2.1) ) ) );
SetR2ofNuclearDestruction( 1.5*fermi*fermi );
SetDofNuclearDestruction( 0.3 );
SetPt2ofNuclearDestruction( ( 0.035 + 0.04*G4Exp( 4.0*(Ylab - 2.5) )/

( 1.0 + G4Exp( 4.0*(Ylab - 2.5) ) ) )*GeV*GeV );
SetMaxPt2ofNuclearDestruction( 1.0*GeV*GeV );
SetExcitationEnergyPerWoundedNucleon( 40.0*MeV );

}

The second line introduces the maximum number of intra-nuclear collisions used as a correction of the Abramovski-
Gribov-Kancheli (AGK) cutting rules (see Geant4 Physics Reference Manual).

The FTF model uses the reggeon cascading for simulation of fast nucleon production in hadron-nucleus interactions.
As known, the Glauber approximation used in the Fritiof model and in the other string models does not provide
enough amount of intra-nuclear collisions for a correct description of nuclear destruction. Additional cascading in
nuclei is therefore needed. The usage of standard cascade for secondary particle interactions would lead to a too large
multiplicity of produced particles. Thus, in Ref. [BIBITEM] it was proposed to use reggeon cascading in the impact
parameter space. For its description it is needed to determine the probability to involve a nuclear nucleons into the
“cascade”. It is obvious that the probability depends on the difference of impact coordinates of new and previous
involved nucleons. Looking at the yield of reggeon enhanced diagrams, the functional form of the probability was
chosen as:

𝑃 (|�⃗�𝑖 − �⃗�𝑗 |) = 𝐶𝑛𝑑 𝑒𝑥𝑝[−(�⃗�𝑖 − �⃗�𝑗)
2/𝑅2

𝑐 ],

where �⃗�𝑖 and �⃗�𝑗 are projections of the radii of i-th and j-th nucleons on the impact parameter plane.

The “cascade” is initiated by primary involved nucleons. These nucleons are determined with the help of the Glauber
approach. All involved nucleons are ejected from nuclei. The cascade looks like that: a projectile particle interacts
with some intra-nuclear nucleons. These nucleons are called “wounded” or “participating” nucleons. The nucleons
initiate the cascade. A wounded nucleon can involve a spectator nucleon into the cascade with the probability 𝑃 .
The latter one can involve another nucleon. The second nucleon can involve a third one and so on. This algorithm is
implemented in the FTF model.

We have tuned 𝐶𝑛𝑑 using the HARP-CDP data on proton production in the 𝑝+𝐶𝑢 interactions [BIBITEM] . According
to our estimations,

𝐶𝑛𝑑 = 𝑎 𝐴 𝑒4 (𝑦−2.1)/[1 + 𝑒4 (𝑦−2.1)], 𝑅2
𝑐 = 1.5 (𝑓𝑚)2.

where 𝑦 is the projectile rapidity. The value 2.1, standing in the exponents, corresponds to 𝑃𝑙𝑎𝑏 ∼ 4GeV/c, which is
the middle of the transition region between low and high energies.

The formula is implemented in the third and fourth lines. Its parameters, of course, can be changed to improve
description of the fast nucleon production in the target fragmentation region.

The parameters 𝐶𝑛𝑑 and 𝑅𝑐 are strongly correlated. To avoid this, 𝑅𝑐 was fixed (fifth line).
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Momentum distribution of wounded and involved nucleons of a nucleus is sampled according to the distribution:

𝑑𝑊 ∝
𝑀𝑁∏︁
𝑖=1

𝑒𝑥𝑝(−(𝑥− 1/𝐴)2/(𝑑/𝐴)2) 𝑒𝑥𝑝(−𝑃 2
𝑇 / < 𝑃 2

𝑇 >) 𝑑𝑥 𝑑2𝑃𝑇 ,

where 𝑀𝑁 is the multiplicity of involved nucleons, 𝑥 is the light-cone momentum fraction carried by the nucleon rel-
ative to light-cone momentum of the nucleus, 𝑑 is the dispersion parameter responsible for a spread of the momentum
distribution, 𝑃𝑇 is the transverse momentum, < 𝑃 2

𝑇 > is the average 𝑃𝑇 squared. 𝑑 is setting up in the sixth line.
Possible value of 𝑑 can be 0.01 — 0.4.

< 𝑃 2
𝑇 > is determined in the lines 7, 8. Again, an expression giving asymptotically constant value is used:

< 𝑃 2
𝑇 >= 0.035 + 0.04

𝑒4 (𝑦𝑙𝑎𝑏−2.5)

1 + 𝑒4 (𝑦𝑙𝑎𝑏−2.5)
, [(𝐺𝑒𝑉/𝑐)2].

< 𝑃 2
𝑇 > must be small at low energies, and grows up as energy increase. All coefficients in the expression can be

tuned. Their preliminary values were determined from the HARP-CDP experimental data.

The last, tenth line sets up the yield of an involved nucleon to the excitation energy of a nuclear residual in MeV. The
commented lines 719 -- 752 are needed for testing purposes, for easily setting up of the parameters.

3.5.10 Changing parameters of an existing model: Lund use-case

The main parameters of the Geant4 LUND string fragmentation model are in the file
G4LundStringFragmentation.cc located in

geant4/source/processes/hadronic/models/parton_string/hadronization/src.

The main method of the class is FragmentString which is called by the class G4ExcitedStringDecay. The
input parameter of the method is an object type G4ExcitedString. At the beginning of this method it is checked that
the string can fragment (line 537, !IsFragmentable(&aString)). If the mass of the string does not allow a
two particles decay, then the string is considered as a single hadron out of mass-shell. The minimal mass of the string
that can decay is determined in the method SetMinimalStringMass (line 413).

If the string can fragment, the main routine starts to work – Loop_toFragmentString . The loop is working until it is
decided to stop fragmentation of the string in the method StopFragmenting (lines 643 -- 655). There are two
important parameters in the method:

G4bool G4LundStringFragmentation::StopFragmenting(const G4FragmentingString * const string)
{

SetMinimalStringMass(string);
if (string->FourQuarkString())
{

return G4UniformRand() < G4Exp(-0.0005*(string->Mass() - MinimalStringMass));
} else {

return G4UniformRand() < G4Exp(-0.66e-6*(string->Mass()*string->Mass() -
MinimalStringMass*MinimalStringMass));

}
}

“0.0005” and “0.66e-6”. The first one is responsible for the energy dependence of cross sections of the processes:
𝑝 + 𝑝 → 𝑞𝑞 + 𝑞𝑞 → ℎ1 + ℎ2. The second one determines the energy dependence of cross sections for hadronic
interactions at low energies.

If the fragmentation is not stopped, the code is trying to create a hadron splitting the string (line
1033, G4KineticTrack * Hadron=Splitup(currentString,newString)). The method
G4VLongitudinalStringDecay::Splitup samples a side of the string decay: left or right string ends. Depend-
ing on type of a quark on the decaying end, a quark splitting, or a di-quark splitting is called. After them, a produced
hadron momentum is determined in the method SplitEandP.
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The method QuarkSplitup is implemented in G4VLongitudinalStringDecay class. There can be two possibili-
ties: 𝑞 → ℎ(𝑞𝑞′) + 𝑞′ and 𝑞 → 𝐵(𝑞 (𝑞𝑞)′) + (𝑞𝑞)′. A quark-antiquark pair is produced from the vacuum
in the first case, and a meson ℎ appears. A di-quark-anti-diquark pair is produced from the vacuum in the sec-
ond case, and a baryon 𝐵 appears. The probability of the second case is given by the parameter DiquarkSup-
press inherited from the parent class G4VLongitudinalStringDecay. It is reset in G4LundStringFragmentation.cc
(line 69, SetDiquarkSuppression(0.05)). The probability of the first case is 1 − 𝐷𝑖𝑞𝑢𝑎𝑟𝑘𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠. The
pairs created in the first case can consist of light quarks (𝑢�̄� , 𝑑𝑑), or strange quarks (𝑠𝑠). The probability of
the last possibility is 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠/(2 + 𝑆𝑡𝑟𝑎𝑛𝑔𝑒𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠). The parameter StrangeSuppress is set up in
G4LundStringFragmentation.cc (line 395, SetStrangenessSuppression(0.46)). By increasing this pa-
rameter the strange meson production increases.

At creation of the diquark-anti-diquark pair, the flavors of both quarks are sampled independently. Thus, the probability
to produce a strange baryon in central region is roughly proportional to StrangeSuppress.

The created meson can be a pseudo-scalar, or pseudo-vector one. The probability of a pseudo-scalar
meson creation (pspin_meson) is set up in the parent class - G4VLongitudinalStringDecay (see line
82 in G4VLongitudinalStringDecay.cc). The probability of a pseudo-vector meson creation is
1-pspin_meson.

The created baryon can belong to triplet or octet multiplets. The probability of the triplet state is given
by the parameter pspin_barion determined in the parent class G4VLongitudinalStringDecay (line 85 of
G4VLongitudinalStringDecay.cc). It is foreseen the possibility to change pspin_barion in the
G4LundStringFragmentation.cc (line 176, //pspin_barion=0.75;).

Warning: It is not recommended to change pspin_meson and pspin_barion!

In the method G4LundStringFragmentation::DiQuarkSplitup two possibilities are considered: 𝑞1𝑞2 → ℎ(𝑞1𝑞
′) +

𝑞′𝑞2 and 𝑞1𝑞2 → 𝐵(𝑞1𝑞2 𝑞′) + 𝑞′. The probability of the first process is regulated by the parameter Diquark-
BreakProb. It is set up in G4LundStringFragmentation.cc (line 67, SetDiquarkBreakProbabil-
ity(0.05)). This parameter is responsible for the meson production in hadronic interactions at large values |𝑥𝐹 | .

The StrangeSuppress parameter is changed for the second process (see line 1487, StrangeSuppress=0.43).

After the creation of a hadron its momentum is determined in the method SplitEandP which has as input the type of
the produced hadron and the string, and as input-output the residual string left after the hadron momentum sampling.
At the beginning, only the quark content of the residual string is known. If the hadron mass plus a minimal mass of
the residual string is larger than the mass of the initial string, then the sampling of the hadron is repeated as described
above. If it is not so, an attempt to determine the hadron momentum is undertaken.

First of all, the transverse momentum of the hadron is sampled. The transverse momentum distribution is given by the
formula:

𝑑𝑊 ∝ 𝑒−𝑝2
𝑇 /<𝑝2

𝑇> 𝑑2𝑝𝑇 .

If the sum of the transverse mass of the hadron and the transverse mass of the residual string is larger than the initial
string mass, then the attempt is repeated. If it is not so, the longitudinal momentum of the hadron is sampled with the
help of the GetLightConeZ method (lines 928 -- 981).

The LUND string fragmentation functions is implemented in GetLightConeZ. The method gives light-cone-
momentum fraction of the initial string carried away by the hadron.

𝐹 (𝑧) ∝ 1 − 𝑧

𝑧
𝑒−𝑎 𝑀2

𝑇 /𝑧.

𝑎 = 0.7[GeV−2] for quark fragmentation, and for a production of a meson by a di-quark (line 941). The di-quark
fragmentation function is assumed to be a flat distribution between 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 ( line 978).
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When the fragmentation of a string is stopped, SplitLast method ( lines 658 -- 753) is called.
Depending of the quark content of the string, Diquark_AntiDiquark_belowThreshold_lastSplitting,
or Diquark_AntiDiquark_aboveThreshold_lastSplitting, or Quark_AntiQuark_lastSplitting, or
Quark_Diquark_lastSplitting is called. The methods determine the types of the two last produced particles.
After that, 4-momentum of the particles are calculated (Sample4Momentum , line 744). If at least one of the two
final hadrons is a baryon, an isotropic decay is simulated with a probability ProbIsotropy (line 764),

𝑃𝑟𝑜𝑏𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑦 = (𝑀𝑁/𝑀𝑠𝑡𝑟𝑖𝑛𝑔)4, 𝑀𝑁 = 938 [𝑀𝑒𝑉 ].

The power 4 and functional form of the dependence can be tuned. It can reflect on angular distributions of baryons in
annihilation processes, or in low energy interactions.

If anisotropic decay happens, then the 𝑝𝑇 of final hadrons is simulated as before.

For the sampling of the two final hadrons special arrays are introduced in the lines 81 -- 375.

3.6 Generic Event Biasing

3.6.1 Introduction

This section presents the generic biasing classes which have been introduced since release 10.0. Theses classes are
meant to virtually allow any type of process-level based biasing.

In 10.0 and 10.1, only PostStep biasing actions are possible, which allows:

• Physics process biasing of:
– occurence law, ie biasing acting on the process PostStepGetPhysicalInteractionLength(..
.) level;

– final state production, ie biasing acting on the process PostStepDoIt(...)
• Biasing of non-physics type:

– Where by that we mean biasing actions which act on particles, but are not modifying a physics process
behavior

– Splitting and killing are the important example of such cases

3.6.2 Design of Generic Biasing

We have decided to split the actual biasing actions (change probability occurence of a process, change its final state
generation, split, kill, etc. . . ) from the decisions about these actions to be taken. The reason for this is that several
biasing actions are often needed to build one biasing technique, these actions having to be selected along some specific
logic of the technique.

For example, a technique like the “force collision” of MCNP involves a splitting, a force interaction of one copy in the
volume and a force free flight (under zero weight) of the other copy in the volume.

The classes which provides the interfaces for these biasing actions and decisions are respectively:

• G4VBiasingOperation
• G4VBiasingOperator

A third class, G4BiasingProcessInterface provides the interface between these classes and the stepping.

The G4VBiasingOperation Interface Class

G4VBiasingOperation defines two types of methods:
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• methods for physics-based biasing:
– virtual const G4VBiasingInteractionLaw* ProvideOccurenceBiasingInteractionLaw(
const G4BiasingProcessInterface* /* callingProcess */,
G4ForceCondition& /* proposeForceCondition */ ) = 0;

* which is discussed in more details below (Physics Process Occurence Biasing)
– virtual G4VParticleChange* ApplyFinalStateBiasing( const
G4BiasingProcessInterface* /* callingProcess */, const G4Track* /*
track */, const G4Step* /* step */, G4bool& /* forceBiasedFinalState

*/) = 0;

* which is meant for final state biasing.
* the biasing operation gets called (by the G4BiasingProcessInterface callingProcess

) and has to return a biased particle change. This one should take care of providing the proper weight
values for the biasing applied.

• methods for non-physics biasing:
– virtual G4double DistanceToApplyOperation( const G4Track* /* track */,
G4double /* previousStepSize */, G4ForceCondition* /* condition */) =
0;

* which returns the distance at which the operation must be applied, and returns also the force condition
for this.

* the returned values (distance, force condition) are returned to the stepping manager by the the
G4BiasingProcessInterface callingProcess to make the biasing operation to compete
for limiting the step.

– virtual G4VParticleChange* GenerateBiasingFinalState( const G4Track*
/* track */, const G4Step* /* step */) = 0;

* called if the operation has limited the step.
* must return the final state generated by the operation.

The G4VBiasingOperator Interface Class

The G4VBiasingOperator class is meant to define the interface to pilot biasing operations. It selects biasing
operations or sequences of biasing operations to build up the logic of a specific biasing technique. It is messaged by
each G4BiasingProcessInterface callingProcess instance, which pass their “identity” through their
own pointer values. The operator has hence all the necessary information for taking decisions.

In addition, since 10.1, the G4BiasingProcessInterface callingProcess instances do “anticipated”
calls to their underneath wrapped physics process (if any) : the first of the G4BiasingProcessInterface
callingProcess instance, trigger calls to all PostStepGetPhysicalInteractionLength(...) meth-
ods of biased processes. In this way, all process cross-sections have been updated before the first call to the biasing
operator. This one has hence all ready-to-use physics information the first it is messaged in the step by the first
G4BiasingProcessInterface callingProcess instance.

The G4VBiasingOperator class defines the following interface:

• virtual G4VBiasingOperation* ProposeNonPhysicsBiasingOperation( const
G4Track* track, const G4BiasingProcessInterface* callingProcess ) = 0;

– This method is called by each G4BiasingProcessInterface instance which does not hold/wrap a
physics process.

– The G4VBiasingOperation returned will have its DistanceToApplyOperation(...) and
GenerateBiasingFinalState(...) methods called at proper times (post step GPIL and post step
DoIt times, respectively) by the G4BiasingProcessInterface callingProcess .

• virtual G4VBiasingOperation* ProposeOccurenceBiasingOperation( const
G4Track* track, const G4BiasingProcessInterface* callingProcess ) = 0;

– The G4VBiasingOperation returned will have its ProvideOccurenceBiasingInteractionLaw(.
..) called to get the biased interaction law to be used.

– This method is called at the PostStepGetPhysicalInteractionLength(...) level.
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• virtual G4VBiasingOperation* ProposeFinalStateBiasingOperation( const
G4Track* track, const G4BiasingProcessInterface* callingProcess ) = 0;

– The G4VBiasingOperation returned will have its ApplyFinalStateBiasing(...) called to
generated the physics-based biased final state.

– This method is called at the PostStepDoIt(...) level.

3.6.3 Physics Process Occurence Biasing

The occurence biasing is the biasing which affects the probability for a physics process to occur. For now, we discuss
only the case of neutral particles, ie, having no continuous energy loss along a step. The case of charged particles
is expected to be treated in later releases.

The process occurence is driven by the exponential law, which parameter in Geant4 is the process mean free path
𝜆, which is also the inverse of the cross-section 𝜎. The (analog or natural) probability density function (pdf ) of
interactions is given by 𝑝a(𝑙) = 𝜎a exp(−𝜎a𝑙), where 𝑙 is the distance at which the interaction occurs, and where we
have relabelled 𝜎 as 𝜎a. In Geant4, volumes are made of a single material, meaning that 𝜎a does not depend on 𝑙 : at
some position, starting point of a step, the track “sees” the same cross-section at all positions 𝑙 in the volume.

The occurence biasing consists in substituting 𝑝a(𝑙) by some arbitrary biased interaction law 𝑝b(𝑙).

Formalism for occurence biasing

More details about the formalism will be provided in the physics reference manual biasing related part (to come).

An arbitrary interaction law 𝑝b(𝑙) can be recasted in term of an “effective” cross-section 𝜎b(𝑙), which depends on 𝑙 in
general, as

• 𝑝b(𝑙) = 𝜎𝑏(𝑙) exp(−
∫︀
𝜎b(𝑠)𝑑𝑠 , where the integration runs over [0, 𝑙],

• where 𝜎b(𝑙) is given by 𝜎b(𝑙) = 𝑝b(𝑙)/𝑃NI,b(𝑙)
• where 𝑃NI,b(𝑙) is the probability for non-interaction along segment [0, 𝑙] and is given by 𝑃NI,b(𝐿)𝑙 = 1 −
𝑙𝑝b(𝑠)𝑑𝑠 = exp(−

∫︀
𝜎b(𝑠)d𝑠) where the integration runs over [0, 𝑙].

which is the formalism that corresponds to non-constant cross-sections.

When applying this formalism to the analog pdf 𝑝a(𝑙), we simply have 𝜎b(𝑙) = 𝜎a and 𝑃NI,b(𝑙) = exp(−𝜎a𝑙) , as
this must.

In contrast with the analog case, the “effective” cross-section may depend on 𝑙, even in a volume made of single
material. An example of this is the forced interaction: if it is decided that the interaction of a process, with analog
cross-section 𝜎a , will be forced and will happen somewhere on the segment [0, 𝐿], then we have

• Forced interaction over segment [0, 𝐿] case:
• 𝑝b(𝑙) = 𝜎a exp(−𝜎a𝑙/(1 − exp(−𝜎a𝐿)) ,
• 𝑃NI,b(𝑙) = 1 − (1 − exp(−𝜎a𝑙))/(1 − exp(−𝜎a𝐿)) ,
• 𝜎b(𝑙) = 𝜎a/(1 − exp(−𝜎a(𝐿− 𝑙)) .

In the occurence biasing, two weights have to be taken into account:

• When the track travels from 0 to 𝑙 without interaction, it has a different probability to do so in the biased and
analog schemes, meaning that a weight for non-interaction has to be applied, this weight being:
𝑤NI = 𝑃NI,a(𝑙)/𝑃NI,b(𝑙) .
If several processes are biased, each with a dedicated law, then, as the total probability for non-interaction is
the product of individual probabilities, the total non-interaction weight is simply the product of the individual
weights. This non-interaction weight has hence to be applied for all biased processes.

• If the track then makes an interaction in the next segment 𝑑𝑙 the analog process would have a probability 𝜎a𝑑𝑙
to do so, while this probability is 𝜎b(𝑙)𝑑𝑙 for the biased process. A weight for interaction has hence to applied
and is
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𝑤I = 𝜎a/𝜎b(𝑙) ,
where the analog and biased cross-sections are for the process which is taking place.

Implementation of Occurence Biasing

Previous section shows that weights for non-interaction probability and effective cross-section are needed to compute
the related non-interaction and interaction weights. The class G4VBiasingInteractionLaw is the interface for
implementing “interaction laws”, it defines the pure virtual methods

• virtual G4double ComputeNonInteractionProbabilityAt(G4double length) const
= 0;

• virtual G4double ComputeEffectiveCrossSectionAt(G4double length) const =
0;

that are used in these weights calculations. It defines also the pure virtual method:

• virtual G4double SampleInteractionLength() = 0;

In the case of the occurence biasing, the dedicated virtual const
G4VBiasingOperation::ProvideOccurenceBiasingInteractionLaw(const
G4BiasingProcessInterface* callingProcess, G4ForceCondition&
proposeForceCondition ) = 0; is meant to return the biased law. The G4BiasingProcessInterface
will not change the state of the law. It will collect the sampled interaction length (that the biasing operation must
have asked to law to sample) and will used the non-interaction probability method in its AlongStepDoIt(...)
to compute the weight for non-interaction, these weight being multiplied among biased processes, and it will use the
effective cross-section of process “i”, if process “i” wins the interaction length race, in its PostStepDoIt(...)
to compute the weight for interaction.

To compute these weights, the G4BiasingProcessInterface holds a private interaction law, to which it sets
the analog process cross-section that it collects at the beginning of the step.

As occurence biasing and final state biasing are independent operations, the weight correction for interaction due to
the occurence biasing is applied on top of the final state generated by the process (this final state being biased or not).

3.7 Visualisation

This Chapter is intended to be read after Chapter Visualisation on Visualisation object oriented design in Part II. Many
of the concepts used here are defined there, and it strongly recommended that a writer of a new visualisation driver
or trajectory drawer reads Visualisation first. The class structure described there is summarised in Geant4 visualation
system class diagram. :

Fig. 3.15: Geant4 visualation system class diagram.
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3.7.1 Creating a new graphics driver

To create a new graphics driver for Geant4, it is necessary to implement a new set of three classes derived from the
three base classes, G4VGraphicsSystem, G4VSceneHandler and G4VViewer.

A useful place to start

A skeleton set of classes is included in the code distribution in the visualisation category under subdirectory
visualisation/XXX (but they are not default-registered graphics systems.1

There are several sets of classes, described in more detail below. A recommended approach is to copy the files that
best match your graphics system to a new subdirectory with a name that suits your graphics system .

Then

1. Change the name of the files (change the code – XXX or XXXFile, etc., as chosen – to something that suits
your graphics system ).

2. Change XXX similarly in all files.
3. Change XXX similarly in name := G4XXX in GNUmakefile.
4. Add your new subdirectory to SUBDIRS and SUBLIBS in visualisation/GNUmakefile.
5. Look at the code and use it to build your visualisation driver. You might also find it useful to look at ASCIITree

(and VTree) as an example of a minimal graphics driver . Look at FukuiRenderer as an example of a
driver which implements AddSolid methods for some solids. Look at OpenGL as an example of a driver
which implements a graphical database (display lists) and the machinery to decide when to rebuild. (OpenGL
is complicated by the proliferation of combinations of the use or not of display lists for three window systems,
X-windows, X with motif (interactive), Microsoft Windows (Win32), a total of six combinations, and much use
is made of inheritance to avoid code duplication.)

6. If it requires external libraries, introduce two new environment variables G4VIS_BUILD_XXX_DRIVER and
G4VIS_USE_XXX (where XXX is your choice as above) and make the modifications to:

• source/visualization/management/include/G4VisExecutive.icc
• config/G4VIS_BUILD.gmk
• config/G4VIS_USE.gmk

Graphics driver templates in the XXX sub-category

You may use the following templates to help you get started writing a graphics driver . (The word “template” is used
in the ordinary sense of the word; they are not C++ templates.)

• G4XXX, G4XXXSceneHandler, G4XXXViewer Templates for the simplest possible graphics driver .
These would be suitable for an “immediate” driver, i.e., one which renders each object immediately to a screen.
Of course, if the view needs re-drawing, as, for example, after a change of viewpoint, the viewer requests a
re-issue of drawn objects.

• G4XXXFile, G4XXXFileSceneHandler, G4XXXFileViewer Templates for a file-writing graphics
driver. The particular features are: delayed opening of the file on receipt of the first item; rewinding file on
ClearView (to simulate the clearing of views and prevent the duplication of material in the file); closing of the
file on ShowView, which may also trigger the launch of a browser. There are various degrees of sophistication
in, for example, the allocation of filenames – see FukuiRenderer or HepRepFile.
These templates also show the use of a specific AddSolid function whereby the specific parameters, for
example, the dimensions of a G4Box, can be accessed.

• G4XXXStored, G4XXXStoredSceneHandler, G4XXXStoredViewer Templates for a graphics
driver with a store/database. The advantage of a store is that the view can be refreshed, for example, from
a different viewpoint, without a need to recompute. It is up to the viewer to decide when a re-computation

1 To do this,simply instantiate and register, for example: visManager->RegisterGraphicsSystem(new G4XXX) before
visManager->Initialise().
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is necessary. They also show how to distinguish between permanent and transient objects – see also Extd-
FuncVis.CrtGrpDrv.DlgTrnsObj1

• G4XXXSG, G4XXXSGSceneHandler, G4XXXSGViewer Templates for a sophisticated graphics driver
with a scene graph. The scene graph, following Open Inventor parlance, is a tree of objects that dictates the
order in which the objects are rendered. It obviously lends itself to the rendering of the Geant4 geometry
hierarchy. For example, the Open Inventor driver draws only the top level volumes unless made invisible by
picking. Thus the user can unwrap a branch of the geometry level by level. This has performance benefits and
gives the user significant and useful control over the view. These classes show how to make a scene graph of
drawn volumes, i.e., the set of volumes that have not been culled. (Normally, volumes marked invisible are
culled, i.e., not drawn. Also, the user may wish to limit the number of drawn volumes for performance reasons.)
The drivers also have to process non-geometry items and distinguish between transient and permanent objects
as above.

Important Command Actions

To help understand how the Geant4 Visualization System works, here are a few important function invocation se-
quences that follow user commands. For an explanation of the commands themselves, see command guidance or the
Control section of the Application Developers Guide. For a fuller explanation of the functions, see appropriate base
class head files or Software Reference Manual.

• /vis/viewer/clear

viewer->ClearView(); // Clears buffer or rewinds file.
viewer->FinishView(); // Swaps buffer (double buffer systems).

• /vis/viewer/flush

/vis/viewer/refresh
/vis/viewer/update

• /vis/viewer/rebuild

viewer->SetNeedKernelVisit(true);

• /vis/viewer/refresh If the view is ‘‘auto-refresh’‘, this command is also invoked after /vis/viewer/create,
/vis/viewer/rebuild or a change of view parameters (/vis/viewer/set/. . . , etc.).

viewer->SetView(); // Sets camera position, etc.
viewer->ClearView(); // Clears buffer or rewinds file.
viewer->DrawView(); // Draws to screen or writes to

// file/socket.

• /vis/viewer/update

viewer->ShowView(); // Activates interactive windows or
// closes file and/or triggers
// post-processing.

• /vis/scene/notifyHandlers For each viewer of the current scene, the equivalent of

/vis/viewer/refresh

If “flush” is specified on the command line, the equivalent of:

/vis/viewer/update

/vis/scene/notifyHandlers is also invoked after a change of scene (/vis/scene/add/. . . , etc.).
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What happens in DrawView?

This depends on the viewer. Those with their own graphical database, for example, OpenGL’s display lists or Open
Inventor’s scene graph, do not need to re-traverse the scene unless there has been a significant change of view pa-
rameters. For example, a mere change of viewpoint requires only a change of model-view matrix whilst a change
of rendering mode from wireframe to surface might require a rebuild of the graphical database. A rebuild of the
run-duration (persistent) objects in the scene is called a “kernel visit”; the viewer prints “Traversing scene data. . . ”.

Note that end-of-event (transient) objects are only rebuilt at the end of an event or run, under control of the visualisation
manager. Smart scene handlers keep them in separate display lists so that they can be rebuilt separately from the run-
duration objects - see Dealing with transient objects

Integrated viewers with no graphical database

For example, G4OpenGLImmediateXViewer::DrawView().:

NeedKernelVisit(); // Always need to visit G4 kernel.
ProcessView();
FinishView();

Integrated viewers with graphical database

For example, G4OpenGLStoredXViewer::DrawView().

KernelVisitDecision(); // Private function containing...
if significant change of view parameters...

NeedKernelVisit();
ProcessView();
FinishView();

File-writing viewers

For example, G4DAWNFILEViewer::DrawView().

NeedKernelVisit();
ProcessView();

Note that viewers needing to invoke FinishView must do it in DrawView.

What happens in ProcessView?

ProcessView is inherited from G4VViewer:

void G4VViewer::ProcessView() {
// If ClearStore has been requested, e.g., if the scene has changed,
// of if the concrete viewer has decided that it necessary to visit
// the kernel, perhaps because the view parameters have changed
// drastically (this should be done in the concrete viewer's
// DrawView)...
if (fNeedKernelVisit) {

fSceneHandler.ProcessScene(*this);
fNeedKernelVisit = false;

}
}

What happens in ProcessScene?

ProcessScene is inherited from G4VSceneHandler. It causes a traversal of the run-duration models in the scene.
For drivers with graphical databases, it causes a rebuild (ClearStore). Then for the run-duration models:
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fReadyForTransients = false;
BeginModeling();
for each run-duration model...
pModel -> DescribeYourselfTo(*this);

EndModeling();
fReadyForTransients = true;

(A second pass is made on request – see G4VSceneHandler::ProcessScene.) The use of
fReadyForTransients is described in Dealing with transient objects.

What happens then depends on the type of model:

• G4AxesModel G4AxesModel::DescribeYourselfTo simply calls sceneHandler.AddPrimitive meth-
ods directly.

sceneHandler.BeginPrimitives();
sceneHandler.AddPrimitive(x_axis); // etc.
sceneHandler.EndPrimitives();

Most other models are like this, except for the following. . .
• G4PhysicalVolumeModel The geometry is descended recursively, culling policy is enacted, and for each

accepted (and possibly, clipped) solid:

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
// For example, if pSol points to a G4Box...
|-->G4Box::DescribeYourselfTo(G4VGraphicsScene& scene){

scene.AddSolid(*this);
}

sceneHandler.PostAddSolid();

The scene handler may implement the virtual function { AddSolid(const G4Box&)}, or inherit:

void G4VSceneHandler::AddSolid(const G4Box& box) {
RequestPrimitives(box);

}

RequestPrimitives converts the solid into primitives (G4Polyhedron) and invokes AddPrimitive:

BeginPrimitives(*fpObjectTransformation);
pPolyhedron = solid.GetPolyhedron();
AddPrimitive(*pPolyhedron);
EndPrimitives();

The resulting default sequence for a G4PhysicalVolumeModel is shown here:

DrawView();
|-->ProcessView();

|-->ProcessScene();
|-->BeginModeling();
|-->pModel -> DescribeYourselfTo(*this);
| |-->sceneHandler.PreAddSolid(theAT, \*pVisAttribs);
| |-->pSol->DescribeYourselfTo(sceneHandler);
| | |-->sceneHandler.AddSolid(\*this);
| | |-->RequestPrimitives(solid);
| | |-->BeginPrimitives (\*fpObjectTransformation);
| | |-->pPolyhedron = solid.GetPolyhedron();
| | |-->AddPrimitive(\*pPolyhedron);
| | |-->EndPrimitives();
| |-->sceneHandler.PostAddSolid();
|-->EndModeling();

Note the sequence of calls at the core:

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
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|-->sceneHandler.AddSolid(*this);
|-->RequestPrimitives(solid);

|-->BeginPrimitives (*fpObjectTransformation);
|-->pPolyhedron = solid.GetPolyhedron();
|-->AddPrimitive(*pPolyhedron);
|-->EndPrimitives();

sceneHandler.PostAddSolid();

is reduced to

sceneHandler.PreAddSolid(theAT, *pVisAttribs);
pSol->DescribeYourselfTo(sceneHandler);
|-->sceneHandler.AddSolid(*this);
sceneHandler.PostAddSolid();

if the scene handler implements its own AddSolid. Moreover, the sequence

BeginPrimitives (*fpObjectTransformation);
AddPrimitive(*pPolyhedron);
EndPrimitives();

can be invoked without a prior PreAddSolid, etc. The flag fProcessingSolid will be false for the
last case. The possibility of any or all of these three scenarios occurring, for both permanent and transient
objects, affects the implementation of a scene handler if there is any attempt to build a graphical database.
This is reflected in the templates XXXStored and XXXSG described in ExtdFuncVis.CrtGrpDrv.UsfStrt.Tmpl.
Transients are discussed in Dealing with transient objects.

• G4TrajectoriesModel At end of event, the trajectory container is unpacked and, for each trajectory,
sceneHandler.AddCompound called. The scene handler may implement this virtual function or inherit:

void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) {
traj.DrawTrajectory(((G4TrajectoriesModel*)fpModel)->GetDrawingMode());

}

Similarly, the user may implement DrawTrajectory or inherit:

void G4VTrajectory::DrawTrajectory(G4int i_mode) const {
G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
if (0 != pVVisManager) {

pVVisManager->DispatchToModel(*this, i_mode);
}

}

Thence, the Draw method of the current trajectory model is invoked (see ‘ Enhanced Trajectory Drawing Extd-
FuncVis.EnhcTrjDrw for details on trajectory models), which in turn, invokes Drawmethods of the visualisation
manager. The resulting default sequence for a G4TrajectoriesModel is shown here:

DrawView();
|-->ProcessView();

|-->ProcessScene();
|-->BeginModeling();
|-->pModel -> DescribeYourselfTo(\*this);
| |-->AddCompound(trajectory);
| |-->trajectory.DrawTrajectory(...);
| |-->DispatchToModel(...);
| |-->model->Draw(...);
| |-->G4VisManager::Draw(...);
| |-->BeginPrimitives(objectTransform);
| |-->AddPrimitive(...);
| |-->EndPrimitives();
|-->EndModeling();
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Dealing with transient objects

Any visualisable object not defined in the run-duration part of a scene is treated as “transient”. This includes tra-
jectories, hits or anything drawn by the user through the G4VVisManager user-level interface (unless as part of a
run-duration model implementation). A flag, fReadyForTransients}, is maintained by the scene handler. In
fact, its normal state is true, and only temporarily, during handling of the run-duration part of the scene, is it set to
false – see description of ProcessScene, What happens in ProcessScene?.

If the driver supports a graphical database, it is smart to distinguish transient and permanent objects. In this
case, every Add method of the scene handler must be transient-aware. In some cases, it is enough to open a
graphical data base component in BeginPrimitives, fill it in AddPrimitive and close it appropriately in
EndPrimitives. In others, initialisation is done in BeginModeling and consolidation in EndModeling –
see G4OpenGLStoredSceneHandler. If any AddSolid method is implemented, then the graphical data base
component should be opened in PreAddSolid, protecting against double opening, for example,

void G4XXXStoredSceneHandler::BeginPrimitives
(const G4Transform3D& objectTransformation) {

G4VSceneHandler::BeginPrimitives(objectTransformation);
// If thread of control has already passed through PreAddSolid,
// avoid opening a graphical data base component again.
if (!fProcessingSolid) {

for other solids.

The reason for this distinction is that at end of run the user typically wants to display trajectories on a view of the
detector, then, at the end of the next event2 , erase the old and see new trajectories. The visualisation manager
messages the scene handler with ClearTransientStore just before drawing the trajectories to achieve this.

If the driver does not have a graphical database or does not distinguish between transient and persistent objects, it
must emulate ClearTransientStore. Typically, it must erase everything, including the detector, and re-draw
the detector and other run-duration objects, ready for the transients to be added. File-writing drivers must rewind the
output file. Typically:

void G4HepRepFileSceneHandler::ClearTransientStore() {
G4VSceneHandler::ClearTransientStore();
// This is typically called after an update and before drawing hits
// of the next event. To simulate the clearing of "transients"
// (hits, etc.) the detector is redrawn...
if (fpViewer) {

fpViewer -> SetView();
fpViewer -> ClearView();
fpViewer -> DrawView();

}
}

ClearView rewinds the output file and DrawView re-draws the detector, etc. (For smart drivers, DrawView is
smart enough to know not to redraw the detector, etc., unless the view parameters have changed significantly – see ‘
What happens in ?

<#sect.ExtdFuncVis.CrtGrpDrv.WhtDrwVw>‘__)

More about scene models

Scene models conform to the G4VModel abstract interface. Available models are listed and described there in varying
detail. What happens in ProcessScene? describes their use in some common command actions.

2 There is an option to accumulate trajectories across events and runs – see commands /vis/scene/endOfEventAction and /vis/
scene/endOfRunAction.
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In the design of a new model, care should be taken to handle the possibility that the G4ModelingParameters
pointer is zero. Currently the only use of the modeling parameters is to communicate the culling policy. Most models,
therefore, have no need for modeling parameters.

3.7.2 Enhanced Trajectory Drawing

Creating a new trajectory model

New trajectory models must inherit from G4VTrajectoryModel and implement these pure virtual functions:

virtual void Draw(const G4VTrajectory&, G4int i_mode = 0,
const G4bool& visible = true) const = 0;

virtual void Print(std::ostream& ostr) const = 0;

To use the new model directly in compiled code, simply register it with the G4VisManager, eg.

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialise();

// Create custom model
MyCustomTrajectoryModel* myModel =

new MyCustomTrajectoryModel("custom");

// Configure it if necessary then register with G4VisManager
...
visManager->RegisterModel(myModel);

Adding interactive functionality

Additional classes need to be written if the new model is to be created and configured interactively:

Messenger classes Messengers to configure the model should inherit from G4VModelCommand. The concrete tra-
jectory model type should be used for the template parameter, eg.

class G4MyCustomModelCommand
: public G4VModelCommand<G4TrajectoryDrawByParticleID> {

...
};

A number of general use templated commands are available in G4ModelCommandsT.hh.
Factory class A factory class responsible for the model and associated messenger creation must also be written.

The factory should inherit from G4VModelFactory. The abstract model type should be used for the template
parameter, eg.

class G4TrajectoryDrawByChargeFactory
: public G4VModelFactory<G4VTrajectoryModel> {

...
};

The model and associated messengers should be constructed in the Create method. Optionally, a context object
can also be created, with its own associated messengers. For example:

ModelAndMessengers
G4TrajectoryDrawByParticleIDFactory::

Create(const G4String& placement, const G4String& name)
{

// Create default context and model
G4VisTrajContext* context = new G4VisTrajContext("default");
G4TrajectoryDrawByParticleID* model =

new G4TrajectoryDrawByParticleID(name, context);
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// Create messengers for default context configuration
AddContextMsgrs(context, messengers, placement+"/"+name);

// Create messengers for drawer
messengers.push_back(new

G4ModelCmdSetStringColour<G4TrajectoryDrawByParticleID>
(model, placement));

messengers.push_back(new
G4ModelCmdSetDefaultColour<G4TrajectoryDrawByParticleID>

(model, placement));
messengers.push_back(new

G4ModelCmdVerbose<G4TrajectoryDrawByParticleID>
(model, placement));

return ModelAndMessengers(model, messengers);
}

The new factory must then be registered with the visualisation manager. This should be done by overriding the
G4VisManager::RegisterModelFactory method in a subclass. See, for example, the G4VisManager implementation:

G4VisExecutive::RegisterModelFactories()
{

...
RegisterModelFactory(new G4TrajectoryDrawByParticleIDFactory());

}

3.7.3 Trajectory Filtering

Creating a new trajectory filter model

New trajectory filters must inherit at least from G4VFilter. The models supplied with the Geant4 distribution inherit
from G4SmartFilter, which implements some specialisations on top of G4VFilter. The models implement these pure
virtual functions:

// Evaluate method implemented in subclass
virtual G4bool Evaluate(const T&) = 0;

// Print subclass configuration
virtual void Print(std::ostream& ostr) const = 0;

To use the new filter model directly in compiled code, simply register it with the G4VisManager, eg.

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialise();

// Create custom model
MyCustomTrajectoryFilterModel* myModel =

new MyCustomTrajectoryFilterModel("custom");

// Configure it if necessary then register with G4VisManager
...
visManager->RegisterModel(myModel);

Adding interactive functionality

Additional classes need to be written if the new model is to be created and configured interactively. The mechanism is
exactly the same as that used to create enchanced trajectory drawing models and associated messengers. See the filter
factories in G4TrajectoryFilterFactories for example implementations.
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3.7.4 Other Resources

The following sections contain various information for extending other class functionalities of Geant4 visualisation:

• User’s Guide for Application Developers, Chapter 8 - Visualization
• User’s Guide for Toolkit Developers, Object-oriented Analysis and Design of Geant4 Classes, .
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