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CHAPTER
ONE

INTRODUCTION

1.1 Introduction

1.1.1 Scope of This Manual

The Physics Reference Manual provides detailed explanations of the physics implemented in the Geant4 toolkit.
The manual’s purpose is threefold:
* to present the theoretical formulation, model, or parameterization of the physics interactions included in Geant4,

¢ to describe the probability of the occurrence of an interaction and the sampling mechanisms required to simulate
it, and

* to serve as a reference for toolkit users and developers who wish to consult the underlying physics of an inter-
action.

This manual does not discuss code implementation or how to use the implemented physics interactions in a simulation.
These topics are discussed in the User’s Guide for Application Developers. Details of the object-oriented design and
functionality of the Geant4 toolkit are given in the User’s Guide for Toolkit Developers. The Installation Guide for
Setting up Geant4 in Your Computing Environment describes how to get the Geant4 code, install it, and run it.

1.1.2 Definition of Terms

Several terms used throughout the Physics Reference Manual have specific meaning within Geant4, but are not well-
defined in general usage. The definitions of these terms are given here.

* process - a C++ class which describes how and when a specific kind of physical interaction takes place along
a particle track. A given particle type typically has several processes assigned to it. Occaisionally “process”
refers to the interaction which the process class describes.

* model - a C++ class whose methods implement the details of an interaction, such as its kinematics. One or more
models may be assigned to each process. In sections discussing the theory of an interaction, “model” may refer
to the formulae or parameterization on which the model class is based.

¢ Geant3 - a physics simulation tool written in Fortran, and the predecessor of Geant4. Although many references
are made to Geant3, no knowledge of it is required to understand this manual.

1.2 Monte Carlo Methods

The Geant4 toolkit uses a combination of the composition and rejection Monte Carlo methods. Only the basic formal-
ism of these methods is outlined here. For a complete account of the Monte Carlo methods, the interested user is re-
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ferred to the publications of Butcher and Messel, Messel and Crawford, or Ford and Nelson [butch][messel]/ NHRS5].

Suppose we wish to sample z in the interval [z, z2] from the distribution f(z) and the normalised probability density
function can be written as :

@) = 3 Nifila)gi (@)
i=1

where N; > 0, f;(x) are normalised density functions on [z, x2],and 0 < g;(x) < 1.
According to this method, x can sampled in the following way:
1. select a random integer i € {1,2,---n} with probability proportional to V;
2. select a value x( from the distribution f;(x)
3. calculate g;(x) and accept 2 = x¢ with probability g;(zo);
4. if xg is rejected restart from step 1.
It can be shown that this scheme is correct and the mean number of tries to accept a value is ) _, IV;.
In practice, a good method of sampling from the distribution f(z) has the following properties:
* all the subdistributions f;(z) can be sampled easily;
* the rejection functions g;(x) can be evaluated easily/quickly;
* the mean number of tries is not too large.

Thus the different possible decompositions of the distribution f(x) are not equivalent from the practical point of view
(e.g. they can be very different in computational speed) and it can be useful to optimise the decomposition.

A remark of practical importance : if our distribution is not normalised
o
/ fl)dz=C>0
T

the method can be used in the same manner; the mean number of tries in this case is > ; Ns /C.

1.3 Particle transport

Particle transport in Geant4 is the result of the combined actions of the Geant4 kernel’s Stepping Manager class and
the actions of processes which it invokes - physics processes and the Transportation *process’ which identifies the next
volume boundary and also the geometrical volume that lies behind it, when the tracks has reached it.

The expected length at which an interaction is expected to occur is determined by polling all processes applicable at
each step.

Then it is determined whether the particle will remain within the current volume long enough - otherwise it will cross
into a different volume before this potential interaction occurs.

The most important processes for determining the trajectory of a charged particle, including boundary crossing and
the effects of external fields are the multiple scattering process and the Transportation process, which is discussed in
the second following section.

2 Chapter 1. Introduction
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CHAPTER
TWO

TRANSPORTATION

2.1 Transportation

The transportation process is responsible for determining the geometrical limits of a step. It calculates the length of
step with which a track will cross into another volume. When the track actually arrives at a boundary, the transportation
process locates the next volume that it enters.

If the particle is charged and there is an electromagnetic (or potentially other) field, it is responsible for propagating
the particle in this field. It does this according to an equation of motion. This equation can be provided by Geant4, for
the case a magnetic or EM field, or can be provided by the user for other fields.

dp 1. ¢

—=-F==(E x B

ds v v ( v )
Extensions are provided for the propagation of the polarisation, and the effect of a gravitational field, of potential
interest for cases of slow neutral particles.

Some additional details on motion in fields:

In order to intersect the model Geant4 geometry of a detector or setup, the curved trajectory followed by a charged
particle is split into ’chords segments’. A chord is a straight line segment between two trajectory points. Chords are
created utilizing a criterion for the maximum estimated value of the sagitta - the distance between the further curve
point and the chord.

The equations of motions are solved utilising Runge Kutta methods. For the simplest case of a pure magnetic field,
only the position and momentum are integrated. If an electric field is present, the time of flight is also integrated since
the velocity changes along the step.

A Runge Kutta integration method for a vector y starting at y_, ., and given its derivative dy’(s) as a function of y
and s. For a given interval & it provides an estimate of the endpoint y, ;. and of the integration error y¢,ror, due to
the truncation errors of the RK method and the variability of the derivative.

The position and momentum as used as parts of the vector y, and optionally the time of flight in the lab frame and the
polarisation.

A proposed step is accepted if the magnitude of the location components of the error is below a tolerated fraction e of
the step length s

‘AXl = |Xer7‘or‘ <€exs
and the relative momentum error is also below e:
‘Ap| = |perror| <e€

The transportation also updates the time of flight of a particle. In case of a neutral particle or of a charged particle in a
pure magnetic field it utilises the average inverse velocity (average of the initial and final value of the inverse velocity.)
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In case of a charged particle in an electric field or other field which does not preserve the energy, an explicit integration
of time along the track is used. This is done by integrating the inverse velocity along the track:

511
tl = to +/ *ds
S0 v

Runge Kutta methods of different order can be utilised for fields depending on the numerical method utilised for
approximating the field. Specialised methods for near-constant magnetic fields are also available.

6 Chapter 2. Transportation



CHAPTER
THREE

DECAY

3.1 Decay

The decay of particles in flight and at rest is simulated by the G4Decay class.

3.1.1 Mean Free Path for Decay in Flight
The mean free path A is calculated for each step using

A =~vBer
where 7 is the lifetime of the particle and

1
LV

[ and -y are calculated using the momentum at the beginning of the step. The decay time in the rest frame of the
particle (proper time) is then sampled and converted to a decay length using (3.

3.1.2 Branching Ratios and Decay Channels

G4Decay selects a decay mode for the particle according to branching ratios defined in the G4DecayTable class, which
is a member of the G4ParticleDefinition class. Each mode is implemented as a class derived from G4VDecayChannel
and is responsible for generating the secondaries and the kinematics of the decay. In a given decay channel the daughter
particle momenta are calculated in the rest frame of the parent and then boosted into the laboratory frame. Polarization
is not currently taken into account for either the parent or its daughters.

A large number of specific decay channels may be required to simulate an experiment, ranging from two-body to
many-body decays and V' — A to semi-leptonic decays. Most of these are covered by the five decay channel classes
provided by Geant4:

G4PhaseSpaceDecayChannel | : phase space decay
G4DalitzDecayChannel : dalitz decay
G4MuonDecayChannel : muon decay
G4TauLeptonicDecayChannel | : tau leptonic decay
G4KL3DecayChannel : semi-leptonic decays of kaon .
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G4PhaseSpaceDecayChannel

The majority of decays in Geant4 are implemented using the G4PhaseSpaceDecayChannel class. It simulates
phase space decays with isotropic angular distributions in the center-of-mass system. Three private methods of
G4PhaseSpaceDecayChannel are provided to handle two-, three- and N-body decays:

TwoBodyDecaylIt()
ThreeBodyDecaylt()
ManyBodyDecaylt()

Some examples of decays handled by this class are:
™ = vy,
AN — pr™
and

KOL — mOrta.

G4DalitzDecayChannel
The Dalitz decay
™ s y+et +e”
and other Dalitz-like decays, such as
K —~y+et +e
and
KoL =y +put +pu”
are simulated by the G4DalitzDecayChannel class. In general, it handles any decay of the form
PO =y 0T +17,
where PV is a spin-0 meson of mass M and [* are leptons of mass . The angular distribution of the + is isotropic in
the center-of-mass system of the parent particle and the leptons are generated isotropically and back-to-back in their

center-of-mass frame. The magnitude of the leptons’ momentum is sampled from the distribution function

t 3 2m?2 4m?
Sy Aty o2
M2)(+ t ) t’

where t is the square of the sum of the leptons’ energy in their center-of-mass frame.
Muon Decay

G4MuonDecayChannel simulates muon decay according to V' — A theory. The electron energy is sampled from the
following distribution:

8 Chapter 3. Decay
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where:
Tr : decay rate
€ :=FE./FEmax
E, : electron energy
FEpaz | : maximum electron energy = m,, /2

The magnitudes of the two neutrino momenta are also sampled from the V' — A distribution and constrained by energy
conservation. The direction of the electron neutrino is sampled using

cos(0)=1-2/E. —2/E,.+2/E./E,.
and the muon anti-neutrino momentum is chosen to conserve momentum. Currently, neither the polarization of the

muon nor the electron is considered in this class.

Leptonic Tau Decay

G4TauLeptonicDecayChannel simulates leptonic tau decays according to V' — A theory. This class is valid for both
et + v+,

and

Ti—>ui+uT+uu

modes.

The energy spectrum is calculated without neglecting lepton mass as follows:

Gr*m,®
dr = ZE ' Bi(3Eim.? — 4E2m. — 2m,my?)
2473
where:
r : decay rate
E; | : daughter lepton energy (total energy)
p; | : daughter lepton momentum

my | : daughter lepton mass

As in the case of muon decay, the energies of the two neutrinos are not sampled from their V' — A spectra, but are
calculated so that energy and momentum are conserved. Polarization of the 7 and final state leptons is not taken into
account in this class.

Kaon Decay

The class G4KL3DecayChannel simulates the following four semi-leptonic decay modes of the kaon:

Kfs [ KT 50 4et +v
KE s | i KF—>a+puF+v
K | K 57 +ef v
KOy | KY w7 +uF +v

3.1. Decay 9
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Assuming that only the vector current contributes to K — Iwv decays, the matrix element can be described by using
two dimensionless form factors, f; and f_, which depend only on the momentum transfer ¢t = (P — P,)?. The
Dalitz plot density used in this class is as follows [LMCG72]:

p(Ex, E,) o f2 (1)[A+ BE (1) + CE ()]

where:

A=mg(2E,E, —mgE.) —|—mu2(iE7’T —E,)
B=m,*(E, — %E;r)
C=1m,’EL

E. = E,"™ _E,

Here £ (1) is the ratio of the two form factors

§(t) = f~ )/ f+ (®).

f+ (t) is assumed to depend linearly on t, i.e.

Fo () = f4 (O)[1+ Ay (t/mr?)]

and f_ (t) is assumed to be constant due to time reversal invariance.

Two parameters, A, and £ (0) are then used for describing the Dalitz plot density in this class. The values of these
parameters are taken to be the world average values given by the Particle Data Group [Groom00].

10 Chapter 3. Decay
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CHAPTER
FOUR

ELECTROMAGNETIC

4.1 Gamma incident

4.1.1 Introduction

All processes of gamma interaction with media in Geant4 are happen at the end of the step, so these interactions are
discrete and corresponding processes are following G4V Discrete Process interface.

General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [intem]. Common calculations for discrete
EM processes are performed in the class G4V Em Process. Derived classes (Table 4.1) are concrete processes provid-
ing initialisation. The physics models are implemented using the G4V Em M odel interface. Each process may have
one or many models defined to be active over a given energy range and set of G4Regions. Models are implementing
computation of energy loss, cross section and sampling of final state. The list of EM processes and models for gamma
incident is shown in Table 4.1.

13
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Table 4.1: List of process and model classes for gamma.

EM process

EM model

Ref.

G4PhotoElectricEffect

G4PEEffectFluoModel

Section 4.1.2

G4LivermorePhotoElectricModel

Section 4.5.8

G4LivermorePolarizedPhotoElectricModel

G4PenelopePhotoElectricModel

Section 4.6.1

G4PolarizedPhotoElectricEffect

G4PolarizedPEEffectModel

Section 4.13.7

G4ComptonScattering G4KleinNishinaCompton Section 4.1.3
G4KleinNishinaModel Section 4.1.3
G4LivermoreComptonModel Section 4.5.2
G4LivermoreComptonModelRC
G4LivermorePolarizedComptonModel Section 4.13.4
G4LowEPComptonModel Section 4.7.1
G4PenelopeComptonModel Section 4.6.1

G4PolarizedCompton G4PolarizedComptonModel Section 4.13.4

G4GammaConversion G4BetheHeitlerModel Section 4.1.4

G4PairProductionRelModel

G4LivermoreGammaConversionModel

Section 4.5.5

G4BoldyshevTripletModel

Section 4.5.7

G4LivermoreNuclearGammaConversionModel

G4LivermorePolarizedGammaConversionModel

G4PenelopeGammaConversion

Section 4.6.1

G4PolarizedGammaConversion

G4PolarizedGammaConversionModel

Section 4.13.6

G4RayleighScattering

G4LivermoreRayleighModel

Section 4.5.4

G4LivermorePolarizedRayleighModel

G4PenelopeRayleighModel

Section 4.6.1

G4GammaConversionToMuons

Section 4.1.5

4.1.2 PhotoElectric effect

The photoelectric effect is the ejection of an electron from a material after a photon has been absorbed by that material.
In the standard model G4PEEffectFluoModel it is simulated by using a parameterized photon absorption cross section
to determine the mean free path, atomic shell data to determine the energy of the ejected electron, and the K-shell
angular distribution to sample the direction of the electron.

Cross Section

The parameterization of the photoabsorption cross section proposed by Biggs et al. /BLS8S] was used :

a(Z,Ey)  bZ,Ey)  c(Z E,) + d(Z, Ey)
K, B2 E3 E3

o(Z,E,) = @.1)

Using the least-squares method, a separate fit of each of the coefficients a, b, ¢, d to the experimental data was per-
formed in several energy intervals [ph.sandia.grich]. As a rule, the boundaries of these intervals were equal to the
corresponding photoabsorption edges. The cross section (and correspondingly mean free path) are discontinuous and
must be computed ‘on the fly’ from the formula (4.1). Coefficients are defined to each Sandia table energy interval.

If photon energy is below the lowest Sandia energy for the material the cross section is computed for this lowest
energy, so gamma is absorbed by photoabsorption at any energy. This approach is implemented coherently for models
of photoelectric effect of Geant4. As a result, any media become not transparant for low-energy gammas.
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Final State

Choosing an Element

The binding energies of the shells depend on the atomic number Z of the material. In compound materials the ‘"
element is chosen randomly according to the probability:

Natio(Zi, E,)

Prob(Z;, E,) = Silnai - oi(By)]

Shell

A quantum can be absorbed if E, > B;p.; where the shell energies are taken from G4AtomicShells data: the
closest available atomic shell is chosen. The photoelectron is emitted with kinetic energy :

Tphotoelectran = E’y - Bshell(Zi)

Theta Distribution of the Photoelectron

The polar angle of the photoelectron is sampled from the Sauter-Gavrila distribution (for K-shell) /Gav59], which is
correct only to zero order in aZ :

do sin? 6 1
d(cos ) ~ (1 — Bcosh)* {1 + 57(7 -y —-2)(1 - 50050)}

where [ and ~y are the Lorentz factors of the photoelectron.

cos 6 is sampled from the probability density function :

o 1=p? 1 L, (1=2r)+p
Heost) = = A Gz = UTang+1
The rejection function is :
1 —cos?6
= —=11 1-—-
g(cos0) (1= Beos0)? [1+b(1— Bcosb)]

with b = y(y — 1)(y — 2)/2. It can be shown that g(cos ) is positive V cos § € [—1, +1], and can be majored by :

gsup = ~*[1+b(1—pB)ifye]1,2] 4.2)
Y [L+b(1+B)]ify>2

The efficiency of this method is ~ 50% if v < 2, ~ 25% if v € [2, 3].

Relaxation

Atomic relaxations can be sampled using the de-excitation module of the low-energy sub-package [relax].
For that atomic de-excitation option should be activated. In the physics_list sub-library this activation
is done automatically for G4EmLivermorePhysics, G4EmPenelopePhysics, G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4. For other standard physics constructors the de-excitation module is already added
but is disabled. The simulation of fluorescence and Auger electron emmision may be enabled for all geometry via Ul
commands:
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/process/em/fluo true
/process/em/auger true

There is a possiblity to enable atomic deexcitation only for G4Region by its name:

/process/em/deexcitation myregion true true false

where three boolean arguments enable/disable fluorescence, Auger electron production and PIXE (deexcitation in-
duced by ionisation).

4.1.3 Compton scattering
The Compton scattering is an inelastic gamma scattering on atom with the ejection of an electron. In the standard sub-

package two model G4KleinNishinaCompton and G4KleinNishinaModel are available. The first model is the fastest,
in the second model atomic shell effects are taken into account.

Cross Section

When simulating the Compton scattering of a photon from an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV:

o(Z.E,) = | P(2) log(1+ 2X) N Py(Z) + P3(Z)X + Py(Z)X?

X 1+ aX +bX2+cX3
Z = atomic number of the medium “4.3)
E, = energy of the photon 4.4)
X = E,/ mc? 4.5)
m = electron mass 4.6)
Pi(Z) = Z(di+eZ+ fiZ%). (4.7)

The values of the parameters can be found within the method which computes the cross section per atom. A fit of the
parameters was made to over 511 data points [HubbellGimmverb80][storm.comp] chosen from the intervals

1< Z <100 (4.8)
E, € [10keV, 100 GeV]. 4.9)
The accuracy of the fit was estimated to be
g [ =10% for £, ~10keV — 20 keV
o | <5-6% for B, > 20keV

To avoid sampling problems in the Compton process the cross section is set to zero at low-energy limit of cross section
table, which is 100eV in majority of EM Physics Lists.

Sampling the Final State

The Klein-Nishina differential cross section per atom is [klein.comp]:

do 2 mec? P {1 +€} {1 esinze}
€

de ¢ Ep o 1+4e2
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where
re = classical electron radius
mec® = electron mass
Ey = energy of the incident photon
FE1 = energy of the scattered photon
e = FE1/E

Assuming an elastic collision, the scattering angle 6 is defined by the Compton formula:

Mec?

FEi=F .
! O Mec® + Eo(1 — cos6)

Sampling the Photon Energy

The value of € corresponding to the minimum photon energy (backward scattering) is given by

Mmec?
€ =—F—"+
O ec? +2E,’
hence ¢ € [eg,1]. Using the combined composition and rejection Monte Carlo methods described in

[BM60][MC70][egs4] one may set

in?
20 = |7 o] |1 2] = 1000 = a0+ afafe)] a0,
o] = hl(]./éo) ; fl(ﬁ) = 1/(&16)
as=(1-€)/2 ; fale) =€/as.
f1 and f5 are probability density functions defined on the interval [eg, 1], and
o= 1~

+ €2

sin? 0]
is the rejection function Ve € [eg,1] = 0 < g(¢) < 1. Given a set of 3 random numbers 7,7/, 7" uniformly
distributed on the interval [0,1], the sampling procedure for € is the following:
1. decide whether to sample from f;(€) or fa(e€): if r < a1 /(ay + a) select f1(e), otherwise select fa(e)
2. sample € from the distributions corresponding to f or fs:
o for f :e=el (= exp(—1r'a1))
e forfo:e?=e3+ (1 —€2)r'
3. calculate sin® f = #(2 — t) where t = (1 — cos ) = m.c?(1 — €)/(Ege)

4. test the rejection function: if g(e) > "’ accept €, otherwise go to step 1.

Compute the Final State Kinematics

After the successful sampling of €, the polar angles of the scattered photon with respect to the direction of the parent
photon are generated. The azimuthal angle, ¢, is generated isotropically and 6 is as defined in the previous section.
The momentum vector of the scattered photon, P, 1, is then transformed into the World coordinate system. The kinetic
energy and momentum of the recoil electron are then

T, = E,—E (4.10)
— — =
Py, = Pyo—P. A.11)

Doppler broading of final electron momentum due to electron motion is implemented only in G4KleinNishinaModel.
For that empirical electron density profile function is used.
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Atomic shell effects

The differential cross-section described above is valid only for those collisions in which the energy of the recoil
electron is large compared to its binding energy (which is ignored). In the alternative model (G4KleinNishinaModel)
atomic shell effects are taken into account. For that a sampling of a shell is performed with the weight proportional to
number of shell electrons. Electron energy distribution function is approximated via simplified form

F(T) =exp (=T/Eyp)/Ep,

where I}, is shell bound energy, 1" - kinetic energy of the electron.

The value T is sampled and scattering is sampled in the rest frame of the electron according the algorithm described
in the previous sub-chapter. After sampling an inverse Lorentz transformation to the laboratory frame is performed.
Potential energy (Ej + T') is subtracted from the scattered electron kinetic energy. If final electron energy become
negative then sampling is repeated. Atomic relaxation are sampled if deexcitation module is enabled. Enabling of
atomic relaxation for Compton scattering is performed in the same way as for photoelectric effect Relaxation.

4.1.4 Gamma Conversion into e"¢~ Pair

In the standard sub-package two models are available.  The first model is implemented in the class
G4BetheHeitlerModel, it was derived from Geant3 and is applicable below 100GeV. In the second
(G4PairProductionRelModel) Landau-Pomenrachuk-Migdal (LPM) effect is taken into account and this model can
be applied for high energy gammas (above 100MeV).

Cross Section

According [HubbellGimmverb80], [Hei54] the total cross-section per atom for the conversion of a gamma into an
(e™, e™) pair has been parameterized as

0(Z,E) =2Z(Z+1) |Fi(X)+ Fa(X) Z + @ : (4.12)

where E., is the incident gamma energy and X = In(E,/m.c?) . The functions F;, are given by

Fl(X) = ao+a1X—|—a2X2—|—a3X3+a4X4—|—a5X5 (413)
Fy(X) = bo+bi X +baX?+b3X3 + b, X" + b5 X°
F3(X) = cot+earX +eX?4e3X3+ e Xt +e5X5,

with the parameters a;, b;, ¢; taken from a least-squares fit to the data [HubbellGimmverb80]. Their values can be
found in the function which computes formula (4.12). This parameterization describes the data in the range

1< Z <100 4.14)
and
TS [1.5 MeV, 100 GeV]. 4.15)

The accuracy of the fit was estimated to be % < 5% with a mean value of ~ 2.2%. Above 100 GeV the cross section
is constant. Below Ej,,, = 1.5 MeV the extrapolation

E — 2m.c? 2
Eiow — 2mec?

() = o (i) -

is used.
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In a given material the mean free path, A, for a photon to convert into an (e, e™) pair is

-1
MEy) = (Z Nati - U(ZiyE'y)>

where n4; is the number of atoms per volume of the i*" element of the material.

Corrected Bethe-Heitler Cross Section

As written in [Hei54], the Bethe-Heitler formula corrected for various effects is

do(Z,¢)
de

F(Z)

w2212 + €@ {1 + (1 - 07 o) - 5

+ 3et1-9 aatoe) - T} (@.16)

where « is the fine-structure constant and r. the classical electron radius. Here e = E/E,,, E, is the energy of the
photon and E is the total energy carried by one particle of the (e™, e™) pair. The kinematical limits of € are therefore

MeC?

E

2l

=¢<e<1—¢.

Screening Effect

The screening variable, 9, is a function of e

136 o
oe) = Z1/3 €(1 —¢)’

and measures the ‘impact parameter’ of the projectile. Two screening functions are introduced in the Bethe-Heitler
formula:

ford <1 ®(6) = 20.867 — 3.2425 + 0.6255> 4.17)
®y(8) = 20.209 — 1.9306 — 0.08652
ford >1 ®1(6) = ®9() = 21.12 — 4.1841n(5 + 0.952).

Because the formula (4.1.4) is symmetric under the exchange € <> (1 — €), the range of ¢ can be restricted to

€ € [e0,1/2].

Born Approximation

The Bethe-Heitler formula is calculated with plane waves, but Coulomb waves should be used instead. To correct for
this, a Coulomb correction function is introduced in the Bethe-Heitler formula :

for B, <50MeV: F(z)= 8/3InZ (4.18)
for B, >50MeV: F(z)= 8/3InZ+8f.(2)
with
1
Z) = (a2 |—F—s 4.1
fe(Z) (aZ) 1+ (aZ)? (4.19)

+0.20206 — 0.0369(Z)? + 0.0083(aZ)* — 0.0020(aZ)® + - -] .
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It should be mentioned that, after these additions, the cross section becomes negative if

42.24 — F(2)
0 > dmaz = — = —0.952.
> Omaa(€1) = exp [ 8.363 ]
This gives an additional constraint on € :
1 1 Omi
0 < 5max > =-—=4/1- e
= ‘=T e T Smas

where

1 136
5mzn:5<€:2> :ﬁé‘:ﬁo

has been introduced. Finally the range of € becomes

€ € [€min = max(eg, €1), 1/2].

d max

Fig. 4.1: Calculation of € for gamma conversion.

Gamma Conversion in the Electron Field

The electron cloud gives an additional contribution to pair creation, proportional to Z (instead of Z2). This is taken
into account through the expression
€(2) = In(1440/22/3)
T (183/2'73) - fu(Z)

Factorization of the Cross Section

€ is sampled using the techniques of ‘composition+rejection’, as treated in [FN78][BM60][MC70]. First, two auxiliary
screening functions should be introduced:

Fi(0) = 301(0) — 92(0) — FI(2)
F() = 281(6) ~ 5 #2(6) ~ F(2) (4.20)
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It can be seen that F (4) and F(6) are decreasing functions of &, V6 € [dmin, Omaz]. They reach their maximum for

Omin = 0(e=1/2):

Fio = max F1(6) = F1(0min)
F20 = maXF2(5) = F2(5min)-

After some algebraic manipulations the formula (4.1.4) can be written:

do(Z, e
% . 5(2)13 B - e]
x [N1 fi(€) g1(€) + Nz fa(e) gale)],
where
1 ’ 3 1 2
Ny = [2 €mzn:| Fio fi(e) = Eenn] (5 — ¢ g1(€) =
Ny = ;on fa(€) = const = ﬁ ga(€) =

f1(€) and fa(e) are probability density functions on the interval € € [€,,:n, 1/2] such that
1/2
file)de =1,

€min

and g1 (¢) and go(€) are valid rejection functions: 0 < g;(e) < 1.

Final State

421

(4.22)

(4.23)

(4.24)

The differential cross section depends on the atomic number Z of the material in which the interaction occurs. In a
compound material the element 7 in which the interaction occurs is chosen randomly according to the probability

natiU(Zia E’y)

Prob(Z;, E,) = > ilnat - 0i(Ey)]

Sampling the Energy

Given a triplet of uniformly distributed random numbers (7, 7y, 7c) :

1. use 7, to choose which decomposition term in (4.1.4) to use:

if 7y < N1/(N1+ No) — fi(e€) gi(e)
otherwise — fa(€) ga2(€)

2. sample € from fi (¢) or fo(e) with 7y, :

1 /(1 : !
622—(2—emm>r;/d or Ezﬁmin+<2_6min>rb

3. reject e if g1 (€)or ga(€) < 7

Note: below E, = 2 MeV it is enough to sample e uniformly on [eg, 1/2], without rejection.

4.1. Gamma incident
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Charge

The charge of each particle of the pair is fixed randomly.

Polar Angle of the Electron or Positron

The polar angle of the electron (or positron) is defined with respect to the direction of the parent photon. The energy-
angle distribution given by Tsai [Tsa74][Tsa77] is quite complicated to sample and can be approximated by a density
function suggested by Urban [Bru93] :

2
Yu € [0, oo f(u)= 991 pi [uexp(—au) + d uexp(—3au)] (4.25)
with
2
azg d=27 andHi:%u.

A sampling of the distribution (4.25) requires a triplet of random numbers such that

) 9 —In(ror . —In(ror
ifri<-———ou= M otherwise u = M

9+4+d a 3a
The azimuthal angle ¢ is generated isotropically. The e™ and e~ momenta are assumed to be coplanar with the
parent photon. This information, together with energy conservation, is used to calculate the momentum vectors of the
(e*,e™) pair and to rotate them to the global reference system.

Ultra-Relativistic Model

It is implemented in the class G4PairProductionRelModel and is configured above 80GeV in all reference Physics
lists. The cross section is computed using direct integration of differential cross section [Tsa74][Tsa77] and not its
parameterisation described in Cross Section. LPM effect is taken into account in the same way as for bremsstrahlung
Bremsstrahlung of high-energy electrons. Secondary generation algorithm is the same as in the standard Bethe-Haitler
model.

4.1.5 Gamma Conversion into p "~ Pair

The class G4GammaConversionToMuons simulates the process of gamma conversion into muon pairs. Given the
photon energy and Z and A of the material in which the photon converts, the probability for the conversions to take
place is calculated according to a parameterized total cross section. Next, the sharing of the photon energy between
the 4+ and p~ is determined. Finally, the directions of the muons are generated. Details of the implementation are
given below and can be also found in /BKK02].

Cross Section and Energy Sharing

Muon pair production on atomic electrons, y+e — e+p "+, has a threshold of 2m, (m,,+m.)/m. ~ 43.9 GeV .
Up to several hundred GeV this process has a much lower cross section than the corresponding process on the nucleus.
At higher energies, the cross section on atomic electrons represents a correction of ~ 1/Z to the total cross section.

For the approximately elastic scattering considered here, momentum, but no energy, is transferred to the nucleon. The
photon energy is fully shared by the two muons according to

E,=Ef+E;
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or in terms of energy fractions

Ty = T = —, Ty +x_=1.
The differential cross section for electromagnetic pair creation of muons in terms of the energy fractions of the muons
is

d 4
2 —tazr? (1 - :E+x_) log (17 , (4.26)

where Z is the charge of the nucleus, r, is the classical radius of the particles which are pair produced (here muons)
and

1+ (Dnv/e —2)6 /m,,

W =W 4.27
1+ BZ-1Y3/ed /me ( )
where
BZ Y3 m m?
W = ——— —H =_—H# = 1.6487....
D, me 2E xqw_ Ve

For hydrogen B =2024 D, =1.49
and for all other nuclei B =183 D,, =1.54 A2,

These formulae are obtained from the differential cross section for muon bremsstrahlung /KKP95] by means of cross-
ing relations. The formulae take into account the screening of the field of the nucleus by the atomic electrons in the
Thomas-Fermi model, as well as the finite size of the nucleus, which is essential for the problem under consideration.
The above parameterization gives good results for £, > m,,. The fact that it is approximate close to threshold is of
little practical importance. Close to threshold, the cross section is small and the few low energy muons produced will
not travel very far. The cross section calculated from Eq.(4.26) is positive for £, > 4m,, and

X 1 my 1 1 my
Lmin <z < Tmax with Lmin = 5 - - F Tmax = 5 + Z - F P
2l vy

=

except for very asymmetric pair-production, close to threshold, which can easily be taken care of by explicitly setting
o = 0 whenever o < 0.

Note that the differential cross section is symmetric in x4 and z_ and that

rir_ =x— 1’
where z stands for either x; or z_. By defining a constant

oo =4aZ?r?log(Wa) (4.28)

the differential cross section Eq.(4.26) can be rewritten as a normalized and symmetric as function of x:

1 do _ {1_4 log W 4.9)

1 do 4. 9
oo dx 3($ x)} log Wy

This is shown in Fig. 4.2 for several elements and a wide range of photon energies. The asymptotic differential cross
section for £, — oo

is also shown.
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do
o) dx

Ey = oo
— H Z=1 A=1.007%4
0.9F BeZ=4 A=9.01218
; Pb Z=82 A=207.2

/100 Tev

0.8

100 GeV

e T e
0 01 02 03 04 05 06 07 08 09 1
X

Fig. 4.2: Normalized differential cross section for pair production as a function of x, the energy fraction of the photon
energy carried by one of the leptons in the pair. The function is shown for three different elements, hydrogen, beryllium
and lead, and for a wide range of photon energies.

Parameterization of the Total Cross Section

The total cross section is obtained by integration of the differential cross section Eq.(4.26), that is

ZTmax d
/ 7 dw+:4aZ2r(2:/
T dI+

min Tmin

ZTmax

4
Tsot (Ey) (1 —3 x+m) log(W)dz . (4.30)
W is a function of (x4, E,) and (Z, A) of the element (see Eq.(4.27)). Numerical values of W are given in Table 4.2.

Table 4.2: Numerical values of W for x, = 0.5 for different elements.

E,[GeV] | WforH | WforBe | WforCu | W for Pb
1 2.11 1.594 1.3505 5.212

10 19.4 10.85 6.803 43.53
100 191.5 102.3 60.10 332.7
1000 1803 919.3 493.3 1476.1
10000 11427 4671 1824 1028.1
00 28087 8549 2607 1339.8

Values of the total cross section obtained by numerical integration are listed in Table 4.3 for four different elements.
Units are in barn, where 1 gbarn = 10734 m?.

Table 4.3: Numerical values for the total cross section

E., [GeV] | 0tor, H[pbarn] | osot, Be [ubarn] | oyor, Cu [pbarn] | o¢or, Pb [barn |
1 0.01559 0.1515 5.047 30.22
10 0.09720 1.209 49.56 334.6
100 0.1921 2.660 121.7 886.4
1000 0.2873 4.155 197.6 1476
10000 0.3715 5.392 253.7 1880
0 0.4319 6.108 279.0 2042
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Fig. 4.3: Total cross section for the Bethe-Heitler process v — u*u~ as a function of the photon energy E. in
hydrogen and lead, normalized to the asymptotic cross section o.

Well above threshold, the total cross section rises about linearly in log(E.) with the slope

1
- 4D, \Jem,

until it saturates due to screening at o.. Fig. 4.3 shows the normalized cross section where

W

Ooo = gao and oo =4aZ%r? log(Wa) .

Numerical values of W), are listed in Table 4.4.

Table 4.4: Numerical values of W),.

Element | Wy, [1/GeV]
H 0.963169
Be 0.514712
Cu 0.303763
Pb 0.220771

The total cross section can be parameterized as

28 Z2 1?2
Opar = 5= log(1+ Wi CyE,) | 4.31)
with
4mll« ' s s 1/s
E,=(1- = (Wo +E3)7 .
Y
and
2
Wit = % — BZ~1/3 M )
Wn Me
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The threshold behavior in the cross section was found to be well approximated by ¢t = 1.479 + 0.00799D,, and the
saturation by s = —0.88. The agreement at lower energies is improved using an empirical correction factor, applied
to the slope W, of the form

E.
Cr= [1 + 0.04 log <1 + Eﬂ ,

v
where

4347.

Ec = |:—18. + m

] GeV .

A comparison of the parameterized cross section with the numerical integration of the exact cross section shows that
the accuracy of the parametrization is better than 2%, as seen in Fig. 4.4.

1.02 [
L1010 5
< .
~~
B
O 099 ~ H
0-98 Euuj |||||_|_|,|l ||||||_|,|J ||||||_|,|l ||||||_|,|l ||||||_|,|l |||||_|_|,|l |||||_|_|,|J L
1

10 102 10° 10* 10° 10° 107 10°

EY in GeV

Fig. 4.4: Ratio of numerically integrated and parametrized total cross sections as a function of £, for hydrogen,
beryllium, copper and lead.

Multi-differential Cross Section and Angular Variables

The angular distributions are based on the multi-differential cross section for lepton pair production in the field of the
Coulomb center

do 472 m,
dr, duy du_dp 7« q

{ u? +u?
(1+uf) (1 +u?)

ul u? 2uyu_(1 —2z4x_) cosy
{(1+Ui)2 * (1+u2_)2} A+ dd) (1 +ud) } ' (4.32)

Here

ur =70+ . yx = . =4+ (4.33)

where
Qﬁ = qr2nin (1 + x,ui + x+u%)2 )

@ = mi [(uy —u_)?+2uiu_(1—cosy)] .
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q? is the square of the momentum q transferred to the target and qﬁ and g2 are the squares of the components of the
vector q, which are parallel and perpendicular to the initial photon momentum, respectively. The minimum momentum
transfer is gmin = m;,/(2E, x4 x_). The muon vectors have the components

P+ = p+( sinfycos(po+ ¢/2), sinfysin(pg+ ¢/2), cosby), (4.34)
p—- = p_(—sinf_cos(pg —¢/2), —sinb_sin(pg — ¢/2), cosf_), ’

where py = /E3 — mﬁ. The initial photon direction is taken as the z-axis. The cross section of Eq.(4.32) does not

depend on (. Because of azimuthal symmetry, ¢ can simply be sampled at random in the interval (0, 2 ).

Eq.(4.32) is too complicated for efficient Monte Carlo generation. To simplify, the cross section is rewritten to be
symmetric in u, u_ using a new variable « and small parameters &, 3, where ux = u + £/2 and 8 = up. When
higher powers in small parameters are dropped, the differential cross section in terms of u, £, 5 becomes

do B 47203 mg,
dry dédBudu 2
T4 d§ df udu ™ <Qﬁ+mi(€2+52))

el 57 2455

where, in this approximation,
2 2 212
4 = Gmin (L +u).

For Monte Carlo generation, it is convenient to replace (£, 5) by the polar coordinates (p, 1)) with £ = p cos) and
B = p sin1). Integrating Eq.(4.35) over 1 and using symbolically du? where du? = 2u du yields

do VAL 03 { l—zio.  zyx (1- u?)? } 4.35)
dr dp du? mZ (qf/mf +p*)? | (1+u?)? (1+u?)4 :
Integration with logarithmic accuracy over p gives
e
(qH/mz +0?) p q
ay /My
Within the logarithmic accuracy, log(m,,/q|) can be replaced by log (1, /gmin), so that
do  AZ%° {1—m+m B w+m(1—u2)2} o <mu>
drydu? — m2 (1 + u2)2 (1 + u2)* & Gmin )
Making the substitution u? = 1/t — 1, du® = —dt /t* gives
do 4723 my
T = w2 l1—2zy2x_+4ax,z_t(1—1t)]log (CImin) . (4.36)

Atomic screening and the finite nuclear radius may be taken into account by multiplying the differential cross section
determined by Eq.(4.35) with the factor

(Fu(q) — Fru(q) )2 )

where F, and F), are atomic and nuclear form factors. Please note that after integrating Eq.(4.35) over p, the g¢-
dependence is lost.
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Procedure for the Generation of .~ Pairs

Given the photon energy F., and Z and A of the material in which the  converts, the probability for the conversions
to take place is calculated according to the parametrized total cross section Eq.(4.31). The next step, determining how
the photon energy is shared between the u* and p~, is done by generating x according to Eq.(4.26). The directions
of the muons are then generated via the auxilliary variables ¢, p, 1. In more detail, the final state is generated by
the following five steps, in which %1 2 3 4, .. are random numbers with a flat distribution in the interval [0,1]. The
generation proceeds as follows.

1. Sampling of the positive muon energy EI = x4 E,. This is done using the rejection technique. x is first
sampled from a flat distribution within kinematic limits using
T4+ = Tmin + Rl (:Emax - mmin)
and then brought to the shape of Eq.(4.26) by keeping all x which satisfy

4 log(W)
1—- | — .
( 3 > log(Winax) < I

Here Wiyax = Wz = 1/2) is the maximum value of W, obtained for symmetric pair production atz = 1/2.
About 60% of the events are kept in this step. Results of a Monte Carlo generation of x are illustrated in Fig.
4.5. The shape of the histograms agrees with the differential cross section illustrated in Fig. 4.2.

30000~ —

25000 H0Gev
I 100 GeV ..o

20000
H 1000 GeV
15000

10000} -

5000 |- H

““““““““““““““““““““““““““““

x+

Fig. 4.5: Histogram of generated x_ distributions for beryllium at three different photon energies. The total number
of entries at each energy is 10°.

2. Generate t(= . The distribution in ¢ is obtained from Eq.(4.36) as

1
7757)

1—2z42_ 44z (1—1t)
t)dt = dt, 0<t<l.
Ai®) 1+ Cy/t2 =

with form factors taken into account by

(035 AO.27)2
zyx_ Ey/m,

C =
In the interval considered, the function f; (¢) will always be bounded from above by

max[ (1) = “1

For small = and large E.,, fi(¢) approaches unity, as shown in Fig. 4.6.

The Monte Carlo generation is done using the rejection technique. About 70% of the generated numbers are
kept in this step. Generated ¢-distributions are shown in Fig. 4.8.
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Fig. 4.6: The function f;(t) at £, = 10 GeV in beryllium for different values of x .
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Fig. 4.7: The function f;(¢) at E, = 1TeV in beryllium for different values of z .|
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Fig. 4.8: Histograms of generated ¢ distributions for F2, = 10 GeV (solid line) and F, = 100 GeV (dashed line) with
106 events each.
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Fig. 4.9: Histograms of generated v/ distributions for beryllium at four different photon energies.

3. Generate 1) by the rejection technique using ¢ generated in the previous step for the frequency distribution
ﬁﬁw):[1—2x+x_+4x+xj(1—tﬂl+wnd%M), 0< < 2.
The maximum of f5(v)) is
max[fa(¢)] =1—-2x 2 _[1—4t(1-1¢)].

Generated distributions in v are shown in Fig. 4.9.

4. Generate p. The distribution in p has the form

3
p”dp
dp = ——+ 0< < max »
f3(p) dp Sire, VSese
where
1.9 1
2 _

pmax A027 (t 1) )

and
2 272
o, = 4 my, + Me
VZiz— |\2E x4 x_t 183Z-1/3m,,

The p distribution is obtained by a direct transformation applied to uniform random numbers R; according to

p=[Colexp(BR;) — 1)]"/*,

Cy + pi
— 1 max .
B %<(b)

Generated distributions of p are shown in numref:plotrho

where

5. Calculate 0, ,60_ and ¢ from t, p, 1) with

EFf 1
ve= TEand u=q/-1. (4.37)
my t
according to
1 1
9+:—<u+BCOS¢>7 9,:—<U—BCOS¢) and cpzﬁsinzb.
Y+ 2 Y- 2 U
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Fig. 4.10: Histograms of generated p distributions for beryllium at two different photon energies. The total number of
entries at each energy is 106.
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Fig. 4.11: Histograms of generated 6 distributions at different photon energies.
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The muon vectors can now be constructed from Eq.(4.34), where ¢ is chosen randomly between 0 and 27.
numref:plotthetaPlus shows distributions of 6, at different photon energies (in beryllium). The spectra peak
around 1/ as expected.

The most probable values are 6 ~ m,,/ EIJ[ = 1/74+. In the small angle approximation used here, the values of
04 and 0_ can in principle be any positive value from 0 to co. In the simulation, this may lead (with a very small
probability, of the order of m,/E.) to unphysical events in which 6 or 6_ is greater than 7. To avoid this, a
limiting angle 6., = 7 is introduced, and the angular sampling repeated, whenever max (6, 0_) > Ocys.

1.4
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1O b e
228 Coulomb centre ™~
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02
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00 =904 06 08 1
1/(1+6292)

Fig. 4.12: Angular distribution of positive (or negative) muons. The solid curve represents the results of the exact
calculations. The histogram is the simulated distribution. The angular distribution for pairs created in the field of the
Coulomb centre (point-like target) is shown by the dashed curve for comparison.

Lol -

107! 1

0,7,

Fig. 4.13: Angular distribution in logarithmic scale. The curve corresponds to the exact calculations and the histogram
is the simulated distribution.

Fig. 4.12, Fig. 4.13 and Fig. 4.14 show distributions of the simulated angular characteristics of muon pairs in com-
parison with results of exact calculations. The latter were obtained by means of numerical integration of the squared
matrix elements with respective nuclear and atomic form factors. All these calculations were made for iron, with
E, =10GeV and 4 = 0.3. As seen from Fig. 4.12, wide angle pairs (at low values of the argument in the figure)
are suppressed in comparison with the Coulomb center approximation. This is due to the influence of the finite nu-
clear size which is comparable to the inverse mass of the muon. Typical angles of particle emission are of the order
of 1/y+ = my,/ Ef (Fig. 4.13). Fig. 4.14 illustrates the influence of the momentum transferred to the target on the
angular characteristics of the produced pair. In the frame of the often used model which neglects target recoil, the pair
particles would be symmetric in transverse momenta, and coplanar with the initial photon.
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Fig. 4.14: Distribution of the difference of transverse momenta of positive and negative muons (with logarithmic
x-scale).

4.2 Elastic scattering

4.2.1 Multiple Scattering

Elastic scattering of electrons and other charged particles is an important component of any transport code. Elastic
cross section is huge when particle energy decreases, so multiple scattering (MSC) approach should be introduced in
order to have acceptable CPU performance of the simulation. A universal interface G4VMultipleScattering is used by
all Geant4 MSC processes [intem]:

* G4eMultipleScattering;
* G4hMultipleScattering;
* G4MuMultipleScattering.

For concrete simulation the G4VMscModel interface is used, which is an extension of the base G4VEmModel interface.
The following models are available:

* G4UrbanMscModel - since Geant4 10.0 only one Urban model is available and it is applicable to all types of
particles;

* G4GoudsmitSaundersonModel - for electrons and positrons [KIGT09];
* G4LowEWentzelVIModel - for all particles with low-energy limit 10 eV;

* G4WentzelVIModel - for muons and hadrons, for muons should be included in Physics List together with
G4CoulombScattering process, for hadrons large angle scattering is simulated by hadron elastic process.

The discussion on Geant4 MSC models is available in Ref.:cite:msc.all. Below we will describe models developed by
L. Urban [Urb06], because these models are used in many Geant4 applications and have general components reused
by other models.

Introduction

MSC simulation algorithms can be classified as either detailed or condensed. In the detailed algorithms, all the
collisions/interactions experienced by the particle are simulated. This simulation can be considered as exact, it gives
the same results as the solution of the transport equation. However, it can be used only if the number of collisions is
not too large, a condition fulfilled only for special geometries (such as thin foils, or low density gas). In solid or liquid
media the average number of collisions is very large and the detailed simulation becomes very inefficient. High energy
simulation codes use condensed simulation algorithms, in which the global effects of the collisions are simulated at
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the end of a track segment. The global effects generally computed in these codes are the net energy loss, displacement,
and change of direction of the charged particle. The last two quantities are computed from MSC theories used in the
codes and the accuracy of the condensed simulations is limited by accuracy of MSC approximation.

Most particle physics simulation codes use the multiple scattering theories of Moliere [Moliere48], Goudsmit and
Saunderson [GS40] and Lewis [Lew50]. The theories of Moliere and Goudsmit-Saunderson give only the angular
distribution after a step, while the Lewis theory computes the moments of the spatial distribution as well. None of
these MSC theories gives the probability distribution of the spatial displacement. Each of the MSC simulation codes
incorporates its own algorithm to determine the angular deflection, true path length correction, and spatial displacement
of the charged particle after a given step. These algorithms are not exact, of course, and are responsible for most of the
uncertainties of the transport codes. Also due to inaccuracy of MSC the simulation results can depend on the value of
the step length and generally user has to select the value of the step length carefully.

A new class of MSC simulation, the mixed simulation algorithms (see e.g.:cite:msc.fernandez), appeared in the litera-
ture recently. The mixed algorithm simulates the hard collisions one by one and uses a MSC theory to treat the effects
of the soft collisions at the end of a given step. Such algorithms can prevent the number of steps from becoming too
large and also reduce the dependence on the step length. Geant4 original implementation of a similar approach is
realized in G4WentzelVIModel [IKMU10].

The Urban MSC models used in Geant4 belongs to the class of condensed simulations. Urban uses model functions
to determine the angular and spatial distributions after a step. The functions have been chosen in such a way as to give
the same moments of the (angular and spatial) distributions as are given by the Lewis theory [msc.lewis].

Definition of Terms

In simulation, a particle is transported by steps through the detector geometry. The shortest distance between the
endpoints of a step is called the geometrical path length, z. In the absence of a magnetic field, this is a straight line.
For non-zero fields, z is the length along a curved trajectory. Constraints on z are imposed when particle tracks cross
volume boundaries. The path length of an actual particle, however, is usually longer than the geometrical path length,
due to multiple scattering. This distance is called the true path length, t. Constraints on ¢ are imposed by the physical
processes acting on the particle.

The properties of the MSC process are determined by the transport mean free paths, A, which are functions of the
energy in a given material. The k-th transport mean free path is defined as

1 ! d
N 27N /_1 [1 — Py (cosx)] %d(oosx)
where do(x)/dS is the differential cross section of the scattering, Py (cosy) is the k-th Legendre polynomial, and n,,
is the number of atoms per volume.

Most of the mean properties of MSC computed in the simulation codes depend only on the first and second transport
mean free paths. The mean value of the geometrical path length (first moment) corresponding to a given true path
length ¢ is given by

() = At {1 —exp (-i)] 4.38)

Eq.(4.38) is an exact result for the mean value of z if the differential cross section has axial symmetry and the energy
loss can be neglected. The transformation between true and geometrical path lengths is called the path length cor-
rection. This formula and other expressions for the first moments of the spatial distribution were taken from either
[FernandezVareaMayolBaroSalvat93] or [KB98], but were originally calculated by Goudsmit and Saunderson /GS40]
and Lewis [msc.lewis].

At the end of the true step length, ¢, the scattering angle is #. The mean value of cosf is

(cosb) = exp {—t} (4.39)
A
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The variance of cos can be written as

1 2 —2KT
0? = (cos*0) — (cosh)? = % —e T (4.40)
where 7 = t/A; and Kk = A1 /A2. The mean lateral displacement is given by a more complicated formula
[FernandezVareaMayolBaroSalvat93], but this quantity can also be calculated relatively easily and accurately. The
square of the mean lateral displacement is

(x> +y°) =

472 k+1 K 1
il W S L, 4.41
3 {T K Jrf{—le K(K—l)e } @441

Here it is assumed that the initial particle direction is parallel to the the z axis. The lateral correlation is determined
by the equation

2)\1 KR 1
=== [1-— T T 442
e =2 i ey L i
where v, and v, are the x and y components of the direction unit vector. This equation gives the correlation strength
between the final lateral position and final direction.

The transport mean free path values have been calculated in Refs. [LI87], [LIS+90] for electrons and positrons in the
kinetic energy range in 15 materials. The Urban MSC model in Geant4 uses these values for kinetic energies below
10 MeV. For high energy particles (above 10 MeV) the transport mean free path values have been taken from a paper
of R. Mayol and F. Salvat [MS97]. When necessary, the model linearly interpolates or extrapolates the transport cross
section, 01 = 1/\1, in atomic number Z and in the square of the particle velocity, 32. The ratio & is a very slowly
varying function of the energy: x > 2 for T' > a few keV, and x — 3 for very high energies (see [KB98]). Hence, a
constant value of 2.5 is used in the model.

Nuclear size effects are negligible for low energy particles and they are accounted for in the Born approximation in
[MS97], so there is no need for extra corrections of this kind in the Urban model.

Path Length Correction

As mentioned above, the path length correction refers to the transformation ¢ — ¢ and its inverse. The t — ¢
transformation is given by Eq.(4.38) if the step is small and the energy loss can be neglected. If the step is not small
the energy dependence makes the transformation more complicated. For this case Eqs.(4.39),(4.38) should be modified
as

(cost) = exp { /O t Af(”“;)} (4.43)

t
() :/ (cosB).,, du (4.44)
0

where 6 is the scattering angle, ¢ and z are the true and geometrical path lengths, and A; is the transport mean free
path.

In order to compute Eqs.(4.43),(4.44) the ¢ dependence of the transport mean free path must be known. A\; depends
on the kinetic energy of the particle which decreases along the step. All computations in the model use a linear
approximation for this ¢ dependence:

A1(t) = Ao(1 — at) (4.45)

Here Ao denotes the value of \; at the start of the step, and « is a constant. It is worth noting that Eq.(4.45) is not a
crude approximation. It is rather good at low (< 1 MeV) energy. At higher energies the step is generally much smaller
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than the range of the particle, so the change in energy is small and so is the change in A;. Using Eqs.(4.43) - (4.45)
the explicit formula for (cosf) and (z) are:

(cosh) = (1 — at)ﬁ (4.46)
S S PRSI R
©= e [1-(1—at) =] (447)

The value of the constant o can be expressed using A\1g and A1; where A7 is the value of the transport mean free path
at the end of the step

_Ao—An
tA1o

At low energies ( Ty, < M , M - particle mass) « has a simpler form:

oa=—
To

where 7y denotes the range of the particle at the start of the step. It can easily be seen that for a small step (i.e. for a
step with small relative energy loss) the formula of (z) is

(2) = Aro {1 ~exp (-Aioﬂ (4.48)

Eq. (4.47) or (4.48) gives the mean value of the geometrical step length for a given true step length. The actual
geometrical path length is sampled in the model according to the simple probability density function defined for
v=z/te€l0,1]:

f(w) = (k4 1)(k+2)v"(1 — v)

The value of the exponent & is computed from the requirement that f(v) must give the same mean value for z = vt as
Eq. (4.47) or (4.48). Hence

The value of z = vt is sampled using f(v) if & > 0, otherwise z = (z) is used. The g — ¢ transformation is
performed using the mean values. The transformation can be written as

t(z) = (t) = —\; log (1 - /\Zl)

if the geometrical step is small and

where

1
aAio

w=1+

if the step is not small, i.e. the energy loss should be taken into account.
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Angular Distribution

The quantity u = cosf is sampled according to a model function g(u). The shape of this function has been chosen
such that Egs. (4.39) and (4.40) are satisfied. The functional form of g is

g(u) = qpgr(uw) + (1 —p)g2(u)] + (1 — q)g3(v) (4.49)

where 0 < p,q < 1, and the g; are simple functions of u = cosf, normalized over the range v € [—1, 1]. The
functions g; have been chosen as

g1(u) =Cq e—o(1-u) —1<uyy<u<l
1

g2(u) = Co o) —1<u<uy <1

gg(u)=C3 —ISUSI

where a > 0,0 > 0, d > 0 and ug are model parameters, and the C; are normalization constants. It is worth noting that
for small scattering angles, 6, g1 (u) is nearly Gaussian (exp(—62/26032))if 03 ~ 1/a, while g2(u) has a Rutherford-like
tail for large 6, if b ~ 1 and d is not far from 2 .

Determination of the Model Parameters

The parameters a, b, d, ug and p, ¢ are not independent. The requirement that the angular distribution function g(u)
and its first derivative be continuous at u = 1 imposes two constraints on the parameters:

p g1(uo) = (1 — p) g2(uo) (4.50)

pagiin) = (=) ;- ga(uo)

A third constraint comes from Eq. (4.43) : g(u) must give the same mean value for u as the theory. It follows from
Eqs. (4.46) and (4.49) that

a{plu)1 + (1 — p)(us} = [1 — a t] B0 4.51)

where (u); denotes the mean value of « computed from the distribution g;(u). The parameter a was chosen according
to a modified Highland-Lynch-Dahl formula for the width of the angular distribution [Hig75], [LynchDahl91].

_ 0.5
1 —cos(p)

13.6MeV t t
g = —— 2. — (1 +h.n | —
0 Bep Zh\/Xo{jL H<X0>}

when the original Highland-Lynch-Dahl formula is used. Here 6y = 67 is the width of the approximate Gaussian

projected angle distribution, p, Sc and z.j are the momentum, velocity and charge number of the incident particle, and
t/ X is the true path length in radiation length unit. The correction term h. = 0.038 in the formula. This value of 6, is
from a fit to the Moliere distribution for singly charged particles with 3 = 1 for all Z, and is accurate to 11 % or better
for 1073 < t/Xo < 100 (see e.g. Rev. of Particle Properties, section 23.3).

a

where 6 is

The model uses a slightly modified Highland-Lynch-Dahl formula to compute 6. For electrons/positrons the modified
0 formula is

13.6MeV
6 = —2¢
0 Bep Zeh/Yc
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where

The correction term c and coeffitients c; are

c=colc1 + c2y),

co = 0.990395 — 0.1683862"/¢ + 0.0932862/3,
| 0-08778

Z ?
¢ = 0.04078 4 0.00017315Z.

Cc1 =

This formula gives a much smaller step dependence in the angular distribution than the Highland form. The value of
the parameter u( has been chosen as

ug = 1-— é
a
where
€ =dy + dov + d3v® + dgv?
with

The parameters d;-s have the form
di = dip +dn Z5 + dinZ3
The numerical values of the d;; constants can be found in the code.

The tail parameter d is the same as the parameter & .

This (empirical) expression is obtained comparing the simulation results to the data of the MuScat experiment
[ABB+06]. The remaining three parameters can be computed from Eqs. (4.50) - (4.51). The numerical value of
the parameters can be found in the code.

In the case of heavy charged particles (u, 7, p, etc.) the mean transport free path is calculated from the electron or
positron \; values with a ’scaling” applied. This is possible because the transport mean free path \; depends only on
the variable Pfc, where P is the momentum, and Sc is the velocity of the particle.

In its present form the model samples the path length correction and angular distribution from model functions, while
for the lateral displacement and the lateral correlation only the mean values are used and all the other correlations are
neglected. However, the model is general enough to incorporate other random quantities and correlations in the future.

Step Limitation Algorithm

In Geant4 the boundary crossing is treated by the transportation process. The transportation ensures that the particle
does not penetrate in a new volume without stopping at the boundary, it restricts the step size when the particle leaves
a volume. However, this step restriction can be rather weak in big volumes and this fact can result a not very good
angular distribution after the volume. At the same time, there is no similar step limitation when a particle enters a
volume and this fact does not allow a good backscattering simulation for low energy particles. Low energy particles
penetrate too deeply into the volume in the first step and then - because of energy loss - they are not able to reach again
the boundary in backward direction.
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MSC step limitation algorithm has been developed [Urb06] in order to achieve optimal balance between simulation
precision and CPU performance of simulation for different applications. At the start of a track or after entering in a
new volume, the algorithm restricts the step size to a value

fr-max{r, 1}

where r is the range of the particle, f, is a parameter € [0, 1], taking the max of r and A; is an empirical choice.The
value of f, is constant for low energy particles while for particles with A\; > \;;,,, an effective value is used given by
the scaling equation

A
frefr = Fr- {1 — sc+ scx L }
Alim
(The numerical values sc = 0.25 and \;;;,, = 1 mm are used in the equation.) In order not to use very small -
unphysical - step sizes a lower limit is given for the step size as

M

nstepmax ) /\elastic:|

tlimitmin = max {
with nstepmaz = 25 and A¢jqst4c 1S the elastic mean free path of the particle (see later). It can be easily seen that this
kind of step limitation poses a real constraint only for low energy particles. In order to prevent a particle from crossing
a volume in just one step, an additional limitation is imposed: after entering a volume the step size cannot be bigger
than

dgeom

fq

where dgeom is the distance to the next boundary (in the direction of the particle) and f, is a constant parameter. A
similar restriction at the start of a track is

ngeom
fq
At this point the program also checks whether the particle has entered a new volume. If it has, the particle steps cannot

be bigger than t;;,, = f max(r,\). This step limitation is governed by the physics, because t;;,, depends on the
particle energy and the material.

The choice of the parameters f,. and f, is also related to performance. By default f, = 0.02 and f, = 2.5 are used,
but these may be set to any other value in a simple way. One can get an approximate simulation of the backscattering
with the default value, while if a better backscattering simulation is needed it is possible to get it using a smaller value
for f,.. However, this model is very simple and it can only approximately reproduce the backscattering data.

Boundary Crossing Algorithm

A special stepping algorithm has been implemented in order to improve the simulation around interfaces. This algo-
rithm does not allow ‘big’ last steps in a volume and ‘big’ first steps in the next volume. The step length of these steps
around a boundary crossing can not be bigger than the mean free path of the elastic scattering of the particle in the
given volume (material). After these small steps the particle scattered according to a single scattering law (i.e. there is
no multiple scattering very close to the boundary or at the boundary).

The key parameter of the algorithm is the variable called skin. The algorithm is not active for skin < 0, while for
skin > 01itis active in layers of thickness skin - Acjqstic before boundary crossing and of thickness (skin—1)- Aejastic
after boundary crossing (for skin = 1 there is only one small step just before the boundary). In this active area the
particle performs steps of length A.;,s+ic (or smaller if the particle reaches the boundary traversing a smaller distance
than this value).

4.2. Elastic scattering 39



Physics Reference Manual, Release 10.4

The scattering at the end of a small step is single or plural and for these small steps there are no path length correction
and lateral displacement computation. In other words the program works in this thin layer in ‘microscopic mode’. The
elastic mean free path can be estimated as

Aelastic = A1 - Tat (Tki,n)

where rat(Ty,) a simple empirical function computed from the elastic and first transport cross section values of
Mayol and Salvat [MS97]

0.001(MeV)?

t (7T, in) —
rat (Tkin) Thin (Thin + 10MeV)

Ty 1s the Kinetic energy of the particle.

At the end of a small step the number of scatterings is sampled according to the Poisson’s distribution with a mean
value ¢/ Aejqstic and in the case of plural scattering the final scattering angle is computed by summing the contributions
of the individual scatterings. The single scattering is determined by the distribution

1

o) = Oy

where u = cos(f) , a is the screening parameter, C' is a normalization constant. The form of the screening parameter
is the same as in the single scattering (see there).

Implementation Details

The step length of a particles is determined by the physics processes or the geometry of the detectors. The track-
ing/stepping algorithm checks all the step lengths demanded by the (continuous or discrete) physics processes and
determines the minimum of these step lengths (see [tsl]). The MSC model should be called to compute step limit after
all processes except the transportation process. The following sequence of computations are performed to make the
step:

¢ the minimum of all processes true step length limit ¢ including one of the MSC process is selected;
* The conversion t — g (geometrical step limit) is performed;

¢ the minimum of obtained value g and the transportation step limit is selected;

* The final conversion g — ¢ is performed.

The reason for this ordering is that the physics processes ’feel’ the true path length ¢ traveled by the particle, while the
transportation process (geometry) uses the z step length.

A new optional mechanis was recently introduced allowing sample displacemnt in vicinity of geometry boundary. If it
is enabled and the transportation limit the step due to geometry boundary then after initial sampling of the displacenet
an additional ’push’ of track is applied forcing end point be at the boundary. Corresponding correction to the true step
length is applied according to the value of the "push’.

After the actual step of the particle is done, the MSC model is responsible for sampling of scattering angle and
relocation of the end-point of the step. The scattering angle 6 of the particle after the step of length °t” is sampled
according to the model function given in Eq. (4.49) . The azimuthal angle ¢ is generated uniformly in the range
[0, 27].

After the simulation of the scattering angle, the lateral displacement is computed using Eq. (4.41). Then the correlation
given by Eq. (4.42) is used to determine the direction of the lateral displacement. Before *'moving’ the particle accord-
ing to the displacement a check is performed to ensure that the relocation of the particle with the lateral displacement
does not take the particle beyond the volume boundary.

Default MSC parameter values optimized per particle type are shown in Table 4.5. Note, that there are four types of
step limitation by multiple scattering process:
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e Minimal - only f, parameter and range are used;
e UseSafety - f, parameter, range and geometrical safety are used;
* UseSafetyPlus - f, parameter, range and geometrical safety are used;

e UseDistanceToBoundary - uses particle range, geometrical safety and linear distance to geometrical
boundary.

Table 4.5: The default values of parameters for different particle type.

particle et,e” muons, hadrons | ions
StepLimitType fUseSafety | fMinimal fMinimal
skin 0 0 0

fr 0.04 0.2 0.2

fq 2.5 0.1 0.1
LateralDisplacement | true true false

The parameters of the model can be changed via public functions of the base class G4VMultipleSacttering. They
can be changed for all multiple scattering processes simultaneously via G4EmParameters class, G4EmProcessOptions
class, or via Geant4 Ul commands. The following commands are available:

/process/msc/Steplimit UseDistanceToBoundary
/process/msc/LateralDisplacement false
/process/msc/MuHadLateralDisplacement false
/process/msc/DisplacementBeyondSafety true
/process/msc/RangeFactor 0.02
/process/msc/GeomFactor 2.5
/process/msc/Skin 2

4.2.2 Discrete Processes for Charged Particles
Some processes for charged particles following the same interface G4V Em Process as gamma processes described
in Section 4.1.1.

* G4CoulombScattering;

* G4eplusAnnihilation (with additional AtRest methods);

* G4eplusPolarized Annihilation (with additional AtRest methods);

¢ G4eeToHadrons;

* G4NuclearStopping;

¢ G4MicroElecElastic;

* G4MicroEleclInelastic.
Corresponding model classes follow the G4V E'm M odel interface:

* G4DummyModel (zero cross section, no secondaries);

* G4eCoulombScatteringModel;

¢ G4eSingleCoulombScatteringModel;

* G4lonCoulombScatteringModel;

¢ G4eeToHadronsModel;

¢ G4PenelopeAnnihilationModel;
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G4PolarizedAnnihilationModel;

G4ICRU49NuclearStoppingModel,
¢ G4MicroElecElasticModel;
¢ G4MicroEleclnelasticModel.

Some processes from do not follow described EM interfaces but provide direct implementations of the basic
G4V DiscreteProcess process:

¢ G4AnnihiToMuPair;
¢ G4ScreenedNuclearRecoil;

¢ G4Cerenkov;

G4Scintillation;

* G4SynchrotronRadiation;

4.2.3 Single Scattering

Single elastic scattering process is an alternative to the multiple scattering process. The advantage of the single
scattering process is in possibility of usage of theory based cross sections, in contrary to the Geant4 multiple scattering
model [singscat.urban], which uses a number of phenomenological approximations on top of Lewis theory. The
process G4CoulombScattering was created for simulation of single scattering of muons, it also applicable with some
physical limitations to electrons, muons and ions. Because each of elastic collisions are simulated the number of steps
of charged particles significantly increasing in comparison with the multiple scattering approach, correspondingly its
CPU performance is pure. However, in low-density media (vacuum, low-density gas) multiple scattering may provide
wrong results and single scattering processes is more adequate.

Coulomb Scattering

The single scattering model of Wentzel [singscat.wentzel] is used in many multiple scattering models including the
Penelope code [ FernandezVareaMayolBaroSalvat93]. The Wentzel model for describing elastic scattering of particles
with charge ze (z = —1 for electron) by atomic nucleus with atomic number Z is based on simplified scattering
potential

Vir)= zZTe exp(—r/R),

where the exponential factor tries to reproduce the effect of screening. The parameter R is a screening radius
[singscat.bethe]

R =0.8852""3rp,

where 73 is the Bohr radius. In the first Born approximation the elastic scattering cross section o () can be obtained
as
do™) ()  (ze?)? Z(Z+1)

A (pB)? QA+ 1 — cost)?’ (4.52)

where p is the momentum and S is the velocity of the projectile particle. The screening parameter A according to
Moliere and Bethe [singscat.bethe]

h

A= (M) (1.13 + 3.76(aZ/3)?),
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where « is a fine structure constant and the factor in brackets is used to take into account second order corrections to
the first Born approximation. The total elastic cross section o can be expressed via Wentzel cross section (4.52):

(W)
dzg) _do - (0) (imz S5 1 o) (4.53)
(14 455%) +

where ¢ is momentum transfer to the nucleus, Ry is nuclear radius. This term takes into account nuclear size effect
[singscat.kokoulin], the second term takes into account scattering off electrons. The results of simulation with the
single scattering model (Fig. 4.15) are competitive with the results of the multiple scattering.

Data
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Fig. 4.15: Scattering of muons off 1.5 mm aluminum foil: data [singscat.attwood] - black squares; simulation - colored
markers corresponding different options of multiple scattering and single scattering model; in the bottom plot - relative
difference between the simulation and the data in percents; hashed area demonstrates one standard deviation of the
data.

Implementation Details

The total cross section of the process is obtained as a result of integration of the differential cross section (4.53). The
first term of this cross section is integrated in the interval (0, 7). The second term in the smaller interval (0, 6,,),
where 6, is the maximum scattering angle off electrons, which is determined using the cut value for the delta electron
production. Before sampling of angular distribution the random choice is performed between scattering off the nucleus
and off electrons.

4.2.4 lon Scattering

The necessity of accurately computing the characteristics of interatomic scattering arises in many disciplines in which
energetic ions pass through materials. Traditionally, solutions to this problem not involving hadronic interactions
have been dominated by the multiple scattering, which is reasonably successful, but not very flexible. In particular,
it is relatively difficult to introduce into such a system a particular screening function which has been measured for a
specific atomic pair, rather than the universal functions which are applied. In many problems of current interest, such
as the behavior of semiconductor device physics in a space environment, nuclear reactions, particle showers, and other
effects are critically important in modeling the full details of ion transport. The process G4ScreenedNuclearRecoil
provides simulation of ion elastic scattering /MWO05]. This process is available with extended electromagnetic example
TestEm7.

Method

The method wused in this computation is a variant of a subset of the method described in
Ref.:cite:MendenhallWellerXSection. A very short recap of the basic material is included here. The scattering
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of two atoms from each other is assumed to be a completely classical process, subject to an interatomic potential
described by a potential function

Vi = 255, ()

r a

where Z; and Z, are the nuclear proton numbers, €2 is the electromagnetic coupling constant (g2 /4meg in SI units),
r is the inter-nuclear separation, ¢ is the screening function describing the effect of electronic screening of the bare
nuclear charges, and « is a characteristic length scale for this screening. In most cases, ¢ is a universal function used
for all ion pairs, and the value of a is an appropriately adjusted length to give reasonably accurate scattering behavior.
In the method described here, there is no particular need for a universal function ¢, since the method is capable of
directly solving the problem for most physically plausible screening functions. It is still useful to define a typical
screening length a in the calculation described below, to keep the equations in a form directly comparable with our
previous work even though, in the end, the actual value is irrelevant as long as the final function ¢(7) is correct.
From this potential V() one can then compute the classical scattering angle from the reduced center-of-mass energy
¢ = E.a/Z, Ze* (where E. is the kinetic energy in the center-of-mass frame) and reduced impact parameter 3 = b/a

0. =m— ZB/OO f(2)dz/z*

where

zZE 22

flz) = (1 _9(2) ﬁ2>—1/2

and z, is the reduced classical turning radius for the given € and 3.

The problem, then, is reduced to the efficient computation of this scattering integral. In our previous work, a great deal
of analytical effort was included to proceed from the scattering integral to a full differential cross section calculation,
but for application in a Monte-Carlo code, the scattering integral 8.(Z1, Z2, E., b) and an estimated total cross section
0o(Z1, Zo, E.) are all that is needed. Thus, we can skip algorithmically forward in the original paper to equations 15-
18 and the surrounding discussion to compute the reduced distance of closest approach x,. This computation follows
that in the previous work exactly, and will not be reintroduced here.

For the sake of ultimate accuracy in this algorithm, and due to the relatively low computational cost of so doing, we
compute the actual scattering integral (as described in equations 19-21 of /MW91]) using a Lobatto quadrature of order
6, instead of the 4th order method previously described. This results in the integration accuracy exceeding that of any
available interatomic potentials in the range of energies above those at which molecular structure effects dominate,
and should allow for future improvements in that area. The integral o then becomes (following the notation of the
previous paper)

N1+)\0 4 , T,
am — + Y wif b (4.54)

i=1 v

where

1 ﬁQ ¢/(x0) 71/2
)\0:(2+2x2_ 2¢ ) (4.55)

]

w; € [0.03472124,0.1476903, 0.23485003, 0.1860249]

q; € [0.9830235,0.8465224,0.5323531, 0.18347974]
Then

mha

0. =m—
Lo
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The other quantity required to implement a scattering process is the total scattering cross section o, for a given incident
ion and a material through which the ion is propagating. This value requires special consideration for a process such
as screened scattering. In the limiting case that the screening function is unity, which corresponds to Rutherford
scattering, the total cross section is infinite. For various screening functions, the total cross section may or may not
be finite. However, one must ask what the intent of defining a total cross section is, and determine from that how to
define it.

In Geant4, the total cross section is used to determine a mean-free-path [, which is used in turn to generate random
transport distances between discrete scattering events for a particle. In reality, where an ion is propagating through,
for example, a solid material, scattering is not a discrete process but is continuous. However, it is a useful, and highly
accurate, simplification to reduce such scattering to a series of discrete events, by defining some minimum energy
transfer of interest, and setting the mean free path to be the path over which statistically one such minimal transfer has
occurred. This approach is identical to the approach developed for the original TRIM code /[BHS0]. As long as the
minimal interesting energy transfer is set small enough that the cumulative effect of all transfers smaller than that is
negligible, the approximation is valid. As long as the impact parameter selection is adjusted to be consistent with the
selected value of /,,, the physical result isn’t particularly sensitive to the value chosen.

Noting, then, that the actual physical result isn’t very sensitive to the selection of [,,, one can be relatively free about
defining the cross section o, from which /,, is computed. The choice used for this implementation is fairly simple.
Define a physical cutoff energy F,,;, which is the smallest energy transfer to be included in the calculation. Then,
for a given incident particle with atomic number Z;, mass m1, and lab energy E;, ., and a target atom with atomic
number Z> and mass my, compute the scattering angle 6, which will transfer this much energy to the target from the
solution of
dmime . 5 0.
Emm - Eznc (ml -+ m2)2 S 2°

Then, noting that o from eq.(4.54) is a number very close to unity, one can solve for an approximate impact parameter
b with a single root-finding operation to find the classical turning point. Then, define the total cross section to be
0, = mb?, the area of the disk inside of which the passage of an ion will cause at least the minimum interesting
energy transfer. Because this process is relatively expensive, and the result is needed extremely frequently, the values
of 04(E;n.) are precomputed for each pairing of incident ion and target atom, and the results cached in a cubic-spline
interpolation table. However, since the actual result isn’t very critical, the cached results can be stored in a very
coarsely sampled table without degrading the calculation at all, as long as the values of the [, used in the impact
parameter selection are rigorously consistent with this table.

The final necessary piece of the scattering integral calculation is the statistical selection of the impact parameter b
to be used in each scattering event. This selection is done following the original algorithm from TRIM, where the
cumulative probability distribution for impact parameters is

P(b) =1—exp (_”b2>

()

where N o, = 1/1,, where N is the total number density of scattering centers in the target material and [,, is the mean
free path computed in the conventional way. To produce this distribution from a uniform random variate r on (0,1],
the necessary function is

—logr

h—
TN,

This choice of sampling function does have the one peculiarity that it can produce values of the impact parameter
which are larger than the impact parameter which results in the cutoff energy transfer, as discussed above in the
section on the total cross section, with probability 1/e. When this occurs, the scattering event is not processed further,
since the energy transfer is below threshold. For this reason, impact parameter selection is carried out very early in the
algorithm, so the effort spent on uninteresting events is minimized.

The above choice of impact sampling is modified when the mean-free-path is very short. If o, > 7 (%) ? where [ is the
approximate lattice constant of the material, as defined by [ = N~1/3, the sampling is replaced by uniform sampling
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on a disk of radius [/2, so that

b=—-r

2 vr
This takes into account that impact parameters larger than half the lattice spacing do not occur, since then one is closer
to the adjacent atom. This also derives from TRIM.

One extra feature is included in our model, to accelerate the production of relatively rare events such as high-angle
scattering. This feature is a cross-section scaling algorithm, which allows the user access to an unphysical control of
the algorithm which arbitrarily scales the cross-sections for a selected fraction of interactions. This is implemented as
a two-parameter adjustment to the central algorithm. The first parameter is a selection frequency f;, which sets what
fraction of the interactions will be modified. The second parameter is the scaling factor for the cross-section. This is
implemented by, for a fraction f3, of interactions, scaling the impact parameter by b’ = b/+/ scale. This feature, if used
with care so that it does not provide excess multiple-scattering, can provide between 10 and 100-fold improvements
to event rates. If used without checking the validity by comparing to un-adjusted scattering computations, it can also
provide utter nonsense.

Implementation Details
The coefficients for the summation to approximate the integral for « in eq.(4.54) are derived from the values in
Abramowitz & Stegun [MA65], altered to make the change-of-variable used for this integral. There are two basic

steps to the transformation. First, since the provided abscissas x; and weights w; are for integration on [-1,1], with
only one half of the values provided, and in this work the integration is being carried out on [0,1], the abscissas are

transformed as:
1 F x;
i €
ne {15

Then, the primary change-of-variable is applied resulting in:

¢ = cos WQyi (4.56)
w, = %smﬁéﬁ (4.57)

except for the first coefficient w where the sin() part of the weight is taken into the limit of A, as described in eq.(4.55).
This value is just w] = wy /2.

4.2.5 Single Scattering, Screened Coulomb Potential and NIEL

Alternative model of Coulomb scattering of ions have been developed based on [eall]] and references therein. The
advantage of this model is the wide applicability range in energy from 50 kel to 100 T'eV per nucleon.

Nucleus—Nucleus Interactions

As discussed in Ref. [eall 1], at small distances from the nucleus, the potential energy is a Coulomb potential, while -
at distances larger than the Bohr radius - the nuclear field is screened by the fields of atomic electrons. The interaction
between two nuclei is usually described in terms of an interatomic Coulomb potential (e.g., see Section 2.1.4.1 of
Ref. [LR09] and Section 4.1 of Ref. /BIA+93]), which is a function of the radial distance r between the two nuclei

2
V(T) = ZZre \I/I(Tr)a (4.58)
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where ez (projectile) and eZ (target) are the charges of the bare nuclei and Uy is the interatomic screening function
and r, is given by

r

Tr = —,

ag
with aj the so-called screening length (also termed screening radius). In the framework of the Thomas—Fermi model
of the atom (e.g., see Ref. [eall ] and references therein) - thus, following the approach of ICRU Report 49 (1993) -,
a commonly used screening length for z = 1 incoming particles is that from Thomas—Fermi

_ Crrag

aTF = W s (459)

and - for incoming particles with z > 2 - that introduced by Ziegler, Biersack and Littmark (1985) (and termed
universal screening length):
Crr ag

ay — m, (460)

where
h2

ag = —5
me?

is the Bohr radius, m is the electron rest mass and

2/3

1 /3w
Crp==-|— ~ (0.88534
=3 (5F)

is a constant introduced in the Thomas—Fermi model.

The simple scattering model due to Wentzel [Wen26] - with a single exponential screening-function ¥y(r,) {e.g., see
Ref. [ealll] and references therein} - was repeatedly employed in treating single and multiple Coulomb-scattering
with screened potentials. The resulting elastic differential cross section differs from the Rutherford differential cross
section by an additional term - the so-called screening parameter - which prevents the divergence of the cross sec-
tion when the angle 6 of scattered particles approaches 0°. The screening parameter Ay [e.g., see Equation (21) of
Bethe (1953)] - as derived by Moliere (1947, 1948) for the single Coulomb scattering using a Thomas—Fermi potential

- is expressed as
2
AS B ( h >
2par

where ag is the screening length - from Eqs. (4.59),(4.60) for particles with z = 1 and 2z > 2, respectively; « is the
fine-structure constant; p (S¢) is the momentum (velocity) of the incoming particle undergoing the scattering onto a
target supposed to be initially at rest; c and 7 are the speed of light and the reduced Planck constant, respectively. When
the (relativistic) mass - with corresponding rest mass m - of the incoming particle is much lower than the rest mass
(M) of the target nucleus, the differential cross section - obtained from the Wentzel-Moliere treatment of the single
scattering - is:

az/ 2
1.13 + 3.76 x 4.61)

B

doWM(9) [ zZe?\” 1
_< > : (4.62)

o 2pfBe) [A,+sin®(6/2)]"
Equation (4.62) differs from Rutherford’s formula - as already mentioned - for the additional term A to sin®(6/2). As

discussed in Ref. [ealll], for B ~ 1 (i.e., at very large p) and with Ay < 1, one finds that the cross section approaches
a constant:

227Z¢%ar\”
oM ~ ( =ee “I> u . (4.63)
hic 1.13+ 3.76 x (azZ)
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As discussed in Ref. [eall]] and references therein, for a scattering under the action of a central potential (for instance
that due to a screened Coulomb field), when the rest mass of the target particle is no longer much larger than the
relativistic mass of the incoming particle, the expression of the differential cross section must properly be re-written -
in the center of mass system - in terms of an “effective particle” with momentum equal to that of the incoming particle
(pl,,) and rest mass equal to the relativistic reduced mass

fhrel = (4.64)

)
M o

)

where M 5 is the invariant mass; m and M are the rest masses of the incoming and target particles, respectively. The
“effective particle” velocity is given by:
o\ 2
14 ( ,urlel )
Din

-1

prc=c

Thus, one finds (e.g, see Ref. [ealll]):

doVM(9") 2Ze \’ 1
= 5, (4.65)
dQ 2pin Bre ) [Ag +sin?(0'/2)]
with
2 2
A= (T 113+ 3.76 x (222 (4.66)
2p;n ary ﬁr

and 0’ the scattering angle in the center of mass system.

The energy T transferred to the recoil target is related to the scattering angle as T = T}, q, sin? (6 / 2) - where Tyq 1S
the maximum energy which can be transferred in the scattering (e.g., see Section 1.5 of Ref. [LR09]) -, thus, assuming
an isotropic azimuthal distribution one can re-write Eq. (4.65) in terms of the kinetic recoil energy 7' of the target

WM 2\ 2
do (T) _ ( 7:’Z€ ) Tmar 5. (467)
dT Pin Br¢)  [Thae As + T
Furthermore, one can demonstrates that Eq. (4.67) can be re-written as (e.g, see Ref. [ealll]);
doeWM (T) o E? 1
— =2 Ze? .
o7 T (2Z¢€?) M [T A3 TP (4.68)

with p and F the momentum and total energy of the incoming particle in the laboratory. Equation (4.68) expresses - as
already mentioned - the differential cross section as a function of the (kinetic) energy 7" achieved by the recoil target.

Nuclear Stopping Power

Using Eq. (4.68) the nuclear stopping power - in MeVem ™! - is obtained as

dE o2 B2 [ A, A+ 1
— <dx)nlm1 = QTLAﬂ' (ZZ6 ) ])2704 Ab—f— 1 - 1+ln< AS >:| (469)

with n 4 the number of nuclei (atoms) per unit of volume and, finally, the negative sign indicates that the energy is
lost by the incoming particle (thus, achieved by recoil targets). As discussed in Ref. [ealll], a slight increase of the
nuclear stopping power with energy is expected because of the decrease of the screening parameter with energy.

For instance, in Fig. [fig:dEdx] the nuclear stopping power in silicon - in MeVem?2g ! - is shown as a function of the

kinetic energy per nucleon - from 50keV/nucleon up 100TeV/nucleon - for protons, c-particles and *B-, 2C-, 28Si-,
56Fe-, 1151n-, 298Pp-nuclei.
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Fig. 4.16: Nuclear stopping power from Ref. /eall]] - in MeVcm?2g ™! - calculated using Eq.(4.69) in silicon is shown

as a function of the kinetic energy per nucleon - from 50keV/nucleon up 100TeV/nucleon - for protons, a-particle and
1B, 12C-, 288i-, 56Fe-, 115In-, 2°Pb-nuclei.

A comparison of the present treatment with that obtained from Ziegler, Biersack and Littmark (1985) - available in
SRIM (2008) [JFZ08] - using the so-called universal screening potential (see also Ref. [ZBZ08]) is discussed in
Ref. [ealll]: a good agreement is achieved down to about 150keV/nucleon. At large energies, the non-relativistic
approach due to Ziegler, Biersack and Littmark (1985) becomes less appropriate and deviations from stopping powers
calculated by means of the universal screening potential are expected and observed.

The non-relativistic approach - based on the universal screening potential - of Ziegler, Biersack and Littmark (1985)
was also used by ICRU (1993) to calculate nuclear stopping powers due to protons and a-particles in materi-
als. ICRU (1993) used as screening lengths those from Egs. (4.59),(4.60) for protons and «a-particles, respectively. As
discussed in Ref. [ealll], the stopping powers for protons (a-particles) from Eq.(4.69) are less than ~ 5% larger than
those reported by ICRU (1993) from 50keV/nucleon up to =~ 8MeV (19MeV/nucleon). At larger energies the stopping
powers from Eq.(4.69) differ from those from ICRU - as expected - due to the complete relativistic treatment of the
present approach (see Ref. [ealll]).

The simple screening parameter used so far [Eq.(4.66)] - derived by Moliere (1947) - can be modified by means of a
7\ 2
1.13 4 3.76 x C (O‘Z )

practical correction, i.e.,
2
s 2 p;n ar 5r

to achieve a better agreement with low energy calculations of Ziegler, Biersack and Littmark (1985). For instance - as
discussed in Ref. [ealll] -, for a-particles and heavier ions, with

, (4.70)

C = (10r22a)""? 4.71)

the stopping powers obtained from Eq.(4.69) - in which A’ replaces A - differ from the values of SRIM (2008) by less
than ~ 4.7 (3.6)% for a-particles (lead ions) in silicon down to about 50keV/nucleon. With respect to the tabulated
values of ICRU (1993), the agreement for a-particles is usually better than 4% at low energy down to 50keV/nucleon
- a 5% agreement is achieved at about 50keV/nucleon in case of a lead medium. At very high energy, the stopping
power is slightly affected when A replaces As (a further disvussion is found in Ref. [eall1]).
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Fig. 4.17: Non-ionizing stopping power from Ref. [eall]] - in MeVem?g ™! - calculated using Eq.(4.72) in silicon

is shown as a function of the kinetic energy per nucleon - from 50keV/nucleon up 100TeV/nucleon - for protons, -
particles and ' B-, 12C-, 28Si-, 56Fe-, 1'%In-, 2°®Pb-nuclei. The threshold energy for displacement is 21eV in silicon.

Non-lonizing Energy Loss due to Coulomb Scattering

A relevant process - which causes permanent damage to the silicon bulk structure - is the so-called displacement dam-
age (e.g., see Chapter 4 of Ref. [LR09], Ref. [LR0O7] and references therein). Displacement damage may be inflicted
when a primary knocked-on atom (PKA) is generated. The interstitial atom and relative vacancy are termed Frenkel-
pair (FP). In turn, the displaced atom may have sufficient energy to migrate inside the lattice and - by further collisions
- can displace other atoms as in a collision cascade. This displacement process modifies the bulk characteristics of the
device and causes its degradation. The total number of FPs can be estimated calculating the energy density deposited
from displacement processes. In turn, this energy density is related to the Non-Ionizing Energy Loss (NIEL), i.e., the
energy per unit path lost by the incident particle due to displacement processes.

In case of Coulomb scattering on nuclei, the non-ionizing energy-loss can be calculated using the Wentzel-Moliere
differential cross section [Eq. (4.68)] discussed in Single Scattering, Screened Coulomb Potential and NIEL, i.e.,

NIEL Traw WM
- (‘ji) = nA/ T L(T) dUT(T)dT, (4.72)
Ta

nucl
where E is the kinetic energy of the incoming particle, T is the kinetic energy transferred to the target atom, L(T) is the
fraction of T deposited by means of displacement processes. The expression of L(T") - the so-called Lindhard partition
function - can be found, for instance, in Equations (4.94, 4.96) of Section 4.2.1.1 in Ref. /LR09] (see also references
therein). Tge = T L(T) is the so-called damage energy, i.c., the energy deposited by a recoil nucleus with kinetic
energy 7' via displacement damages inside the medium. The integral in Eq.(4.72) is computed from the minimum
energy Ty - the so-called threshold energy for displacement, i.e., that energy necessary to displace the atom from
its lattice position - up to the maximum energy 7., that can be transferred during a single collision process. T} is
about 21eV in silicon. For instance, in Fig. [fig:NIELdEdx] the non-ionizing energy loss - in MeVcm?g ™! - in silicon
is shown as a function of the kinetic energy per nucleon - from 50keV/nucleon up 100TeV/nucleon - for protons,
a-particles and "' B-, *2C-, 28Si-, 56Fe-, 1°In-, 2°8Pb-nuclei.

A further discussion on the agreement with the results obtained by Jun and collaborators (2003) - using a relativistic
treatment of Coulomb scattering of protons with kinetic energies above 50MeV and up to 1GeV upon silicon - can be
found in Ref. [ealll].

G4lonCoulombScatteringModel

As discussed sofar, high energetic particles may inflict permanent damage to the electronic devices employed in a
radiation environment. In particular the nuclear energy loss is important for the formation of defects in semiconductor
devices. Nuclear energy loss is also responsible for the displacement damage which is the typical cause of degradation
for silicon devices. The electromagnetic model G4lonCoulombScatteringModel was created in order to simulate the
single scattering of protons, alpha particles and all heavier nuclei incident on all target materials in the energy range
from 50-100 keV/nucleon to 10 TeV.
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The Method

The differential cross section previously described is calculated by means of the class G4lonCoulombCrossSection
where a modified version of the Wentzel’s cross section is used. To solve the scattering problem of heavy ions it is
necessary to introduce an effective particle whose mass is equal to the relativistic reduced mass of the system defined
as

_ m1m202

M = E.

where m1 and my are incident and target rest masses respectively and E.,, (in Eq.(4.64) M1 2 = E.p,/ c?) is the total
center of mass energy of the two particles system. The effective particle interacts with a fixed scattering center with
interacting potential expressed by Eq.(4.58). The momentum of the effective particle is equal to the momentum of the
incoming particle calculated in the center of mass system (p,. = p;.,,,)- Since the target particle is inside the material
it can be considered at rest in the laboratory as a consequence the magnitude of p,. is calculated as

2

mocC
Pr = Plem = pllabm7
with E.,, given by
Eem =/ (m1¢2)2 4 (mc)? + 2B 5mac?, (4.73)

where p1ap and Eq;qp are the momentum and the total energy of the incoming particle in the laboratory system
respectively. The velocity (3,.) of the effective particle is obtained by the relation

2
1 i 2
Loy
Bz pbrc
The modified Wentzel’s cross section is then equal to:

2\ 2
dO’((gr) _ Z1Z2€ 1 (474)
dQ prc By (245 4+ 1 —cos6,.)?

(in Eq. (4.65)) p},, = pr where Z; and Zs are the nuclear proton numbers of projectile and of target respectively; A
is the screening coefficient [see Eq.(4.66)] and 6,. is the scattering angle of the effective particle which is equal the one
in the center of mass system (0, = 61.,,,). Knowing the scattering angle the recoil kinetic energy of the target particle
after scattering is calculated by

2

T = moc? | P22} (1~ cosd,). 4.75)
Ecm

The momentum and the total energy of the incident particle after scattering in the laboratory system are obtained by

the usual Lorentz’s transformations.

Implementation Details

In the G4lonCoulombScatteringModel the scattering off electrons is not considered: only scattering off nuclei is
simulated. Secondary particles are generated when T' [Eq.(4.75)] is greater then a given threshold for displacement
Ty; it is not cut in range. The user can set this energy threshold T}; by the method SetRecoilThreshold(G4double Td*).
The default screening coefficient A, is given by Eq.(4.66). If the user wants to use the one given by Eq.(4.70) the
condition SetHeavylonCorr(1) must be set. When Z; = 1 the Thomas-Fermi screening length [arr see Eq. (4.59)]
is used in the calculation of A;. For Z; > 2 the screening length is the universal one [ay see Eq. (4.60)]. In
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the G4lonCoulombCrossSection the total differential cross section is obtained by the method NuclearCrossSection()
where the Eq.(4.74) is integrated in the interval (0, 7):

2\ 2
o= w(zlz?e ) 1 (4.76)
prcBr ) As(As+1)

The cosine of the scattering angle is chosen randomly in the interval (-1, 1) according to the distribution of the total
cross section and it is given by the method SampleCosineTheta() which returns (1 — cos 6,.).

4.2.6 Electron Screened Single Scattering and NIEL

The present treatment [eall2] of electron—nucleus interaction is based on numerical and analytical approximations of
the Mott differential cross section. It accounts for effects due to screened Coulomb potentials, finite sizes and finite
rest masses of nuclei for electron with kinetic energies above 200keV and up to ultra high. This treatment allows one
to determine both the total and differential cross sections, thus, to calculate the resulting nuclear and non-ionizing
stopping powers (NIEL). Above a few hundreds of MeV, neglecting the effects of finite sizes and rest masses of recoil
nuclei the stopping power and NIEL result to be largely underestimated, while, above a few tens of MeV prevents a
further large increase, thus, resulting in approaching almost constant values at high energies.

The non-ionizing energy-loss (NIEL) is the energy lost from a particle traversing a unit length of a medium through
physical process resulting in permanent displacement damages (e.g. see Ref. [LRO7]). The nuclear stopping power
and NIEL deposition - due to elastic Coulomb scatterings - from protons, light- and heavy-ions traversing an absorber
were previously dealt [eall]] and is available in Geant4 ([nunnucss]) (see also Sections 1.6, 1.6.1, 2.1.4-2.1.4.2,
4.2.1.6 of Ref. [LR11]). In the present model included in GEANT4, the nuclear stopping power and NIEL deposition
due to elastic Coulomb scatterings of electrons are treated up to ultra relativistic energies.

Scattering Cross Section of Electrons on Nuclei

The scattering of electrons by unscreened atomic nuclei was treated by Mott extending a method - dealing with incident
and scattered waves on point-like nuclei - of Wentzel and including effects related to the spin of electrons. The
differential cross section (DCS) - the so-called Mott differential cross section (MDCS) - was expressed by Mott as two
conditionally convergent infinite series in terms of Legendre expansions. In Mott—Wentzel treatment, the scattering
occurs on a field of force generating a radially dependent Coulomb - unscreened (screened) in Mott (Wentzel) -
potential. Furthermore, the MDCS was derived in the laboratory reference system for infinitely heavy nuclei initially
at rest with negligible spin effects and must be numerically evaluated for any specific nuclear target. Effects related to
the recoil and finite rest mass of the target nucleus (M) were neglected. Thus, in this framework the total energy of
electrons has to be smaller or much smaller than M c?.

The MDCS is usually expressed as:

dO’MOtt(H) _ dURut RMott’ (477)

ds? ds)
where RMot is the ratio between the MDCS and Rutherford’s formula [RDCS, see Equation (1) of Ref. [eall2]]. For
electrons with kinetic energies from several keV up to 900MeV and target nuclei with 1 < Z < 90, Lijian, Quing and
Zhengming:cite:Lijian provided a practical interpolated expression [Eq.(4.85)] for RM°t* with an average error less
than 1%; in the present treatment, that expression - Mot t _R_approx - is the one assumed for RM°* in Eq.(4.77)
hereafter. The analytical expression derived by McKinley and Feshbach:cite:McKinley for the ratio with respect to
Rutherford’s formula [Equation (7) of Ref. /[MF48]] is given by:

RMEF — 1 — 8%5in?(0/2) + Z afrsin(0/2) [1 — sin(6/2)] (4.78)
with the corresponding differential cross section (McFDCS)

dO’MCF do.Rut

aQ  dQ

RMcF 4.79)
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Furthermore, for M c? much larger than the total energy of incoming electron energies the distinction between labora-
tory (i.e., the system in which the target particle is initially at rest) and center-of-mass (CoM) systems disappears (e.g.,
see discussion in Section 1.6.1 of Ref.:cite:LR_3rd). Furthermore, in the CoM of the reaction the energy transferred
from an electron to a nucleus initially at rest in the laboratory system (i.e., its recoil kinetic energy T') is related with
the maximum energy transferable Ti, .« as

T = Thax sin?(0'/2) (4.80)
[e.g., see Equations (1.27, 1.95) at page 11 and 31, respectively, of Ref.:cite:LR_3rd], where 6’ is the scattering angle
in the CoM system. In addition, one obtains

Tm ax

dT =
47

dQy. (4.81)

Since for M¢c? much larger than the electron energy 6 is ~ ¢’, one finds that Eq.(4.80) can be approximated as

T ~ Thaxsin? (0/2),

4.82
= sin? (0/2) = r (*52)
TII]aX
and
dTl ~ Tmax dQ. (4.83)
47

Using Eqs.(4.78),(4.82),(4.83), Rutherford’s formula and Eq.(4.79) can be respectively rewritten as:

doBut B 7Ze2 27rTmaX
ar T2 7

pPec
T T
17/6Tmax (B+Zam)+Zafm | T

doMcF B <Z(32> 2 T max
Ze2\ 2 T max . McF
)

(4.84)

T pBc) T2
ppc T2

pBe
T T
1—[3Tmax (B+Zarm)+Zapm | 7|

Finally, in a similar way the MDCS [Eq.(4.77)] is

with

RMCF (T) _

dO_Mott (T) do.Rut Mott
ar ~ ar ©~ (T)

Ze? 27"Tmax Mott
= (05.) T R

with RMet(T") from Eq.(4.87).

Interpolated Expression for RMott

Recently, Lijian, Quing and Zhengming:cite :Lijian provided a practical interpolated expression [Eq.(4.85)] which is
a function of both # and S for electron energies from several keV up to 900MeV, i.e.,

4
RMOW = "4;(Z, 8)(1 — cos 0)?, (4.85)
j=0
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Fig. 4.18: RMott ghtained from Eq.(4.85) at 100MeV for Li, Si, Fe and Pb nuclei as a function of scattering angle.

where
6
a;(Z,8) =Y bi(Z)(B—B)", (4.86)
k=1

and B¢ = 0.7181287 c is the mean velocity of electrons within the above mentioned energy range. The coefficients
bij(Z) are listed in Table 1 of Ref.:cite:Lijian for 1 < Z < 90. M.Boschini et al. (2013) /[BCG+13] provided an
extended numerical solution for the Mott differential cross section on nuclei up to Z = 118 for both electrons and
positrons. RMe* obtained from Eq.(4.85) at 100MeV is shown in Fig.Fig. 4.18 for Li, Si, Fe and Pb nuclei as a
function of scattering angle. Furthermore, it has to be remarked that the energy dependence of RM°* from Eq.(4.85)
was studied and observed to be negligible above ~ 10 MeV [for instance, see Eq.(4.86)].

Finally, from Egs.(4.80),(4.85) [e.g., see also Equation (1.93) at page 31 of Ref.:cite:LR_3rd], one finds that RMott
can be expressed in terms of the transferred energy 71" as

Mott 2T i/2
R (T)Zaj(Z,ﬁ)( > : (4.87)

4
i=0 Tmax

Screened Coulomb Potentials

The simple scattering model due to Wentzel - with a single exponential screening function [e.g., see Equation (2.71)
at page 95 of Ref.:cite:LR_3rd] - was repeatedly employed in treating single and multiple Coulomb scattering with
screened potentials. Neglecting effects like those related to spin and finite size of nuclei, for proton and nucleus
interactions on nuclei it was shown that the resulting elastic differential cross section of a projectile with bare nuclear-
charge ez on a target with bare nuclear-charge eZ differs from the Rutherford differential cross section (RDCS) by an
additional term - the so-called screening parameter - which prevents the divergence of the cross section when the angle
0 of scattered particles approaches 0° [e.g., see Section 1.6.1 of Ref.:cite:LR_3rd]. For z = 1 particles the screening
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parameter Ag \p is expressed as

o 2%
Aot = ( ) 113 4+ 3.76 x (O‘> (4.88)
2p atr B

where a, ¢ and h are the fine-structure constant, speed of light and reduced Planck constant, respectively; p (G¢) is the
momentum (velocity) of the incoming particle undergoing the scattering onto a target supposed to be initially at rest -
i.e., in the laboratory system -; ar is the screening length suggested by Thomas—Fermi

_ Crrag
aTF - Zl/g
with
hZ
Ay = —
07 me?

the Bohr radius, m the electron rest mass and

1 /3n 2/3
Crp==-|— ~ (0.88534
= ( 4)

a constant introduced in the Thomas—Fermi model [e.g., see Ref.:cite:Boschini_2011, Equations (2.73, 2,82) - at
page 95 and 99, respectively - of Ref.:cite:LR_3rd, see also references therein]. The modified Rutherford’s for-
mula [do"VM(0)/dSY], ie., the differential cross section - obtained from the Wentzel-Moliére treatment of the
single scattering on screened nuclear potential - is given by [e.g., see Equation (2.84) of Ref.:cite:LR_3rd and
Ref .:cite:Boschini_2011, see also references therein]:

doVM(9) <zZ62 >2 . 1

df? 2}5 tﬂc v +sin?(6/2)]° (4.89)
do™t
= F2(0).
ds)
with
o2

Agn +sin?(0/2)

§(0) - the so-called screening factor - depends on the scattering angle ¢ and the screening parameter Ag . As
discussed in Scattering Cross Section of Electrons on Nuclei, the term Ay (the screening parameter) cannot be
neglected in the DCS [Eq.(4.89)] for scattering angles (f) within a forward (with respect to the electron direction)
angular region narrowing with increasing energy from several degrees (for high-Z material) at 200keV down to less
than or much less than a mrad above 200MeV.

An approximated description of elastic interactions of electrons with screened Coulomb fields of nuclei can be obtained
by the factorization of the MDCS, i.e., involving Rutherford’s formula [doRut /dQ] for particle with z = 1, the
screening factor [§(#)] and the ratio RM°** between the RDCS and MDCS:
dJMott (0) dO_Rut 9
sc ~ 0 Mott . (49 1)
ds) 7k9] SO)R

Thus, the corresponding screened differential cross section derived using the analytical expression from McKinley and
Feshbach:cite:McKinley can be approximated with

doMeF () N doRut
ds? dQ
Zeitler and Olsen:cite:Zeitler suggested that for electron energies above 200keV the overlap of spin and screening

effects is small for all elements and for all energies; for lower energies the overlapping of the spin and screening
effects may be appreciable for heavy elements and large angles.

32(9) RMCF (4.92)
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Finite Nuclear Size

The ratio between the actual measured and that expected from the point-like differential cross section expresses the
square of nuclear form factor (|F|) which, in turn, depends on the momentum transfer ¢, i.e., that acquired by the
target initially at rest:

2

= T(T + 2Mc ), (4.93)
c

with T' from Eq.(4.80) or for Mc? larger or much larger than the electron energy from its approximate expression

Eq.T_lab.

The approximated (factorized) differential cross section for elastic interactions of electrons with screened Coulomb
fields of nuclei [Eq.(4.91)] accounting for the effects due to the finite nuclear size is given by:

dodopt(0)  doPe

sc 2 Mott 2

’ ~ 0) R F : (4.94)
SE D S 3 (0) R R ()

Thus, using the analytical expression derived by McKinley and Feshbach:cite:McKinley [Eq.(4.78)] one obtains that
the corresponding screened differential cross section [Eq.(4.92)] accounting for the finite nuclear size effects

doge 5 (0)  do™t
aQ dQ
do.Rut

§2(0) RMF |F(q)|?

F(0) [F(g)”
x {1—B%sin*(0/2) + Z aBmsin(0/2) [1 — sin(6/2)]} .
In terms of kinetic energy, one can respectively rewrite Eqs.(4.94),(4.95) as

dO’é\é{Ott(T) d Rut
L =T 3(1) RMOY(T) |F(g)?

dT dT
doME(T)  doRet(T) _, MeF ) (493
= ——m— § (1) RYN(T) |F(g)]

with do®%/dT from Eq.(4.84), RM*™(T) from Eq.(4.87), RM¥(T) from Eq.R_McF_T and, using
Eqs.(4.80),T_1ab,(4.90),

T
T=————.
g( ) T’InaxAs,M +T
For instance, the form factor Feyy, is
1 rqraN2] "2
Foo(q) = |14+ — (—) : 4.96
() { + A } ( )

where r, is the nuclear radius, r, can be parameterized by
ro = 1.27A4%27 fm (4.97)

with A the atomic weight. Equation (4.97) provides values of 7, in agreement up to heavy nuclei (like Pb and U) with
those available, for instance, in Table 1 of Ref.:cite:DeVries.

Finite Rest Mass of Target Nucleus

The DCS treated in Sects. [UNscreened_Sect]—[Finite_Nucl_size] is based on the extension of MDCS to include
effects due to interactions on screened Coulomb potentials of nuclei and their finite size. However, the electron
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energies were considered small (or much smaller) with respect to that (M c?) corresponding to rest mass (M) target
nuclei.

The Rutherford scattering on screened Coulomb fields - i.e., under the action of a central forces - by massive charged
particles at energies large or much larger than M c¢? was treated by Boschini et al.:cite:Boschini_2011 in the CoM
system (e.g., see also Sections 1.6, 1.6.1, 2.1.4.2 of Ref.:cite:LR_3rd and references therein). It was shown that the
differential cross section [do"VM(6')/dS) with ¢ the scattering angle in the CoM system] is that one derived for
describing the interaction on a fixed scattering center of a particle with i) momentum p, equal to the momentum of
the incoming particle (i.e., the electron in the present treatment) in the CoM system and ii) rest mass equal to the
relativistic reduced mass i) [€.g., see Equations (1.80, 1.81) at page 28 of Ref.:cite:LR_3rd]. 1 is given by

_mM
Mrel = Ml )

)

_ mMc
\/m202 + M2c% + 2 M/m2ct + p2c2

where p is the momentum of the incoming particle (the electron in the present treatment) in the laboratory system:
m is the rest mass of the incoming particle (i.e., the electron rest mass); finally, M, » is the invariant mass - e.g.,
Section 1.3.2 of Ref.:cite:LR_3rd - of the two-particle system. Thus, the velocity of the interacting particle is [e.g., see
Equation (1.82) at page 29 of Ref.:cite:LR_3rd]

For an incoming particle with z = 1, doWM(¢)/dQ’ is given by

doeWM (¢) Ze? \° 1
(22 - (4.98)
s 2piBic)  [Ag+sin®(0/2)]
with
2 2
Z
A, = ( n > 1.13 + 3.76 x (O‘> (4.99)
2plarr B

the screening factor [e.g., see Equations (2.87, 2.88) at page 103 of Ref.:cite:LR_3rd]. Equation(4.98) can be rewritten
as

dUWM’(el) dO.Rut’ (9/)

o=y Se®) @.100)
with
Rut’ (g7 2 0\ 2
do"t (6) _ < Ze > 1 4.101)
asy 2p.Blc) sint(0/2)

the corresponding RDCS for the reaction in the CoM system [e.g., see Equation (1.79) at page 28 of Ref.:cite:LR_3rd]
and
sin?(6'/2)

Scom(0') = m (4.102)
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the screening factor. Using, Eqgs.(4.80),(4.81), one can respectively rewrite Eqs.(4.101),(4.102),(4.100),(4.98) as

dO‘Rut/ Z€2 ? Tmax
ar <pgﬂ;c) T2

T
Seanlh) =7 AT T
(T e (4.103)
ar -~ dr %M

doWVM'(T) (pzé >2 Thnax
—_——— =T .
T 1Bi¢) (TmaxAs +T)?
[e.g., see Equation (2.90) at page 103 of Ref.:cite:LR_3rd or Equation (13) of Ref.:cite:Boschini_2011].

To account for the finite rest mass of target nucleus the factorized MDCS [Eq.(4.94)] has to be re-expressed in the
CoM system using as:
dogeFoom(0) _do™ut' (9) 2

e Seon(#) REX ) |F(@)”, (4.104)
where F'(q) is the nuclear form factor (Sect. [Finite_Nucl_size]) with ¢ the momentum transfer to the recoil nucleus
[Eq.(4.93)]; finally, as discussed in Sect. [Mott_R_approx], RM°* exhibits almost no dependence on electron energy
above ~ 10 MeV, thus, since at low energies 6 = ' and 3 = (1, RM9(0') is obtained replacing § and 3. with ¢’ and

/, respectively, in Eq.(4.85).

Using the analytical expression derived by McKinley and Feshbach:cite:McKinley, one finds that
the corresponding screened differential cross section accounting for the finite nuclear size effects
[Egs.(4.95),Factorization_McF_screened_NFF_1] can be re-expressed as

doliGcom() o™ (6))

o = Seo(?) RENO) [F()f (4.105)

with
RN (') = {1—-B2sin*(0 /2)+ Z aBlmsin(0 /2) [L—sin(0' /2)]} . (4.106)
In terms of kinetic energy 7', from Eqs.(4.80),(4.81) one can respectively rewrite Eqs.(4.104),(4.105) as

dogeFoom(T)  do™ 2
roMT) AT S(T) RESHT) P (o)
doieFoom(T) _ do™™ (T) 2
Lo o B (1) RESK(T) |F)
with do™* /dT from Eq.(4.103), Fcom(T) from Eq.Wentzel S_F_T and RN (T) replacing 5 with £ in

Eq.R_McF_T,i.e,

(4.107)

T T
Rem(T) = |1=Bi=— B+ Zam)+ ZaBim | — | .

Finally, as discussed in Sect. [Mott_R_approx], RM°*(T') exhibits almost no dependence on electron energy above
~ 10 MeV, thus, since at low energies § = 6’ and 3 = 8., RMOU(T) is obtained replacing 3 with 3/ in Eq.(4.87).

Nuclear Stopping Power of Electrons

Using Eq.(4.107), the nuclear stopping power - in MeVem™! - of Coulomb electron—nucleus interaction can be ob-

tained as

Mott Tmaz JgMott T

) (c(lZE> i %WUMT (4.108)
X 0

nucl
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Fig. 4.19: In MeVcm?/g, nuclear stopping powers in “Li, 12C, 28Si and °6Fe - calculated from Eq.(4.109) - and divided
by the density of the material as a function of the kinetic energy of electrons from 200keV up to 1TeV.

with n4 the number of nuclei (atoms) per unit of volume [e.g., see Equation (1.71) of
Ref.:cite:LR_3rd] and, finally, the negative sign indicates that the energy is lost by the electron
(thus, achieved by recoil targets). Using the analytical approximation derived by McKinley and Fesh-
bach:cite:McKinley, i.e., Eq.Factorization_McF_screened_NFF_CoM_T, for the nuclear stopping power
one finds

AE\MF s doVeE o (T)
_ [ 2= — _ SGPOMN T AT 4.109
( dx ) na /0 T g

nucl

As already mentioned in Sect. [El-En_larger_M], the large momentum transfers - corresponding to large scattering
angles - are disfavored by effects due to the finite nuclear size accounted for by means of the nuclear form factor
(Sect.[Finite_Nucl_size]). For instance, the ratios of nuclear stopping powers of electrons in silicon are shown in
Ref.:cite:Consolandi_2012 as a function of the kinetic energies of electrons from 200keV up to 1TeV. These ratios are
the nuclear stopping powers calculated neglecting i) nuclear size effects (i.e., for |Fexp|2 = 1) and ii) effects due to
the finite rest mass of the target nucleus [i.e., in Eq.(4.109) replacing do\F ¢\ (T)/dT with do}!5 (T)/dT from
Eq. ([Factorization_McF_screened_NFF_T])] both divided by that one obtained using Eq.(4.109). Above a few tens
of MeV, a larger stopping power is found assuming |FCXP|2 = 1 and, in addition, above a few hundreds of MeV the
stopping power largely decreases when the effects of nuclear rest mass are not accounted for.

In Fig. [fig:el_dEdx] , the nuclear stopping powers in “Li, 12C, ?®Si and ®6Fe are shown as a function of the ki-
netic energy of electrons from 200keV up to 1TeV. These nuclear stopping powers in MeVcm?/g are calculated from
Eq.(4.109) and divided by the density of the medium.

Non-lonizing Energy-Loss of Electrons

In case of Coulomb scattering of electrons on nuclei, the non-ionizing energy-loss can be calculated using (as dis-
cussed in Sect. [UNscreened_Sect]-[El_Nucl_dE/dx]) the MDCRS or its approximate expression McFDCS [e.g.,
Egs.(4.107),Factorization_McF_screened_NFF_CoM_T, respectively], once the screened Coulomb fields,
finite sizes and rest masses of nuclei are accounted for, i.e., in Mev/cm

dE NIEL Trax do.é\é[ott o T
_ <d> =na / T L(T) %M() T (4.110)
€L n,Mott Ta
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or

B NIEL Trax dO.McF T
- <‘;> :nA/ T L(T) 7“’223“4( L ar (4.111)
€T n,McF Ta

[e.g., see Equation (4.113) at page 402 and, in addition, Sections 4.2.1-4.2.1.2 of Ref.:cite:LR_3rd], where T is the
kinetic energy transferred to the target nucleus, L(7T') is the fraction of T' deposited by means of displacement pro-
cesses. The Lindhard partition function, L(T), can be approximated using the so-called Norgert—Robintson—Torrens
expression [e.g., see Equations (4.121, 4.123) at pages 404 and 405, respectively, of Ref.:cite:LR_3rd (see also ref-
erences therein)]. Ty = T L(T) is the so-called damage energy, i.e., the energy deposited by a recoil nucleus with
kinetic energy 7" via displacement damages inside the medium. In Eqs.(4.110),(4.111) the integral is computed from
the minimum energy Ty - the so-called threshold energy for displacement, i.e., that energy necessary to displace the
atom from its lattice position - up to the maximum energy 7;,,. that can be transferred during a single collision pro-
cess. For instance, T}; is about 21eV in silicon requiring electrons with kinetic energies above ~ 220 kev. As already
discussed with respect to nuclear stopping powers in Sect. [El_Nucl_dE/dx], the large momentum transfers (corre-
sponding to large scattering angles) are disfavored by effects due to the finite nuclear size accounted for by the nuclear
form factor. For instance, the ratios of NIELs for electrons in silicon are shown in Ref.:cite:Consolandi_2012 as a
function of the kinetic energy of electrons from 220keV up to 1TeV. These ratios are the NIELs calculated neglect-
ing i) nuclear size effects (i.e., for \Fexp|2 = 1) and ii) effects due to the finite rest mass of the target nucleus [i.e., in
Eq.(4.111) replacing daggf; com(T)/dT with do ) (T') /dT from Eq. ([Factorization_McF_screened_NFF_T])] both
divided by that one obtained using Eq.(4.111). Above ~ 10MeV, the NIEL is ~ 20% larger assuming |chp|2 =1
and, in addition, above (100-200)MeV the calculated NIEL largely decreases when the effects of nuclear rest mass
are not accounted for.

4.2.7 G4eSingleScatteringModel

The G4eSingleScatteringModel performs the single scattering interaction of electrons on nuclei. The differential
cross section (DCS) for the energy transferred is define in the G4ScreeningMottCrossSection class. In this class the
M.Boschini’s et al. [BCG+13] Mott differential cross Section approximation is implemented. This CDS is modified
by the introduction of the Moliere’s [Moliere48] screening coefficient. In addition the exponential charge distribution
Nuclear Form Factor is applied [Butkevich]. This treatment is fully performed in the center of mass system and the
usual Lorentz transformations are applied to obtained the energy and momentum quantities in the laboratory system
after scattering. This model well simulates the interacting process for low scattering angles and it is suitable for high
energy electrons (from 200 keV) incident on medium light target nuclei. The nuclear energy loss (i.e. nuclear stopping
power) is calculated for every single interaction. In addition the production of secondary scattered nuclei is simulated
from a threshold kinetic energy which can be decided by the user (threshold energy for displacement).

The method

In the G4eSingleScatteringModel the method ComputeCrossSectionPerAtom() performs the total cross section com-
putation. The SetupParticle() and the DefineMaterial() methods are called to defined the incident and target particles.
Before the total cross section computation, the SetupKinematic() method of the G4ScreeningMottCrossSection class
calculates all the physical quantities in the center of mass system (CM). The scattering in the CM system is equivalent
to the one of an effective particle which interacts with a fixed scattering center. The effective particle rest mass is equal
to the relativistic reduced mass of the system p whose expression is calculated by:

Mc?
Ecm

p=m

where m and M are rest masses of the electron and of the target nuclei respectively. E.,, is the total center of mass
energy and, since the target is at rest before scattering, its expression is calculated by:

Eep = \/(m02)2 + (M62)2 + 2E' M c?
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where E = v'mc? is the total energy of the electron before scattering in the laboratory system. The momentum and
the scattering angle of the effective particle are equal to the corresponding quantities calculated in the center of mass
system (p = pem, 0 = Oem) of the incident electron:

Mc?

Ecm

pc=17pc

where p’ is the momentum of the incident electron calculated in the laboratory system. The velocity of the effective
particle is related with its momentum by the following expression:

1 2
Lo (M)
B? pe

The integration of the DCS is performed by the NuclearCrossSection() method of the G4ScreeningMottCrossSection:

Omas
maz o (6
Otot = 27T/ Zé) sin 6d60

Omin

The integration is performed in the scattering range [0 ;7] but the user can decide to vary the minimum (6,,,;,,) and the
maximum (0, ) scattering angles. The DCS is then given by:

do(0) _(_Ze? i Ruer|Fn(g)
dQ pc? By (24, + 251112(9/2))2

where Z is the atomic number of the nucleus, A, is the screening coefficient whose expression has been given by

Moliere:cite:msc.moliere :
h 2 7\ 2
A, = ( ) [1.13+3.76<a) } (4.112)
2p arg B

where arp is the Thomas-Fermi screening length given by:

~0.88534 ag
aTF - Z1/3

and a is the Bohr radius. Rj;.r is the ratio of the Mott to the Rutherfor DCS given by McKinley and Feshbach
approximation [MF48]:
Rarer = {1 — B%sin®(0/2) + Zaprsin(0/2) (1 — sin(6/2))

The nuclear form factor for the exponential charge distribution is given by [Butkevich]:

(qRN)?

1+

where Ry is the nuclear radius that is parameterized by:
Ry = 1.27A%2% fm.
q is the momentum transferred to the nucleus and it is calculated as:
gc=+/T(T +2Mc?)

where T is the kinetic energy transferred to the nucleus. This kinetic energy is calculated in the GetNewDirection()
method as:

_ 2ME(ple)?

T= N sin? 0/2.
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The scattering angle 6 calculation is performed in the GetScatteringAngle() method of G4ScreeningMottCrossSection
class. By means of AngleDistribution() function the scattering angle is chosen randomly according to the total cross
section distribution (p.d.f. probability density function) by means of the inverse transform method.

In the SampleSecondary() method of G4eSingleScatteringModel the kinetic energy of the incident particle after scat-
tering is then calculated as E/,_,, = E’ — T where E’ is the electron incident kinetic energy (in lab.); in addition the

new particle direction and momentum are obtained from the scattering angle information.

Implementation Details

The scattering angle probability density function f(6) (p.d.f.) is performed by the AngleDistribution() of
G4ScreeningMottCrossSection class where the inverse transform method is applied. The normalized cumulative func-
tion of the cross section is calculated as a function of the scattering angle in this way:

6
o) = / F(O)d0 = 2T /0 dgg) sin tdt

Otot

The normalized cumulative function o,,(6) depends on the DCS and its values range in the interval [0;1]. After this
calculation a random number 7, uniformly distributed in the same interval [0;1], is chosen in order to fix the cumulative
function value (i.e. r = 0,,(0)). This number is the probability to find the scattering angle in the interval [0; 6 + df].
The scattering angle 6 is then given by the inverse function of o,,(#). The threshold energy for displacement Th can
by set by the user in her/his own Physics class by adding the electromagnetic model:

G4eSingleCoulombScatteringModel* mod =
new G4eSingleCoulombScatteringModel () ;
mod->SetRecoilThreshold (Th) ;

If the energy lost by the incident particle is grater then this threshold value a new secondary particle is created for trans-
portation processes. The energy lost is added to ProposeNonlonizingEnergyDeposit(). NIEL calculation is available
in test58.

4.3 Energy Loss of Charged Particles

4.3.1 Mean Energy Loss

Energy loss processes are very similar for e + /e— , 4+ /u— and charged hadrons, so a common description for them
was a natural choice in Geant4 [G4main], [intem]. Any energy loss process must calculate the continuous and discrete
energy loss in a material. Below a given energy threshold the energy loss is continuous and above it the energy loss is
simulated by the explicit production of secondary particles - gammas, electrons, and positrons.

Method

Let
do(Z,E,T)
dT

be the differential cross-section per atom (atomic number Z) for the ejection of a secondary particle with kinetic
energy 1 by an incident particle of total energy E moving in a material of density p. The value of the kinetic energy
cut-off or production threshold is denoted by T.,;. Below this threshold the soft secondaries ejected are simulated as
continuous energy loss by the incident particle, and above it they are explicitly generated. The mean rate of energy
loss is given by:

Tdr

dEsoft(E, Teut) /T do(Z,E,T)
- = ’n’(L, : - =
dz “ dT
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where ng; is the number of atoms per volume in the material. The total cross section per atom for the ejection of a
secondary of energy T > Try+ i

T,
maz do(Z4, B, T
0(Z, E, Tout) :/ do(Z,E,T) dT

Tous dr

where 7,4, 1s the maximum energy transferable to the secondary particle.

If there are several processes providing energy loss for a given particle, then the total continuous part of the energy
loss is the sum:

dEﬁZ}t (Ev Tcut )

o dEsoft,i(EaTcut)
dx - Z

dx

%

These values are pre-calculated during the initialization phase of Geant4 and stored in the dFE/dx table. Using this
table the ranges of the particle in given materials are calculated and stored in the Range table. The Range table is then
inverted to provide the InverseRange table. At run time, values of the particle’s continuous energy loss and range
are obtained using these tables. Concrete processes contributing to the energy loss are not involved in the calculation
at that moment. In contrast, the production of secondaries with kinetic energies above the production threshold is
sampled by each concrete energy loss process.

The default energy interval for these tables extends from 100eV to 107eV and the default number of bins is 77. For
muons and for heavy particles energy loss processes models are valid for higher energies and can be extended. For
muons uppper limit may be set to 1000PeV .

General Interfaces

There are a number of similar functions for discrete electromagnetic processes and for electromagnetic (EM) packages
an additional base classes were designed to provide common computations [intem]. Common calculations for discrete
EM processes are performed in the class G4V EnergyLossProcess. Derived classes ([enloss:table1]) are concrete
processes providing initialisation. The physics models are implemented using the G4V EmM odel interface. Each
process may have one or many models defined to be active over a given energy range and set of G4 Regions. Models
are implementing computation of energy loss, cross section and sampling of final state. The list of EM processes and
models for gamma incident is shown in Table [enloss:tablel].

EM process EM model Ref.
G4elonisation G4MollerBhabhaModel [sec:em.eion]
G4LivermorelonisationModel [secioni2]
G4PenelopelonisationModel [pen:eioni]
G4PAIModel [secpai]
G4PAIPhotModel [secpai]
G4ePolarizedlonisation G4PolarizedMollerBhabhaModel [sec:pol.intro]
G4Mulonisation G4MuBetheBlochModel [muioni]
G4PAIModel [secpai]
G4PATPhotModel [secpai]
G4hlonisation G4BetheBlochModel [hion]
G4BraggModel [hion]
G4ICRU73QOModel [lowneg]
G4PAIModel [secpai]
G4PATPhotModel [secpai]
G4ionlonisation G4BetheBlochModel [hion]
G4BetheBlochlonGasModel [hion]
G4BragglonModel [hion]
G4BragglonGasModel [hion]

Continued on next page
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Table 4.6 — continued from previous page

EM process EM model Ref.
G4lonParametrisedLossModel [ion:ICRU73]

G4NuclearStopping G4ICRU49NuclearStoppingModel | [nuclstop]

G4mpllonisation G4mpllonisationWithDeltaModel

G4eBremsstrahlung G4SeltzerBergerModel [sec:em.ebrem.sbnew]

G4eBremsstrahlungRelModel

[sec:em.ebrem.lpm]

G4LivermoreBremsstrahlungModel

[lowebrems]

G4PenelopeBremsstrahlungModel

[pen:bremss]

G4ePolarizedBremsstrahlung

G4PolarizedBremsstrahlungModel

[sec:pol.intro]

G4MuBremsstrahlung G4MuBremsstrahlungModel [secmubrem]
G4hBremsstrahlung G4hBremsstrahlungModel

G4ePairProduction G4MuPairProductionModel [muee]
G4MuPairProduction G4MuPairProductionModel [muee]
G4hPairProduction G4hPairProductionModel

Table: List of process and model classes for charged particles.

Step-size Limit

Continuous energy loss imposes a limit on the step-size because of the energy dependence of the cross sections. It is
generally assumed in MC programs (for example, Geant3) that the cross sections are approximately constant along
a step, i.e. the step size should be small enough, so that the change in cross section along the step is also small.
In principle one must use very small steps in order to insure an accurate simulation, however the computing time
increases as the step-size decreases.

For EM processes the exact solution is available (see [integral]) but is is not implemented yet for all physics processes
including hadronics. A good compromise is to limit the step-size by not allowing the stopping range of the particle
to decrease by more than ~ 20 % during the step. This condition works well for particles with kinetic energies > 1
MeV, but for lower energies it gives too short step-sizes, so must be relaxed. To solve this problem a lower limit on
the step-size was introduced. A smooth StepFunction, with 2 parameters, controls the step size. At high energy the
maximum step size is defined by Step/Range ~ ar (parameter dRoverRange). By default ap = 0.2. As the particle
travels the maximum step size decreases gradually until the range becomes lower than pgr (parameter finalRange).
Default finalRange pr = 1mm. For the case of a particle range R > pg the StepFunction provides limit for the step
size ASy;m by the following formula:

PR

ASjim = arR+ pr(1 — ag) (2 - —) .

i (4.113)

In the opposite case of a small range AS;,,, = R. The figure below shows the ratio step/range as a function of range
if step limitation is determined only by the expression (4.113).

The parameters of StepFunction can be overwritten using a Ul command:

/process/eLoss/StepFunction 0.2 1 mm

To provide more accurate simulation of particle ranges in physics constructors G4EmStandardPhysics_option3 and
G4EmStandardPhysics_option4 more strict step limitation is chosen for different particle types.

Run Time Energy Loss Computation

The computation of the mean energy loss after a given step is done by using the dE/dx, Range, and InverseRange
tables. The dE/dx table is used if the energy deposition (AT) is less than allowed limit AT < &£Tp, where £ is
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dRoverRange

finalRange

range

Fig. 4.20: Step limit.

linear Loss Limit parameter (by default £ = 0.01), T}, is the kinetic energy of the particle. In that case

dE
AT = —As,
dx
where AT is the energy loss, As is the true step length. When a larger percentage of energy is lost, the mean loss can
be written as

AT = TO — fT(TO — AS)

where 7( the range at the beginning of the step, the function fr(r) is the inverse of the Range table (i.e. it gives the
kinetic energy of the particle for a range value of ). By default spline approximation is used to retrieve a value from
dE /dzx, Range, and InverseRange tables. The spline flag can be changed using an UI command:

/process/em/spline false

After the mean energy loss has been calculated, the process computes the actual energy loss, i.e. the loss with
fluctuations. The fluctuation models are described in Section [gen_fluctuations].

If deexcitation module (see [relax]) is enabled then simulation of atomic deexcitation is performed using information
on step length and ionisation cross section. Fluorescence gamma and Auger electrons are produced above the same
threshold energy as d-electrons and bremsstrahlung gammas. Following Ul commands can be used to enable atomic
relaxation:

/process/em/deexcitation myregion true true true
/process/em/fluo true

/process/em/auger true

/process/em/pixe true
/process/em/deexcitationIgnoreCut true

The last command means that production threshold for electrons and gammas are not checked, so full atomic de-
excitation decay chain is simulated.

After the step a kinetic energy of a charged particle is compered with the lowestEnergy. In the case if final kinetic
energy is below the particle is stooped and remaining kinetic energy is assigned to the local energy deposit. The default
value of the limit is 1keV . It may be changed separately for electron/positron and muon/hadron using UI commands:

/process/em/lowestElectronEnergy 100 eV
/process/em/lowestMuHadEnergy 50 eV

These values may be also can be set to zero.
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Energy Loss by Heavy Charged Particles

To save memory in the case of positively charged hadrons and ions energy loss, dF/dx, Range and InverseRange
tables are constructed only for proton, antiproton, muons, pions, kaons, and Generic Ion. The energy loss for other
particles is computed from these tables at the scaled kinetic energy Tscqieq :

Mbase

Tscaled = TM )
particle

(4.114)
where T’ is the kinetic energy of the particle, Mp,s. and Mpq,1ic1e are the masses of the base particle (proton or kaon)
and particle. For positively changed hadrons with non-zero spin profon is used as a based particle, for negatively
charged hadrons with non-zero spin - antiproton, for charged particles with zero spin - K or K~ correspondingly.

The virtual particle Generic Ion is used as a base particle for for all ions with Z > 2. It has mass, change and other
quantum numbers of the profon. The energy loss can be defined via scaling relation:

dE
dx

(T) = qgff (Fl (T)@ (Tscaled) + F2 (T7 CIeff))7

dx base

where ¢, is particle effective change in units of positron charge, ' and I are correction function taking into
account Birks effect, Block correction, low-energy corrections based on data from evaluated data bases [eal05]. For
a hadron ¢,y is equal to the hadron charge, for a slow ion effective charge is different from the charge of the ion’s
nucleus, because of electron exchange between transporting ion and the media. The effective charge approach is used
to describe this effect [ZMS88]. The scaling relation (4.114) is valid for any combination of two heavy charged particles
with accuracy corresponding to high order mass, charge and spin corrections [BIA+93].

4.3.2 Energy Loss Fluctuations

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms
of a straggling function. The straggling is partially taken into account in the simulation of energy loss by the pro-
duction of -electrons with energy T° > T+ (Eq.[comion.b]). However, continuous energy loss (Eq.[comion.a])
also has fluctuations. Hence in the current Geant4 implementation different models of fluctuations implementing the
G4V EmFluctuationM odel interface:

¢ G4BohrFluctuations;

¢ G4lonFluctuations;

¢ G4PAIModel;

¢ G4PAIPhotModel;

¢ G4UniversalFluctuation.

The last model is the default one used in main Physics List and will be described below. Other models have limited
applicability and will be described in chapters for ion ionisation and PAI models.

Fluctuations in Thick Absorbers

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of a
straggling function. The straggling is partially taken into account in the simulation of energy loss by the production of
d-electrons with energy 7' > T.. However, continuous energy loss also has fluctuations. Hence in the current Geant4
implementation two different models of fluctuations are applied depending on the value of the parameter x which is
the lower limit of the number of interactions of the particle in a step. The default value chosen is x = 10. In the case
of a high range cut (i.e. energy loss without delta ray production) for thick absorbers the following condition should
be fulfilled:

AFE > k Thaz
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where A F is the mean continuous energy loss in a track segment of length s, and 7,4, is the maximum kinetic energy
that can be transferred to the atomic electron. If this condition holds the fluctuation of the total (unrestricted) energy
loss follows a Gaussian distribution. It is worth noting that this condition can be true only for heavy particles, because
for electrons, T},q, = T'/2, and for positrons, T, = T, where T is the kinetic energy of the particle. In order to
simulate the fluctuation of the continuous (restricted) energy loss, the condition should be modified. After a study, the
following conditions have been chosen:

AE > kT, (4.115)

Trae <=2T, (4.116)

where T, is the cut kinetic energy of §-electrons. For thick absorbers the straggling function approaches the Gaussian
distribution with Bohr’s variance [BIA+93]:

32
where 7. is the classical electron radius, Ng; is the electron density of the medium, Z}, is the charge of the incident
particle in units of positron charge, and f3 is the relativistic velocity.

Z2 2
02 = 27r2mec* Ny S Tes (1 — %) , 4.117)

Fluctuations in Thin Absorbers

If the conditions (4.115) and (4.116) are not satisfied the model of energy fluctuations in thin absorbers is applied.
The formulas used to compute the energy loss fluctuation (straggling) are based on a very simple physics model of the
atom. It is assumed that the atoms have only two energy levels with binding energies F; and E5. The particle-atom
interaction can be an excitation with energy loss F; or Fs, or ionisation with energy loss distributed according to a
function g(E) ~ 1/E? :

Tur ET,, 1
E)ydE =1 E)=_——""_ 4.118
[ amrde=1= g5) = 0 @118)

The macroscopic cross section for excitation (¢ = 1,2) is

_ o Ji e (3B - 5

Y= 1-— 4.119
= O Wma (e 2 ") @119
and the ionisation cross section is
Twn — Eo
Yy3=0C—"2 2 _r 4.120
BTy In(22) ( )

where Fy denotes the ionisation energy of the atom, I is the mean ionisation energy, T}, is the production threshold
for delta ray production (or the maximum energy transfer if this value smaller than the production threshold), E; and
fi are the energy levels and corresponding oscillator strengths of the atom, and C' and r are model parameters.

The oscillator strengths f; and energy levels E; should satisfy the constraints

fi+tfo=1 4.121)

The cross section formulas (4.119),(4.120) and the sum rule equations (4.121),(4.122) can be found e.g. in Ref.
[straggling.bichsel]. The model parameter C' can be defined in the following way. The numbers of collisions (1,
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1 = 1, 2 for excitation and 3 for ionisation) follow the Poisson distribution with a mean value (n;). In a step of length
Ax the mean number of collisions is given by

<n1> = Az Ei

The mean energy loss in a step is the sum of the excitation and ionisation contributions and can be written as

dE Tur
dl‘ Eo
From this, using Eq. (4.119) - (4.122), one can see that
C=dE/dx.

The other parameters in the fluctuation model have been chosen in the following way. Z- f; and Z- f5 represent in the
model the number of loosely/tightly bound electrons

fo=0 for Z=1

fo=2/Z  for Z>2
Ey,=10eV Z?
EO =10eV.

Using these parameter values, E'5 corresponds approximately to the K-shell energy of the atoms (and Z fy = 2 is the
number of K-shell electrons). The parameters f; and E; can be obtained from Eqs.(4.121) and (4.122). The parameter
r is the only variable in the model which can be tuned. This parameter determines the relative contribution of ionisation
and excitation to the energy loss. Based on comparisons of simulated energy loss distributions to experimental data,
its value has been fixed as

r=10.55

Width Correction Algorithm

This simple parametrization and sampling in the model give good values for the most probable energy loss in thin
layers. The width of the energy loss distribution (Full Width at Half Maximum, FWHM) in most of the cases is too
small. In order to get good FWHM values a relatively simple width correction algorithm has been applied. This
algorithm rescales the energy levels F, Fo and the number of excitations ni, ns in such a way that the mean energy
loss remains the same. Using this width correction scheme the model gives not only good most probable energy loss,
but good FWHM value too.

Width correction algorithm is in the model since version 9.2. The updated version in the model (in version 9.4)
causes an important change in the behaviour of the model: the results become much more stable, i.e. the results do
not change practically when the cuts and/or the stepsizes are changing. Another important change: the (unphysical)
second peak or shoulder in the energy loss distribution which can be seen in some cases (energy loss in thin gas layers)
in older versions of the model disappeared. Limit of validity of the model for thin targets: the model gives good
(reliable) energy loss distribution if the mean energy loss in the target is > (few times) * Ioye, Where Iy is the
mean excitation energy of the target material.

This simple model of energy loss fluctuations is rather fast and can be used for any thickness of material. This has
been verified by performing many simulations and comparing the results with experimental data, such as those in
Ref.:cite:straggling.lassila. As the limit of validity of Landau’s theory is approached, the loss distribution approaches
the Landau form smoothly.
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Sampling of Energy Loss

If the mean energy loss and step are in the range of validity of the Gaussian approximation of the fluctuation (4.115)
and (4.116), the Gaussian sampling is used to compute the actual energy loss (4.117). For smaller steps the energy
loss is computed in the model under the assumption that the step length (or relative energy loss) is small and, in
consequence, the cross section can be considered constant along the step. The loss due to the excitation is

AEewc = 77,1E1 + ’flgEQ

where n; and no are sampled from a Poisson distribution. The energy loss due to ionisation can be generated from the
distribution g(F) by the inverse transformation method :

- 1 _ uTu,p—EO

Tw P

where w is a uniformly distributed random number € [0, 1]. The contribution coming from the ionisation will then be

n3

Ey
ALBion = Z 1 Tup—Eo
j=1+ Ui

where ng is the number of ionisations sampled from the Poisson distribution. The total energy loss in a step will be
AFE = AFE.;. + AFE;,, and the energy loss fluctuation comes from fluctuations in the number of collisions n; and
from the sampling of the ionisation loss.

4.3.3 Correcting the Cross Section for Energy Variation

As described in Sections [en_loss] and [ip] the step size limitation is provided by energy loss processes in order to
insure the precise calculation of the probability of particle interaction. It is generally assumed in Monte Carlo programs
that the particle cross sections are approximately constant during a step, hence the reaction probability p at the end of
the step can be expressed as

p=1—exp(—nsa(E:)),

where n is the density of atoms in the medium, s is the step length, E; is the energy of the incident particle at the
beginning of the step, and o (F;) is the reaction cross section at the beginning of the step.

However, it is possible to sample the reaction probability from the exact expression

Ey
p=1—exp (—/ no’(E)ds) ,
E;

where E is the energy of the incident particle at the end of the step, by using the integral approach to particle trans-
port. This approach is available for processes implemented via the G4V EnergyLossProcess and G4V EmProcess
interfaces.

The Monte Carlo method of integration is used for sampling the reaction probability [int.unimod]. It is assumed that
during the step the reaction cross section smaller, than some value o (E) < 0,,. The mean free path for the given step
is computed using o,,,. If the process is chosen as the process happens at the step, the sampling of the final state is
performed only with the probability p = o(Ey)/o, alternatively no interaction happen and tracking of the particle
is continued. To estimate the maximum value o,,, for the given tracking step at Geant4 initialisation the energy E,,
of absoluted maximum ¢,,,, of the cross section for given material is determined and stored. If at the tracking time
particle energy E < E,,, then 0,,, = o(FE). For higher initial energies if ¢E > E,, then 0,,, = max(c(E),c((E)),
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in the opposit case, 0., = 0pqs- Here £ is a parameter of the algorithm. Its optimal value is connected with the value
of the dRoverRange parameter (see sub-chapter [en_loss]), by default £ = 1 — ar = 0.8. Note, that described method
is precise if the cross section has only one maximum, which is a typical case for electromagnetic processes.

The integral variant of step limitation is the default for the $G4elonisation$, $G4eBremsstrahlung$ and some otehr
process but is not automatically activated for others. To do so the boolean Ul command can be used:

/process/eLoss/integral true

The integral variant of the energy loss sampling process is less dependent on values of the production cuts [int.g403]
and allows to have less step limitation, however it should be applied on a case-by-case basis because may require extra
CPU.

4.3.4 Conversion from Cut in Range to Energy Threshold

In Geant4 charged particles are tracked to the end of their range. The differential cross section of §-electron productions
and bremsstrahlung grow rapidly when secondary energy decrease. If all secondary particles will be tracked the CPU
performance of any Monte Carlo code will be pure. The traditional solution is to use cuts. The specific of Geant4
[G4main] is that user provides value of cut in term of cut in range, which is unique for defined G4Region or for the
complete geometry [eall6].

Range is used, rather than energy, as a more natural concept for designing a coherent policy for different particles and
materials. Definition of the certain value of the cuf in range means the requirement for precision of spatial radioactive
dose deposition. This conception is more strict for a simulation code and provides less handles for user to modify final
results. At the same time, it ensures that simulation validated in one geometry is valid also for the other geometries.

The value of cut is defined for electrons, positrons, gamma and protons. At the beginning of initialization of Geant4
physics the conversion is performed from unique cut in range to cuts (production thresholds) in kinetic energy for each
G4MaterialCutsCouple [eall6]. At that moment no energy loss or range table is created, so computation should be
performed using original formulas. For electrons and positrons ionization above 10keV a simplified Berger-Seltzer
energy loss formula ([eion.de]) is used, in which the density correction term is omitted. The contribution of the
bremsstrahlung is added using empirical parameterized formula. For T < 10keV the linear dependence of ionization
losses on electron velocity is assumed, bremsstrahlung contribution is neglected. The stopping range is defined as

T
R(T):/O Mdﬂ

The integration has been done analytically for the low energy part and numerically above an energy limit
1 keV. For each cut in range the corresponding kinetic energy can be found out. If obtained production thresh-
old in kinetic energy cannot be below the parameter lowlimit (default 1 keV') and above highlimit (default
10 GeV). If in specific application lower threshold is required, then the allowed energy cut needs to be extended:
G4ProductionCutsTable: :GetProductionCutsTable () ->SetEnergyRange (lowlimit,
highlimit); or via Ul commands:

/cuts/setMinCutEnergy 100 eV
/cuts/setMaxCutEnergy 100 TeV

In contrary to electrons, gammas has no range, so some approximation should be used for range to energy conversion.
An approximate empirical formula is used to compute the absorption cross section of a photon in an element o ys.
Here, the absorption cross section means the sum of the cross sections of the gamma conversion, Compton scattering
and photoelectric effect. These processes are the “destructive” processes for photons: they destroy the photon or
decrease its energy. The coherent or Rayleigh scattering changes the direction of the gamma only; its cross section is
not included in the absorption cross section. The AbsorptionLength L, vector is calculated for every material as

Laps = 5/Uabs-

70 Chapter 4. Electromagnetic




Physics Reference Manual, Release 10.4

The factor 5 comes from the requirement that the probability of having no ‘destructive’ interaction should be small,
hence

exp(—LapsOaps) = exp(—5) = 6.7 x 1073,

The photon cross section for a material has a minimum at a certain energy FE,,;,. Correspondingly L,;s has a max-
imum at £ = F,,;,, the value of the maximal L, is the biggest “meaningful” cut in absorption length. If the cut
given by the user is bigger than this maximum, a warning is printed and the cut in kinetic energy is set to the highlimit.

The cut for proton is introduced with Geant4 v9.3. The main goal of this cut is to limit production of all recoil
ions including protons in elastic scattering processes. A simple linear conversion formula is used to compute energy

threshold from the value of cut in range, in particular, the cut in range 1 mm corresponds to the production threshold
100keV.

The conversion from range to energy can be studied using G4EmCalculator class. This class allows access or recal-
culation of energy loss, ranges and other values. It can be instantiated and at any place of user code and can be used
after initialisation of Physics Lists:

G4EmCalculator calc;
calc.ComputeEnergyCutFromRangeCut (range, particle, material);

here particle and material may be string names or corresponding const pointers to G4ParticleDefinition and
G4Material.

4.3.5 Photoabsorption lonization Model
Cross Section for lonizing Collisions
The Photoabsorption Ionization (PAI) model describes the ionization energy loss of a relativistic charged particle in

matter. For such a particle, the differential cross section do; /dw for ionizing collisions with energy transfer w can be
expressed most generally by the following equations [pai.asosk]:

do; orZet f(w) 0 2mv® _
dw — mv? | wlew))? | wll - %]
_a = Bel arg(1 — B%%)| + F<L;) } , (4.123)
€2 W

w /

Flw) = / G )2 dw’,
o |e(w)]
mwes(w)
I = o znw

Here m and e are the electron mass and charge, i is Planck’s constant, § = v/c is the ratio of the particle’s velocity v
to the speed of light ¢, Z is the effective atomic number, NV is the number of atoms (or molecules) per unit volume, and
€ = €1 + ie is the complex dielectric constant of the medium. In an isotropic non-magnetic medium the dielectric
constant can be expressed in terms of a complex index of refraction, n(w) = ny + ing, e(w) = n?(w). In the energy

range above the first ionization potential I; for all cases of practical interest, and in particular for all gases, n; ~ 1.
Therefore the imaginary part of the dielectric constant can be expressed in terms of the photoabsorption cross section

oy (w):

Nhc
ga(w) =2ning ~ 2ny = Toy(w).

The real part of the dielectric constant is calculated in turn from the dispersion relation

2Nh o0 !
e1(w)—1= CV.p./ L('0)2d(,u’,
0

T w? —w
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where the integral of the pole expression is considered in terms of the principal value. In practice it is convenient to
calculate the contribution from the continuous part of the spectrum only. In this case the normalized photoabsorption
cross section

2m2he?Z
=70
mc

Wmax -1
5y (w) +(w) [/ aw(w’)dw/} y Wnaz ~ 100 keV

I
is used, which satisfies the quantum mechanical sum rule [pai.fano]:
Wmas 2,2
maz 2mhe*Z
/ aw(w/)dw' = —.
I mc

The differential cross section for ionizing collisions is expressed by the photoabsorption cross section in the continuous
spectrum region:

doj o | 5y(w) [ln 2mv*
dw 762 | wlew)]? [ wll —B2%]|
er— B2 el 2 1 /“ oW
——arg(l1 - 5%€") | + — dw' 5, (4.124)
€9 g( ) w2 I |5(w’)|2
Nhc _
e2(w) = T”w(w%
2Nhe wmaz G (W
61(&)) —1= - Vp/[ ﬁd@u’.
1

For practical calculations using Eq.(4.3.5) it is convenient to represent the photoabsorption cross section as a polyno-
mial in w™! as was proposed in [sandia]:

k=1

where the coefficients, a,(f) result from a separate least-squares fit to experimental data in each energy interval . As
a rule the interval borders are equal to the corresponding photoabsorption edges. The dielectric constant can now be
calculated analytically with elementary functions for all w, except near the photoabsorption edges where there are
breaks in the photoabsorption cross section and the integral for the real part is not defined in the sense of the principal
value. The third term in Eq.(4.3.5), which can only be integrated numerically, results in a complex calculation of
do;/dw. However, this term is dominant for energy transfers w > 10 keV/, where the function |e(w)|> ~ 1. This
is clear from physical reasons, because the third term represents the Rutherford cross section on atomic electrons
which can be considered as quasifree for a given energy transfer [allis]. In addition, for high energy transfers, e(w) =
1 — w?/w? ~ 1, where w, is the plasma energy of the material. Therefore the factor le(w)| ™2 can be removed from
under the integral and the differential cross section of ionizing collisions can be expressed as:

do; a {67(0.)) [ln 2mv*
dw 82 le(w))® | w w1 — B2e]

e - p le|?
€2

arg(1 — %)

1 (v
+ = /11 Uv(w’)dw'} . (4.125)

This is especially simple in gases when |&(w)| > ~ 1 for all w > I [allis].

Energy Loss Simulation

For a given track length the number of ionizing collisions is simulated by a Poisson distribution whose mean is
proportional to the total cross section of ionizing collisions:

Wmax d /
0 = / o )dw’.
I dw’

1
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The energy transfer in each collision is simulated according to a distribution proportional to

wmaz do(w')
oi(>w) = / dw'.
w dw’

The sum of the energy transfers is equal to the energy loss. PAI ionisation is implemented according to the model
approach (class G4PAIModel) allowing a user to select specific models in different regions. Here is an example
physics list:

const G4RegionStorex theRegionStore = G4RegionStore::GetInstance();

G4Region* gas = theRegionStore->GetRegion ("VertexDetector");
if (particleName == "e-")
{

G4eIonisation* eion = new G4elonisation();

G4PAIModel pai = new G4PAIModel (particle, "PAIModel");

// here 0 is the highest priority in region 'gas'
eion->AddEmModel (0, pai, pai, gas);

It shows how to select the G4PAIModel to be the preferred ionisation model for electrons in a G4Region named
VertexDetector. The first argument in AddEmModel is 0 which means highest priority.

The class G4PAIPhotonModel generates both d-electrons and photons as secondaries and can be used for more detailed
descriptions of ionisation space distribution around the particle trajectory.

Photoabsorption Cross Section at Low Energies

The photoabsorption cross section, 0., (w), where w is the photon energy, is used in Geant4 for the description of the
photo-electric effect, X-ray transportation and ionization effects in very thin absorbers. As mentioned in the discussion
of photoabsorption ionization (see section [secpai]), it is convenient to represent the cross section as a polynomial in
w™! [sandia.bigg] :

4
oy(w) = Z ag)w*k.
k=1

Using cross sections from the original Sandia data tables, calculations of primary ionization and energy loss distribu-
tions produced by relativistic charged particles in gaseous detectors show clear disagreement with experimental data,
especially for gas mixtures which include xenon. Therefore a special investigation was performed [sandia.grich] by
fitting the coefficients ag) to modern data from synchrotron radiation experiments in the energy range of 10 — 50 eV
The fits were performed for elements typically used in detector gas mixtures: hydrogen, fluorine, carbon, nitrogen
and oxygen. Parameters for these elements were extracted from data on molecular gases such as Na, Oy, COo, CHy,
and C'F} [sandia.lee73][ sandia.lee77]. Parameters for the noble gases were found using data given in the tables

[sandia.marr][ sandia.west].
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4.4 Electron and Positron Incident

4.4.1 lonization

Method

The G4elonisation class provides the continuous and discrete energy losses of electrons and positrons due to ion-
ization in a material according to the approach described in Section [en_loss]. The value of the maximum energy
transferable to a free electron T, is given by the following relation:

[ E—mc? for et
Toas = { (B —me)/2 for o (4.126)

where mc? is the electron mass. Above a given threshold energy the energy loss is simulated by the explicit production
of delta rays by Moller scattering (¢~ e ™), or Bhabha scattering (eTe™). Below the threshold the soft electrons ejected
are simulated as continuous energy loss by the incident e*.

Continuous Energy Loss

The integration of [comion.a] leads to the Berger-Seltzer formula [m.messel]:

dE 2y +1)

1
rri i = 27rr3mcznel@ In T /me) + FE(7, 7yp) — 6 (4.127)
with
Te classical electron radius: €2 /(4megmc?)
mec?  mass energy of the electron
Tel electron density in the material
1 mean excitation energy in the material
~ E/mc?
B2 1=/
T v—1
T.,+ minimum energy cut for § -ray production
T, Tt /mc?

Tmaz Maximum energy transfer: 7 for e™, 7/2 for e~
Tup min(7¢, Trmaz)
1) density effect function.

In an elemental material the electron density is
Nawp

nel:Znat:ZT.

Nav is Avogadro’s number, p is the material density, and A is the mass of a mole. In a compound material
Naywip
Nt =Y Zinai =y Zi aj:l_ =,
. . 1
1 1

where w; is the proportion by mass of the i element, with molar mass A; .

The mean excitation energies I for all elements are taken from [BIA+84].
The functions F'* are given by :

FHr,1up) = In(77yp) (4.128)

2 2 3 2 3 4
_Tup _ 3wl _Tup )2 (Tup _ Tup | Tup | 3
|7 T (T“p 3 )7 2 T3 1)V
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Fo(r,7p) = —-1-p° (4.129)

T 1 Tg Tu
Il )l + T |5 err i (1 f)]

where y = 1/(y + 1).
The density effect correction is calculated according to the formalism of Sternheimer /[SP71]:

x is a kinetic variable of the particle : x = log;,(73) = In(y?3?)/4.606, and §(x) is defined by

for =z <uzp: 6(x)=0
for € [zxg, 1]: d(z) = 4.606x — C + a(xy — )™
for x>z 0(z) = 4.606x — C

where the matter-dependent constants are calculated as follows:

hv, = plasma energy of the medium = / 47rn‘.zlrg’rrzc2 Ja = VArngrehic
C = 1+2In(I/hv)

x, = (/4.606

a = 4.606(xq — x0)/(x1 — 20)™

m = 3.

For condensed media

for C' < 3.681 z = 0.2 7, =2
<1006V for 0> 3.681 o= 0.326C — 1.0 21 =2
forC <5215 xz9=0.2 1 =3
> <
T2100eV 9 for 0> 5215 20 = 03260 — 1.5 2, =
and for gaseous media
for C < 10. zog = 1.6 r1 =4
for C€[10.0, 10.5]  x=1.7 7y =
for C e [1057 110[ 9= 1.8 r1 =4
for Ce[11.0, 115  xo=19 2 =4
for Ce[l11.5, 1225  x=2. zp =4
for C € [12.25, 13.804] zo = 2. 21 =5
for C > 13.804 ro = 0.326C — 2.5 x1 =05.

Total Cross Section per Atom and Mean Free Path

The total cross section per atom for Méller scattering (e ~e~) and Bhabha scattering (eTe™) is obtained by integrating
Eq. [comion.b]. In Geant4 T, is always 1 keV or larger. For delta ray energies much larger than the excitation energy
of the material (7" >> I), the total cross section becomes [m.messel] for Moller scattering,

27‘(’7’22

0(Z, B, Teut) = mx (4.130)

—1)2 /1 1 1 2v—1. 1-—
-7 (L N, 1_ oty o]
~2 2 x 1-—=z ~2 x

and for Bhabha scattering (eTe™),

omr2Z
(2, B, Towt) = (;iel)x (4.131)

[ﬂlz (i*) +Bllnx+32(1—x)—%(1—x2)+%‘(1—x3)} .
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Here
v = E/mc? By = 2—y?
g* = 1-(1/7?) By = (1—2y)(3+y)
v = Teu/(E—mc®) By = (1-2y)2+(1-2y)3
y = 1/(v+1) By = (1-2y)%

The above formulas give the total cross section for scattering above the threshold energies

thr thr
TMoller 2T ut and TBhabha = Teut-

In a given material the mean free path is then

A= (ngt-0)"' or A=(>, nai- Ui)il .

Simulation of Delta-ray Production

Differential Cross Section

For T' > I the differential cross section per atom becomes [m.messel] for Moller scattering,

do 2mriZ
—_— = —— 4.132
de G @132

(y=12 1/1 2y-1 1 1 2y —1
~2 +E € 2 +1*6 1—¢ A2

and for Bhabha scattering,

do 2mriZ 1 B;
= |~ — 7= 4 By — Bge+ Bye?| . 4.133
e 1) {5262 p + D2 3€ + Dy€ } ( )
Here e = T'/(E — mc?). The kinematical limits of € are
Tcu 1 Tcu
60:mgﬁgi fore e™ 60:E—7’]”:L02§6§1 fore+
Sampling

The delta ray energy is sampled according to methods discussed in Chapter [secmessel]. Apart from normalization,
the cross section can be factorized as

d
= = 1)l
For e~ e™ scattering
1 €0
- = 4.134
fle) 21— 2¢ ( )
(€ = A (7= 12 — (292 42y~ 1)—— + T (4.135)
N = 92 107+ 5 -2 2 17 1o ‘
and for eTe™ scattering
1
flo = 52 (4.136)
e 1 —¢g
By — B Bye? — Bse® + Bye?
gle) = 0 1€ + Doe 3€° + Dyc . 4.137)

BO - 3160 + BQG% - Bgeg + B4€g
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Here By = v2/(y? — 1) and all other quantities have been defined above.
To choose ¢, and hence the delta ray energy,
1. eis sampled from f(e)
2. the rejection function g(e) is calculated using the sampled value of €
3. eis accepted with probability g(e).

After the successful sampling of ¢, the direction of the ejected electron is generated with respect to the direction
of the incident particle. The azimuthal angle ¢ is generated isotropically and the polar angle 6 is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both the scattered
incident particle and the ejected electron, and to transform them to the global coordinate system.

4.4.2 Bremsstrahlung

The class G4eBremsstrahlung provides the energy loss of electrons and positrons due to the radiation of photons in the
field of a nucleus according to the approach described in Section [en_loss]. Above a given threshold energy the energy
loss is simulated by the explicit production of photons. Below the threshold the emission of soft photons is treated as
a continuous energy loss.

Below electron/positron energies of 1 GeV, the cross section evaluation is based on a dedicated parameterization,
above this limit an analytic cross section is used. In Geant4 the Landau-Pomeranchuk-Migdal effect has also been
implemented.

Seltzer-Berger bremsstrahlung model

In order to improve accuracy of the model described above a new model G4SeltzerBergerModel have been design
which implementing cross section based on interpolation of published tables [SBS5][SBS86]. Single-differential cross
section can be written as a sum of a contribution of bremsstrahlung produced in the field of the screened atomic nucleus
doy,/dk, and the part Z do. /dk corresponding to bremsstrahlung produced in the field of the Z atomic electrons,

do _do, , ,do,
dk — dk dk

The differential cross section depends on the energy k of the emitted photon, the kinetic energy 7} of the incident
electron and the atomic number Z of the target atom.

Seltzer and Berger have published extensive tables for the differential cross section do,/dk and do./dk
[SBS85][SB86], covering electron energies from lkeV up to 10GeV, substantially extending previous publications
[PTL+77]. The results are in good agreement with experimental data, and provided also the basis of bremsstrahlung
implementations in many Monte Carlo programs (e.g. Penelope, EGS). The estimated uncertainties for do /dk are:

* 3% to 5% in the high energy region (T} > 50MeV),
* 5% to 10% in the intermediate energy region (2 > T; < 50MeV),
* and 10% at low energies region compared with Pratt results. (77 < 2MeV).

The restricted cross section ([comion.b]) and the energy loss ([comion.c]) are obtained by numerical integration per-
formed at initialisation stage of Geant4. This method guarantees consistent description independent of the energy
cutoff. The current version uses an interpolation in tables for 52 available electron energy points versus 31 photon
energy points, and for atomic number Z ranging from 1 to 99. It is the default bremsstrahlung model in Geant4 since
version 9.5. Figure [fig:brem.cross] shows a comparison of the total bremsstrahlung cross sections with the previous
implementation, and with the relativistic model.

After the successful sampling of ¢, the polar angles of the radiated photon are generated with respect to the parent
electron’s momentum. It is difficult to find simple formulae for this angle in the literature. For example the double
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Fig. 4.21: Total cross section comparison between models for Z = 29: Parametrized Bremsstrahlung Model, Rela-
tivistic Model, Bremsstrahlung Model (Geant4 9.4) and Seltzer-Berger Model. The discontinuities in the Parametized
Model and the Relativistic Model at 1 Mev and 1 GeV, respectively, mark the validity range of these models.

differential cross section reported by Tsai [Tsa74][Tsa77] is

do 2022 2¢ — 2 12u2(1 —¢)
dkd — mwkm?* || (1 +u2)? (1+wu2)t
|:2—26—62 4u?(1 —€)
+

— _ 2 a 2 ]
(1+u2)2 (1+u2)4] X - 22°fe((2) )]} @139

} Z2(Z +1) (4.138)

u = £o (4.140)
m

m?(1+u?)? , ) t — timin
X = /t | (G (1) + G ()] Tdt (4.141)
G (t) atomic form factors (4.142)

2 2)72 2 2y72
tmin = w = M (4.143)
2E(E — k) 2E(1 —¢)

The sampling of this distribution is complicated. It is also only an approximation to within a few percent, due at least
to the presence of the atomic form factors. The angular dependence is contained in the variable v = Efm~!. For a
given value of u the dependence of the shape of the function on Z, E and € = k/F is very weak. Thus, the distribution
can be approximated by a function

f(u) = C (ue™ " + due ")

where

9a?

- —0.625 d=27
9+d “

where E is in GeV. While this approximation is good at high energies, it becomes less accurate around a few MeV.
However in that region the ionization losses dominate over the radiative losses. The sampling of the function f(u) can
be done with three random numbers 7;, uniformly distributed on the interval [0,1]:
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1. choose between ue~ " and due3%%:

pod @ if r<9/(9+4d)
Tl 3a if 1 >9/(9+d)

2. sample ue "%

3. check that:

otherwise go back to 1.

The probability of failing the last test is reported in table [tb:phys341-1].

E (MeV) | P(%)
0511 34
0.6 22
0.8 12
1.0 0.7
2.0 <0.1

The function f(u) can also be used to describe the angular distribution of the photon in x4 bremsstrahlung and to
describe the angular distribution in photon pair production. The azimuthal angle ¢ is generated isotropically. Along
with 6, this information is used to calculate the momentum vectors of the radiated photon and parent recoiled electron,
and to transform them to the global coordinate system. The momentum transfer to the atomic nucleus is neglected.

Bremsstrahlung of high-energy electrons

Above an electron energy of 1 GeV an analytic differential cross section representation is used [Per94], which was
modified to account for the density effect and the Landau-Pomeranchuk-Migdal (LPM) effect [K[e99][SVS+82].

Relativistic Bremsstrahlung cross section

The basis of the implementation is the well known high energy limit of the Bremsstrahlung process [Per94],

2
%‘; - 4;‘]: {02 + 20+ (1= 9)!}[Z22(Fat — f) + ZFinal]
2
+(1 —y)Z ;Z}

The elastic from factor Fy; and inelastic form factor F;,¢;, describe the scattering on the nucleus and on the shell
electrons, respectively, and for Z > 4 are given by [eal0S]

184.1

Fyg = 1og( 8 T 5) (4.144)
73

and (4.145)
1194.

Fipa = log( 5 ) (4.146)
73
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This corresponds to the complete screening approximation. The Coulomb correction is defined as [eal0S]

f=a%22 i .
—in(n®+a?2?)

This approach provides an analytic differential cross section for an efficient evaluation in a Monte Carlo computer
code. Note that in this approximation the differential cross section do/dk is independent of the energy of the initial
electron and is also valid for positrons.

The total integrated cross section [ do/dk dk is divergent, but the energy loss integral [ kdo/dk dk is finite. This
allows the usual separation into continuous enery loss, and discrete photon production according to Egs. ([comion.c])
and ([comion.b]).

Landau Pomeranchuk Migdal (LPM) effect

At higher energies matter effects become more and more important. In Geant4 the two leading matter effects, the LPM
effect and the dielectric suppresion (or Ter-Mikaelian effect), are considered. The analytic cross section representation,
eq., provides the basis for the incorporation of these matter effects.

The LPM effect (see for example [GG64 ][ ebrem.anthony][ ebrem.hansen] ) is the suppression of photon production
due to the multiple scattering of the electron. If an electron undergoes multiple scattering while traversing the so
called “formation zone”, the bremsstrahlung amplitudes from before and after the scattering can interfere, reducing
the probability of bremsstrahlung photon emission (a similar suppression occurs for pair production). The suppression
becomes significant for photon energies below a certain value, given by

[
E " Eppu’

where

k photon energy
E electron energy
Erpyn  characteristic energy for LPM effect (depend on the medium).

The value of the LPM characteristic energy can be written as

2x
Erpy = Lth 2 (4.147)

where

« fine structure constant

m  electron mass

X radiation length in the material
Planck constant

c velocity of light in vacuum.

At high energies (approximately above 1 GeV) the differential cross section including the Landau-Pomeranchuk-
Migdal effect, can be expressed using an evaluation based on [Mig56][SVS+82][Kle99]

do B 4041%

dk 3k

[as){y?G(s) Lol (- y)6(s))

22+ 7z
3

(4.148)
X[Z*(Fer — f) + ZFmea] + (1 — )

where LPM suppression functions are defined by [Mig56]

G(s) = 245 (;r - /0 et ;?é‘z?) dt>

2
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and

B(s) = 125> (—g + /OOO e % sin(st) sinh(%) dt)

They can be piecewise approximated with simple analytic functions, see e.g. /[SVS+82]. The suppression function
&(s) is recursively defined via

k Erpm
B8E(E — k)&(s)

S =

but can be well approximated using an algorithm introduced by [SVS+82]. The material dependent characteristic
energy Erpy is defined in Eq.(4.147) according to [ABSB+97]. Note that this definition differs from other definition
(e.g. [Kle99]) by a factor %
An additional multiplicative factor governs the dielectric suppression effect (Ter-Mikaelian effect) [TER54].
k2
Sk)=5—=
) k? + k2

The characteristic photon energy scale k,, is given by the plasma frequency of the media, defined as

E, hE, nee?
kp = hwp 5 = 5 .
mecC MeC €0Me

Both suppression effects, dielectric suppresion and LPM effect, reduce the effective formation length of the photon,
so the suppressions do not simply multiply. A consistent treatment of the overlap region, where both suppression
mechanism, was suggested by /[TM72]. The algorithm garanties that the LPM suppression is turned off as the density
effect becomes important. This is achieved by defining a modified suppression variable § via

k2
g:s-<1+k§)

and using § in the LPM suppression functions G(s) and ¢(s) instead of s in Eq.(4.148).

4.4.3 Positron - Electron Annihilation

Introduction
The process G4eplusAnnihilation simulates the in-flight annihilation of a positron with an atomic electron. As is
usually done in shower programs [egs4], it is assumed here that the atomic electron is initially free and at rest. Also,

annihilation processes producing one, or three or more, photons are ignored because these processes are negligible
compared to the annihilation into two photons [egs4]/MC70].

Cross Section

The annihilation in flight of a positron and electron is described by the cross section formula of Heitler [Hei54 [egs4]:

o(Z,E) = Zrr? [y + 4y +1 In (’y +v/2 = 1) _ a3 (4.149)
v+l -1 V-1
where
E = total energy of the incident positron
v = E/mdc
r. = classical electron radius
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Sampling the final state

The final state of the e + e— annihilation process

+

e’ e =% M

is simulated by first determining the kinematic limits of the photon energy and then sampling the photon energy
within those limits using the differential cross section. Conservation of energy-momentum is then used to determine
the directions of the final state photons.

If the incident et has a kinetic energy T, then the total energy is E, = T + mc? and the momentum is Pc =
/T(T + 2mc?). The total available energy is Ey,y = E. + mc? = E, + E, and momentum conservation requires

P= ]3% + ]3%. The fraction of the total energy transferred to one photon (say v, ) is

_ k. _  Eq
o Etot o T+2m02'

€

The energy transfered to vy, is largest when -, is emitted in the direction of the incident e*. In that case Fypqe =
(Etot + Pc)/2 . The energy transfered to 7, is smallest when ~y, is emitted in the opposite direction of the incident
et. Then Eypin = (Fiot — Pc)/2 . Hence,

E,max 1 v—1
mas = =— 11+ e 4.150
€max Epor B |: o 1:| ( )
E,min 1 [v—1
min = = |1—-,/1— 4.151
‘ Eio 2 [ v+ 1] ( )
where v = (T + mc?)/mc? . Therefore the range of €is  [emin ; €maz] (= [emin ; 1 — €min)).

Sampling the Gamma Energy

A short overview of the sampling method is given in Chapter [secmessel]. The differential cross section of the two-
photon positron-electron annihilation can be written as [Hei54 [[egs4]:
do(Z,e)  Zmr? 1 n 27 1 1
= - —_— e ———
de y—1ce (v+1)? (v+1)%e

where Z is the atomic number of the material, r, the classical electron radius, and € € [€,in, ; €maz] - The differential
cross section can be decomposed as

do(Z,€)  Zmr?

v 1o/ (€)g(e)
where
a = In(emaz/€min)
o = é (4.152)
ole) = {1+(7?1)2_6_(7j1)21 El_ﬁ% e

Given two random numbers r, 7’ € [0, 1], the photon energies are chosen as follows:

1. sample € from f(€): € = €nin (emam>

€min
2. test the rejection function: if g(e) > 7’ accept €, otherwise return to step 1.

Then the photon energies are £, = €E,; Ey,=(1-¢)Eip-
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Computing the Final State Kinematics

If 0 is the angle between the incident e™ and y,, then from energy-momentum conservation,
(v+1)—1

/7?2 —1

The azimuthal angle, ¢, is generated isotropically and the photon momentum vectors, P;a and P;b,
energy-momentum conservation and transformed into the lab coordinate system.

1 2¢ — 1
cosG:[T+m02 € }:6
Pc €

are computed from

Annihilation at Rest

The method AtRestDolt treats the special case when a positron comes to rest before annihilating. It generates two
photons, each with energy k = mc? and an isotropic angular distribution.

4.4.4 Positron Annihilation into "~ Pair in Media

The class G4AnnihiToMuPair simulates the electromagnetic production of muon pairs by the annihilation of high-
energy positrons with atomic electrons [eal06]. Details of the implementation are given below and can also be found
in Ref. [HBKO03].

Total Cross Section

The annihilation of positrons and target electrons producing muon pairs in the final state (eTe™ — ™) may give
an appreciable contribution to the total number of muons produced in high-energy electromagnetic cascades. The
threshold positron energy in the laboratory system for this process with the target electron at rest is

Egy = 2m?, /me — me &~ 43.69 GeV (4.154)

where m,, and m, are the muon and electron masses, respectively. The total cross section for the process on the
electron is

2
G—W;‘LE(1+§)«/1§, (4.155)

where 1, = r. m./m,, is the classical muon radius, £ = Ey,/E, and E is the total positron energy in the laboratory
frame. In Eq.(4.155), approximations are made that utilize the inequality m? < mi.

The cross section as a function of the positron energy F is shown in Fig.Fig. 4.22. It has a maximum at £ = 1.396 F;y,
and the value at the maximum iS 0y, = 0.5426 rﬁ = 1.008 ub.

Sampling of Energies and Angles

It is convenient to simulate the muon kinematic parameters in the center-of-mass (c.m.) system, and then to convert
into the laboratory frame.

The energies of all particles are the same in the c.m. frame and equal to
1
Eam = | 5 me(B+m). (4.156)

The muon momenta in the c.m. frame are Py, = |/ E2, — m2. In what follows, let the cosine of the angle between

the c.m. momenta of the 47 and e™ be denoted as x = cos O, .
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Fig. 4.22: Total cross section for the process e"e™ — u™ ™ as a function of the positron energy E in the laboratory
system.

From the differential cross section it is easy to derive that, apart from normalization, the distribution in z is described
by

f@)de=(1+E+22(1—€)de, —1<z<1. (4.157)

The value of this function is contained in the interval (1 + &) < f(z) < 2 and the generation of x is straightforward
using the rejection technique. Fig.Fig. 4.23 shows both generated and analytic distributions.

E=50GeV, =874

" _B=500 GeV, & = 0874 o

1 +cosBg,

Entries per bin
T

I N N ST N ST PR PR PR R
-1 -08 -06-04-02 0 02 04 06 08 1
cosf,,

Fig. 4.23: Generated histograms with 10° entries each and the expected cos ., distributions (dashed lines) at £ = 50
and 500GeV positron energy in the lab frame. The asymptotic 1 + cos 62 distribution valid for £ — oo is shown as
dotted line.

The transverse momenta of the 1+ and .~ particles are the same, both in the c.m. and the lab frame, and their absolute
values are equal to

P, = Puy sinfom = Pom /1 — 22 (4.158)

The energies and longitudinal components of the muon momenta in the lab system may be obtained by means of a
Lorentz transformation. The velocity and Lorentz factor of the center-of-mass in the lab frame may be written as

E—m, 1 E+m, Ecn
= = - . 4.1
P NETm T imE VN ome  m (159

The laboratory energies and longitudinal components of the momenta of the positive and negative muons may then be
obtained:

E, = ~v(Eem+zPPem), Py =7 (BEem + @ Per) (4.160)
E_ = V(Ecm _xﬂpcm)a P—H :7(5E6111 _xpcm)~ (4161)
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Finally, for the vectors of the muon momenta one obtains:
P+ = (+PJ- cos @, +P, sin 2 P+H) ) (4.162)
P_. = (=Prcosp,—P sing, P ), (4.163)

where ¢ is a random azimuthal angle chosen between 0 and 2 7. The z-axis is directed along the momentum of the
initial positron in the lab frame.

The maximum and minimum energies of the muons are given by

B ~ %E (1 + \/ﬁ) , (4.164)

Emin & %E (1 — \/ﬁ) = 2<1+E\t/hf§) (4.165)

The fly-out polar angles of the muons are approximately

0. ~P /Py, O_mP /P (4.166)

the maximal angle 0.5 ~ Me v/ 1 — & is always small compared to 1.
my

Validity

The process described is assumed to be purely electromagnetic. It is based on virtual + exchange, and the Z-boson
exchange and v — Z interference processes are neglected. The Z-pole corresponds to a positron energy of E =
MZ%/2m,. = 8136 TeV. The validity of the current implementation is therefore restricted to initial positron energies
of less than about 1000TeV.

4.4.5 Positron Annihilation into Hadrons in Media

Introduction

The process G4eeToHadrons simulates the in-flight annihilation of a positron with an atomic electron into hadrons
[ealO6]. 1t is assumed here that the atomic electron is initially free and at rest. Currently accurate cross section is
available with a validity range up to 1 TeV.

Cross Section

The annihilation of positrons and target electrons producing pion pairs in the final state (ete™ — 777 ~) may give an
appreciable contribution to electron-jet conversion at the LHC, and for the increasing total number of muons produced
in the beam pipe of the linear collider [eal06]. The threshold positron energy in the laboratory system for this process
with the target electron at rest is

By = 2m2 /me —me ~ 70.35 GeV, (4.167)
where m,. and m. are the pion and electron masses, respectively. The total cross section is dominated by the reaction
ete™ = py >y, (4.168)

where + is a radiative photon and p(770) is a well known vector meson. This radiative correction is essential, because
it significantly modifies the shape of the resonance. Details of the theory are described in [anniToHad.ben], in which
the main term and the leading o? corrections are taken into account.

Additional contribution to the hadron production cross section come from w(783) and ¢(1020) resonanses with
atr—a, KYK—, K; Kg, 7y, and 70~ final states.

4.4. Electron and Positron Incident 85



Physics Reference Manual, Release 10.4

Sampling the final state

The final state of the e + e— annihilation process is simulated by first sampling of radiative gamma using a sum of all
hadronic cross sections in the center of mass system. Photon energy is used to define new differential cross section.
After that, hadronic channel is randomly selected according to it partial cross section. Final state is sampled and final
particles transformed to the laboratory system.

4.5 Low Energy Livermore

4.5.1 Introduction

Additional electromagnetic physics processes for photons, electrons, hadrons and ions have been implemented in
Geant4 in order to extend the validity range of particle interactions to lower energies than those available in the
standard Geant4 electromagnetic processes [eal99] Because atomic shell structure is more important in most cases at
low energies than it is at higher energies, the low energy processes make direct use of shell cross section data. The
standard processes, which are optimized for high energy physics applications, rely on parameterizations of these data.

The low energy processes include the photo-electric effect, Compton scattering, Rayleigh scattering, gamma conver-
sion, bremsstrahlung and ionization. Fluorescence and Auger electron emission of excited atoms is also considered.

Some features common to all low energy processes currently implemented in Geant4 are summarized in this section.
Subsequent sections provide more detailed information for each process.

Physics
The low energy processes of Geant4 represent electromagnetic interactions at lower energies than those covered by
the equivalent Geant4 standard electromagnetic processes.

The current implementation of low energy processes is valid for energies down to 10eV and can be used up to approx-
imately 100GeV for gamma processes. For electron processes upper limit is significantly below. It covers elements
with atomic number between 1 and 99.

All processes involve two distinct phases:
¢ the calculation and use of total cross sections, and
* the generation of the final state.

Both phases are based on the theoretical models and on exploitation of evaluated data.

Data Sources
The data used for the determination of cross-sections and for sampling of the final state are extracted from a set of
publicly distributed evaluated data libraries:

* EPDL97 (Evaluated Photons Data Library) /DCullen89],

* EEDL (Evaluated Electrons Data Library) [STPerkins89];

e EADL (Evaluated Atomic Data Library) /ST Perkins],

* binding energy values based on data of Scofield [Sco75].

Evaluated data sets are produced through the process of critical comparison, selection, renormalization and averag-
ing of the available experimental data, normally complemented by model calculations. These libraries provide the
following data relevant for the simulation of Geant4 low energy processes:
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* total cross-sections for photoelectric effect, Compton scattering, Rayleigh scattering, pair production and
bremsstrahlung;

* subshell integrated cross sections for photo-electric effect and ionization;

* energy spectra of the secondaries for electron processes;

* scattering functions for the Compton effect;

* binding energies for electrons for all subshells;

* transition probabilities between subshells for fluorescence and the Auger effect.

The energy range covered by the data libraries extends from 100 GeV down to 1 eV for Rayleigh and Compton effects,
down to the lowest binding energy for each element for photo-electric effect and ionization, and down to 10 eV for
bremsstrahlung.

Distribution of the Data Sets

The author of EPDL97 [DCullen89], who is also responsible for the EEDL [STPerkins89] and EADL [STPerkins]
data libraries, Dr. Red Cullen, has kindly permitted the libraries and their related documentation to be distributed with
the Geant4 toolkit. The data are reformatted for Geant4 input. They can be downloaded from the source code section
of the Geant4 page: http://cern.ch/geant4/geant4.html.

The EADL, EEDL and EPDL97 data-sets are also available from several public distribution centres in a format differ-
ent from the one used by Geant4 [NEA].

Calculation of Total Cross Sections

The energy dependence of the total cross section is derived for each process from the evaluated data libraries. For
ionisation, bremsstrahlung and Compton scattering the total cross is obtained by interpolation according to the for-
mula /Ste]:

_ log(a1)log(E3/E) + log(os)log(E/ E1)
log(Ey/Ey)

where F is actial energy, F/q and F» are respectively the closest lower and higher energy points for which data (7 and
02) are available. For other processes interpolation method is chosen depending on cross section shape.

log(o(E))

4.5.2 Compton Scattering

Total Cross Section

The total cross section for the Compton scattering process is determined from the data as described in section [sub-
subsigmatot]. To avoid sampling problems in the Compton process the cross section is set to zero at low-energy limit
of cross section table, which is 100eV in majority of EM Phyiscs Lists.

Sampling of the Final State

For low energy incident photons, the simulation of the Compton scattering process is performed according to the same
procedure used for the “standard” Compton scattering simulation, with the addition that Hubbel’s atomic form fac-
tor [Hub97] or scattering function, SF, is taken into account. The angular and energy distribution of the incoherently
scattered photon is then given by the product of the Klein-Nishina formula ®(¢) and the scattering function, SF(q)
[Cul95]

P(e,q) = ®(e) x SF(q).
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€ is the ratio of the scattered photon energy E’, and the incident photon energy E. The momentum transfer is given
by g = FE X sin2(6 /2), where 0 is the polar angle of the scattered photon with respect to the direction of the parent
photon. ®(¢) is given by

D(e) [% + €[l — sin?0).

€
1+ €2
The effect of the scattering function becomes significant at low energies, especially in suppressing forward scatter-
ing [Cul95].

The sampling method of the final state is based on composition and rejection Monte Carlo methods
[BM60][MC70][egs4], with the SF" function included in the rejection function

o) = 1= 0] x (@),

+ 2

with 0 < g(€) < Z. Values of the scattering functions at each momentum transfer, ¢, are obtained by interpolating the
evaluated data for the corresponding atomic number, Z.

The polar angle 6 is deduced from the sampled € value. In the azimuthal direction, the angular distributions of both
the scattered photon and the recoil electron are considered to be isotropic [Ste].

Since the incoherent scattering occurs mainly on the outermost electronic subshells, the binding energies can be

neglected, as stated in reference /Sie]. The momentum vector of the scattered photon, P!, is transformed into the
World coordinate system. The kinetic energy and momentum of the recoil electron are then

T.,= E-FE

— - =
Py= P, —P.

4.5.3 Compton Scattering by Linearly Polarized Gamma Rays

The Cross Section

The quantum mechanical Klein - Nishina differential cross section for polarized photons is [Hei54]:

do 1,
a0 - 20

hv? [hyo hv

—_— p— ; 2
hv2 | hv * hvg @}

where O is the angle between the two polarization vectors. In terms of the polar and azimuthal angles (6, ¢) this cross
section can be written as

do 1ok [hy  hw
dQ 2 2 | h ' ho,

— 20052¢sin29}

Angular Distribution

The integration of this cross section over the azimuthal angle produces the standard cross section. The angular and
energy distribution are then obtained in the same way as for the standard process. Using these values for the polar
angle and the energy, the azimuthal angle is sampled from the following distribution /Dep03]:

P(¢p)=1-— 2%0052¢

where a = sin?0 and b = € + 1/e. € is the ratio between the scattered photon energy and the incident photon energy.
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Polarization Vector
The components of the vector polarization of the scattered photon are calculated from (/Dep03]):

- 1 /- ~
€ = N (jcos@ — ksin@sind)) sinf3

- 1, 1.
¢ = |Ni— —jsin®0singcosp — — ksinfcosbcosd| cosf
I N N
where
N = /1 — sin20cos?¢.

cosf is calculated from cos® = Ncos/3, while cos© is sampled from the Klein - Nishina distribution.

The binding effects and the Compton profile are neglected. The kinetic energy and momentum of the recoil electron
are then

T,=E—FE
Fi=F P,

The momentum vector of the scattered photon P_:y and its polarization vector are transformed into the World coordinate
system. The polarization and the direction of the scattered gamma in the final state are calculated in the reference frame
in which the incoming photon is along the z-axis and has its polarization vector along the x-axis. The transformation
to the World coordinate system performs a linear combination of the initial direction, the initial poalrization and the
cross product between them, using the projections of the calculated quantities along these axes.

Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.

4.5.4 Rayleigh Scattering

Total Cross Section

The total cross section for the Rayleigh scattering process is determined from the data as described in section [subsub-
sigmatot].

Sampling of the Final State

The coherent scattered photon angle 6 is sampled according to the distribution obtained from the product of the
Rayleigh formula (1 + cos? @) sin @ and the square of Hubbel’s form factor F'F2(q) [eal79] [Cul95]

O(E,0) = [1 + cos? 0] sin @ x FF?(q),

where ¢ = 2E'sin(6/2) is the momentum transfer.

Form factors introduce a dependency on the initial energy E of the photon that is not taken into account in the
Rayleigh formula. At low energies, form factors are isotropic and do not affect angular distribution, while at high
energies they are forward peaked. For effective sampling of final state a method proposed by D.E. Cullen [Cul95] has
been implemented: form factor data were fitted and fitted parameters included in the G4LivermoreRayleighModel.

The sampling procedure is following:
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1. atom is selected randomly according to cross section;
2. cosf is sampled as proposed in [Cul95],

3. azimuthal angle is sampled uniformly.

4.5.5 Gamma Conversion

Total cross-section

The total cross-section of the Gamma Conversion process is determined from the data as described in section [subsub-
sigmatot].

Sampling of the final state

For low energy incident photons, the simulation of the Gamma Conversion final state is performed according to
[Bru93].

The secondary e energies are sampled using the Bethe-Heitler cross-sections with Coulomb correction.

The Bethe-Heitler differential cross-section with the Coulomb correction for a photon of energy E to produce a pair
with one of the particles having energy e E (e is the fraction of the photon energy carried by one particle of the pair) is
given by [FN78]:

de E2 2

2= (a0 D)

g € T2a
d (Z,E7 ): 0 Z(Z+£(Z)) |:(€2+(1_6)2) (@1(5)_F‘(Z)> +

where ®;(0) are the screening functions depending on the screening variable § [Bru93].
The value of € is sampled using composition and rejection Monte Carlo methods [Bru93 ][ BM60][MC70].

After the successful sampling of €, the process generates the polar angles of the electron with respect to an axis
defined along the direction of the parent photon. The electron and the positron are assumed to have a symmetric
angular distribution. The energy-angle distribution is given by [Tsa74][Tsa77]:

do 202e2 | [ 22(1 —z)? ~ 12lz(1 —2)
dpdQ) wkm? (141 (1+10)*

222 =2z +1  4dz(l—x) 9 9
( et + ) (X — 22°f((02) ))}

where k is the photon energy, p the momentum and F the energy of the electron of the e pair + = E/k and
| = E%6? /m?. The sampling of this cross-section is obtained according to [Bru93].

) (Z° + Z)+

The azimuthal angle ¢ is generated isotropically.

This information together with the momentum conservation is used to calculate the momentum vectors of both decay
products and to transform them to the GEANT coordinate system. The choice of which particle in the pair is the
electron/positron is made randomly.

4.5.6 Pair production by Linearly Polarized Gamma Rays

A method to study the pair production interaction of linearly polarized gamma rays at energies > 50 MeV was
discussed in [GODepaolaMHTiglio99]. The study of the differential cross section for pair production shows that the
polarization information is coded in the azimuthal distribution of the electron - positron pair created by polarized
photons (Fig.[figl]).
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Fig. 4.24: Angles occurring in the pair creation
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Relativistic cross section for linearly polarized gamma ray

The cross section for pair production by linearly polarized gamma rays in the high energy limit using natural units
with h/2r = c=11is

—2aZ? rom Ew-FE) sinf_ cos ¥ sin 0, cos (U + ¢)
= ————dEdQ4dQ) ——F 4 | E—m«— - F

do (2m)2w dBdilyd |71* { { 1—cosf_ +w ) 1—cosf;
| bln@ cosW  sinf cos (¥ + ¢)

—cosf_ 1—cosf,

9 sinf_ sin 6 Esinf (w—E)sinf_
— 2
“ (1 —cosf_)(1—cosby) [(wE)sinﬁ_ + Esinf, T2eosol o
with
17> = —2[F(w— E)(1 —sinf, sinf_ cos ¢ — cosf, cosh_)

twE(cos Oy — 1) + w(w — E)(cosh— — 1) + m?] .

E is the positron energy and we have assumed that the polarization direction is along the x axis (see Fig.[figl]).

Spatial azimuthal distribution
Integrating this cross section over energy and polar angles yields the spatial azimuthal distribution, that was calculated
in [GODepaolaMHTiglio99] using a Monte Carlo procedure.

Fig. [fig2] shows an example of this distribution for 100 MeV gamma - ray. In this figure the range of the ¢ axis is
restricted between 3.0 and 7 since it gives the most interesting part of the distribution. For angles smaller than 3.0 this
distribution monotonically decreases to zero.

In Geant4 the azimuthal distribution surface is parametrized in terms of smooth functions of (¢, ) .

F(@,9) = frya(d)sin® ¥ + fo(¢) cos ) .

Since both fo(¢) and fr/2(¢) are functions that rapidly vary when ¢ approaches m, it was necessary to adjust the
functions in two ranges of ¢: (I) 0 < ¢ < 3.05rad. (IT) 3.06 rad < ¢ < 7, whereas in the small range 3.05 < ¢ < 3.06
we extrapolate the two fitting functions until the intersection point is reached.

In region II we used Lorentzian functions of the form
2Aw
Tlw? +4(¢ — xe)?]

whereas for region I the best fitting function was found to adopt the form:

(@) =vo+

fl@) =a+dtan (bp +c) .

The paper [GODepaolaMHTiglio99] reports the coefficients obtained in different energy regions to fit the angular
distribution and their function form as function of gamma-ray as energy reported in the tables[tabla2] and [tabla3]
below.

Parameter Function a b c
Yo alnE —b 2.98 +£0.06 7.7+04 .
A alnE —b 1.41 +0.08 5.6 £0.5 .
w a+0b/E+ c/E? 0.015 + 0.001 9.5+ 0.6 (—2.2+0.1)10*
T a+0b/E + c/E® 3.143 £ 0.001 —2.740.2 (2+1)10°
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Table: Fit for the parameter of f((¢) function.

[tabla2]
Parameter Function a b c
" alnE —b 1.85+0.07 51+0.4 .
A alnE —b 1.340.1 (6.6 £0.2)1073 .
w a+0b/E+ c/E® 0.008 & 0.002 121409 (—2.8+0.8)107
To 3.149 . . .

Table: Fit for the parameter of fr/5(¢) function.
[tabla3]

Unpolarized Photons

A special treatment is devoted to unpolarized photons. In this case a random polarization in the plane perpendicular to
the incident photon is selected.

4.5.7 Triple Gamma Conversion

The class G4BoldyshevIripletModel was developed to simulate the pair production by linearly polarized gamma
rays on electrons For the angular distribution of electron recoil we used the cross section by Vinokurov and Ku-
raev [VK72][VK73] using the Borsellino diagrams in the high energy For energy distribution for the pair, we used
Boldyshev [VFBP94] formula that differs only in the normalization from Wheeler-Lamb. The cross sections include
a cut off for momentum detections /MLI11].

Method

The first step is sample the probability to have an electron recoil with momentum greater than a threshold define by
the user (by default, this value is py = 1 in units of mc). This probability is

82 14 4
olp>po) =ari | — — —InXo+ — X — 0.0348 X7 + 0.008X3 — ...
27 9 15
Xo=2 (\/p%—‘r— 1) .
Since that total cross section is o = arg (24—817”L2E,y — %) if a random number is £ > o(p > pg)/o we create the

electron recoil, otherwise we deposited the energy in the local point.

Azimuthal Distribution for Electron Recoil

The expression for the differential cross section is composed of two terms which express the azimuthal dependence as
follows:

do = do9 — Pdo® cos(2¢p)

Where, both do(;) and do;), are independent of the azimuthal angle, ¢, referred to an origin chosen in the direction
of the polarization vector P of the incoming photons.
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Monte Carlo Simulation of the Asymptotic Expression

In this section we present an algorithm for Monte Carlo simulation of the asymptotic expressions calculate by Vi-
nokurov et.al. [VK72][VK73].

We must generate random values of 6 and ¢ distributed with probability proportional to the following function f (6, ),
for 0 restricted inside of its allowed interval value [VFBP94] (0, or 0,,44(po)):

£(0.0) = S50 (Fy () — P os (20) Fp (6))

1—5cos?6

Fi(0)=1 cosf

In (cot (6/2))

sin? 0
Fp(0)=1- p—"; In (cot (6/2))

As we will see, for § < 7/2, F; is several times greater than F'p, and since both are positive, it follows that f is
positive for any possible value of P (0 < P < 1).

Since F} is the dominant term in expression , it is more convenient to begin developing the algorithm of this term,
belonging to the unpolarized radiation.

Algorithm for Non Polarized Radiation

The algorithm was described in Ref.:cite:dep. We must generate random values of 6 between 0 and 6,4, =
arccos (El;i;’“z + chElEJrizgcz), E1 = \/p? + (mc?)? distributed with probability proportional to the following
function f7(0):

sin _ 2
1) = e (1 o n(cot(0/2) )
sin(6) % Fl (9)

= cos3(60)

By substitution cos(6/2) = |/ 1+225% and sin(0/2) = |/ 1=52%¢ , We can write:

In (cot (6/2)) = ~In (Hmse)

2 1—cosf

In order to simulate the f; function, it may be decomposed in two factors: the first, sin(6)/cos®(6), easy to integrate,
and the other, F}(#), which may constitute a reject function, on despite of its § = 0 divergence. This is possible
because they have very low probability. On other hand, 6 values near to zero are not useful to measure polarization
because for those angles it is very difficult to determine the azimuthal distribution (due to multiple scattering).

Then, it is possible to choose some value of 6, small enough that it is not important that the sample is fitted rigorously
for 6 < 69, and at the same time F} (6y) is not too big.

Modifying Fi so that it is constant for § < 6y, we may obtain an adequate reject function. Doing this, we introduce
only a very few missed points, all of which lie totally outside of the interesting region.

Expanding F} for great values of 6, we see it is proportional to cos?0:
14 33
F () — 300829 (1—1—35005294—...) , if0—m/2

Thus, it is evident that I} divided by cos?(#) will be a better reject function, because it tends softly to a some constant
value (14/3 = 4, 6666...) for large s, whereas its behavior is not affected in the region of small s, where cos(f) — 1.
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It seems adequate to choose )y near 5°, and, after some manipulation looking for round numbers we obtain:

Fy (4.47°)

——— 2 ~14.00
cos? (4.479)

Finally we define a reject function:

_ o) _
T(e) - ﬁ cos2(6) — 214 cols2 0)
(1- 1l (Heg))  ford =447
r@) = 1 ;. forf < 4.47°

Now we have a probability distribution function (PDF) for 6, p(8) = C f1(6), expressed as a product of another PDF,
m(0), by the reject function:

p(0)=Cf(0)=Cn(0)r(0)

where C is the normalization constant belonging to the function p(6).

One must note that the equality between C' ~ f(6) and C"7(6)r(6) is not exact for small values of 6, where we have
truncated the infinity of F} (6); but this can not affect appreciably the distribution because f; — 0 there. Now the PDF
m(0) is:

14sin(6)
0)=Cr ————=
() cos()
From the normalization, the constant C; results:
1 -1 w
o= o n ()
1 foema,m %d@ 141n (cos(Omaz)) 7 "\am
And the relation with C' is given by:
1
C = - = c'C,
Jo " f1(6)do

Then we obtain the cumulative probability by integrating the PDF 7 (6):

—141n(cos(f))  2In(cos(?))
7ln(£)  In(4m/w)

4m

0
P, = / ©(0)d0’ =
0

Finally for the Monte Carlo method we sample a random number £; (between 0 and 1), which is defined as equal to
P, , and obtain the corresponding 6 value:

£ = 21In(cosf)  In(cosf)
"7 In(dm/w)  In(cos(6,,,.))

Then,

&
4m\ 2
0 = arccos o
w

Another random number & is sampled for the reject process: the 6 value is accepted if & < r(0), and reject in the
contrary.

For 6 < 4,479 all values are accepted. It happens automatically without any modification in the algorithm previously
defined (it is not necessary to define the truncated reject function for 6 < ;).
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Algorithm for Polarized Radiation

The algorithm was also described in Ref.:cite:dep. As we have seen, the azimuthal dependence of the differential cross
section is given by the expressions and :

£0.) = 220 (5, (0) P eos (20) Fp ()
sin? @
Fp(6)=1- - In (cot (6/2))

We see that Fip tends to 1 at § = 0, decreases monotonically to 0 as 6 goes to 7 /2.

Furthermore, the expansion of Fp for § near 7/2 shows that it is proportional to cos?(#), in virtue of which
Fp/cos®(0) tends to a non null value, 2/3. This value is exactly 7 times the value of F} /cos?(6).

This suggests applying the combination method, rearranging the whole function as follows:

f(0,¢) = tan(0) 010:1;2(?;) (1 - cos(2<p)P§,T((g))>

and the normalized PDF p(6, ¢):

p(0,0) =Cf(0,0)

where is C' the normalization constant
1 Omax 27
=[] 10 api
0 0

Taking account that fozﬂ cos(2¢) dp = 0, then:

1 Ormax Fi(0)
— =2 0
c 7r/0 tan( )COS2(0)d0

On the other hand the integration over the azimuthal angle is straightforward and gives:

Fi(0)
cos?(0)

00) = [ 9l6.9)dp = 2mC tan(0)

and p(/0) is the conditional probability of ¢ given 0:

sin(0 Fp(0
Fl(e)) C;Z:g((e)) Fi(9) (1 — cos(2¢)P FT((O)))

_  ploy) _ L
p(e/0) = =55 " 2nC tan(6) 2250

Fp(8
= = (1 — cos(2¢)P F};((O)))

Now the procedure consists of sampling 6 according the PDF ¢(0); then, for each value of # we must sample ¢
according to the conditional PDF p(¢/0).

Knowing that F} is several times greater than Fp, we can see that P F/Fp << 1, and thus p(p/6) maintains a
nearly constant value slightly diminished in some regions of . Consequently the ¢ sample can be done directly by
the rejecting method with high efficiency.

~

On the other hand, ¢(6) is the same function p(6) given by , that is the PDF for unpolarized radiation, ¢(f) =
C'm(0)r(0), so we can sample 0 with exactly the same procedure, specified as follows:

1. We begin sampling a random number £; and obtain 6 from :

§1

(7))
6 = arccos —
w
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2. Then we sample a second random number £2 and accept the values of 6 if £&; < r(6), where r(6) is the same

1 1 — 5cos?0 1+ cosd
r(6) = 14 cos?6 (1_ 2cosf hl(l—cosé)))

expression defined before:

For 0 > 4,47° and for 0 < 4, 47° all values are accepted.
3. Now we sample ¢. According to the reject method, we sample a third random number &3 (which is defined as

/27) and evaluate the reject function (which is essentially)

(&) = 5 (1 costana) P )

cosf —sin® 0 1n (cot (g)) >

1 — 5c0s20) In (cot (%))

1
= 5 (1 - cos(47r£3)Pcose —

4. Finally, with a fourth random number £, , we accept the values of ¢ = 27&, if &, < 79(&3)

Sampling of Energy
For the electron recoil we calculate the energy from the maximum momentum that can take according with the 6 angle

o, (S + (mc?)?)
E, =mc Dz

Where
S = mc (2Egamma + ch)

D2 = 4Smc®+ (S - (mc2)2)2 sin?(0)

The remnant energy is distributed to the pair according to the Boldyshev formula /[VFBP94] (« is the fraction of the

positron energy):
20’
Ao _ 2ar3 {[1 — 22 (1 — )] J1(po) + 22 (1 — ) [L — Pcos(¢)] J2(po)}

2T e
Ji(po) = < 2?51}118)) - ln(QSinh(t)))
sin — tcosh?
J2(po)=—§ln(251nh(t))+ ZETE((:)) 5 h(;)sin£3(t)h ®) sinh(2t) =

This distribution can by write like a PDF for :
Px)=N(1-Jz(l —2))

where N is a normalization constant and J = (J; — J2)/J1. Solving for x (¢ is a random number):
a”  J-4 L1
T = =
2J 2c1/ 32

(— 6+12rn+J+2a)J2

C1 =
a (16 3J— 36rn+36Jr +67, Jz)
Ty = f 1 — 7)
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4.5.8 Photoelectric effect

Three model classes are available G4LivermorePhotoElectricModel G4LivermorePolarizedPhotoElectricModel, and
G4LivermorePolarizedPhotelectricGDModel.

Cross sections

The total photoelectric and single shell cross-sections are tabulated from threshold to 600keV. Above 600keV
EPDL97 cross sections [DCullen89] are parameterized as following:

The accuracy of such parameterisation is better than 1%. To avoid tracking problems for very low-energy gamma the
photoelectric cross section is not zero below first ionisation potential but stay constant, so all types of media are not
transparant for gamma.

Sampling of the final state

The incident photon is absorbed and an electron is emitted.

The electron kinetic energy is the difference between the incident photon energy and the binding energy of the electron
before the interaction. The sub-shell, from which the electron is emitted, is randomly selected according to the relative
cross-sections of all subshells, determined at the given energy. The interaction leaves the atom in an excited state. The
deexcitation of the atom is simulated as described in section [relax].

Angular distribution of the emitted photoelectron

For sampling of the direction of the emitted photoelectron by default the angular generator
G4SauterGavrilaAngularDistribution is used. The algorithm is described in [sec:em.pee].

For polarized models alternative angular generators are applied.

G4LivermorePolarizedPhotoElectricModel uses the G4PhotoElectricAngularGeneratorPolarized angular generator.

This model models the double differential cross section (for angles 6 and ¢) and thus it is capable of account for polar-
ization of the incident photon. The developed generator was based in the research of Sauter in 1931 [Sau3 1 ][RHPA64].
Sauter’s formula was recalculated by Gavrila in 1959 for the K-shell /Gav59] and in 1961 for the L-shells /Gav61].
These new double differential formulas have some limitations, «Z< <1 and have a range between 0.1< 5 <0.99 c.

The double differential photoeffect for K—shell can be written as [Gav59]:

do 4 B3(1—B%)3 raZ
%(H,cb) = WO/SZ5 (=7 <F <1 — 5) + ﬂ&ZG)

where
sin?fcos?¢ 1 —(1—p%)Y2 sin?fcos? ¢
(1—BcosO)*  2(1—p42) (1—Bcosh)?
[1—(1—52)1/2]2 sin’ 6
4(1—p2)3/2 (1 — Bcosh)?

F =
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1= =pHy 48%  sin®@cos? ¢ 453 9
¢= 27/232(1 — B cos §)5/2 [(1 — B2)1/2 1 — Beosh iz 32 cos § cos™ ¢—

1—(1—-p%)1/2 ) o, 1—(1— 4512 sin?0
4—1—52 (1 —cos”¢) — 3 1= 5 1— Boosh
- (=) == )]

+ 452 (1—p2)3/2 745[ (1—32)3/2 ]

1- (-8 [ B 2 1 (1 %)
+ 132(1 — Beos0)? [1_62—1_5200500052(]54—(1_52)3/2(:089
1- (1 g2
- Ta-mpr

where [ is the electron velocity, « is the fine—structure constant, Z is the atomic number of the material and 6, ¢ are
the emission angles with respect to the electron initial direction.

The double differential photoeffect distribution for L1-shell is the same as for K—shell despising a constant [Gav61 J:
1
B=¢-
¢ 8

where £ is equal to 1 when working with unscreened Coulomb wave functions as it is done in this development.

Since the polarized Gavrila cross—section is a 2—dimensional non—factorized distribution an acceptance-rejection tech-
nique was the adopted [LP03]. For the Gravrila distribution, two functions were defined g1 (¢) and g2 (6):

91(¢) = a
0
92(6) = 1+ ch?
such that:
d?o

Ag1(#)g2(0) > dodd

where A is a global constant. The method used to calculate the distribution is the same as the one used in Low Energy
2BN Bremsstrahlung Generator, being the difference g; (¢) = a.

G4LivermorePolarizedPhotoElectricGDModel uses its own methods to produce the angular distribution of the photo-
electron. The method to sample the azimuthal angle ¢ is described in [DL06].

4.5.9 Electron ionisation

The class G4LivermorelonisationModel calculates the continuous energy loss due to electron ionisation and simulates
d-ray production by electrons. The delta-electron production threshold for a given material, T, is used to separate
the continuous and the discrete parts of the process. The energy loss of an electron with the incident energy, 7', is
expressed via the sum over all atomic shells, s, and the integral over the energy, ¢, of delta-electrons:

Te do
dE 42 dt
— = E <U (T)ifO — 1o )

v fO 1leV dt dt

where T},,4, = 0.57 is the maximum energy transfered to a §-electron, o4(7T') is the total cross-section for the shell, s,
at a given incident kinetic energy, 7', and 0.1eV is the low energy limit of the EEDL data. The J-electron production
cross-section is a complimentary function:

mear da‘dt
U(T) = Z ( — dg—dt

fO leV dt
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The partial sub-shell cross-sections, o, are obtained from an interpolation of the evaluated cross-section data in the
EEDL library [io-EEDL], according to the formula ([eqloglog]) in Section [subsubsigmatot].

The probability of emission of a J-electron with kinetic energy, ¢, from a sub-shell, s, of binding energy, By, as the
result of the interaction of an incoming electron with kinetic energy, 7', is described by:
do  P(x)

T

t+ B
T+ B’

where the parameter x is varied from z,,;, = (0.1eV + B;)/(T + Bs) to 0.5. The function, P(x), is parametrised
differently in 3 regions of x: from x,,;, to x; the linear interpolation with linear scale of 4 points is used; from x;
to 22 the linear interpolation with logarithmic scale of 16 points is used; from 2 to 0.5 the following interpolation is
applied:

z? 1
(

P(x):l—gx—i—(l—g)a:Q—&—l_x .

—g)+Ax(05—1)/z, (4.169)
where A is a fit coefficient, g is expressed via the gamma factor of the incoming electron:

g=(2v-1)/9% (4.170)

For the high energy case (z >> 1) the formula ((4.169)) is transformed to the Moller electron-electron scattering
formula /[Bru93 ][MC70].

The value of the coefficient, A, for each element is obtained as a result of the fit on the spectrum from the EEDL
data for those energies which are available in the database. The values of x; and x5 are chosen for each atomic shell
according to the spectrum of §-electrons in this shell. Note that 1 corresponds to the maximum of the spectrum, if the
maximum does not coincide with x,,;,. The dependence of all 24 parameters on the incident energy, 7', is evaluated
from a logarithmic interpolation ([eqloglog]).

The sampling of the final state proceeds in three steps. First a shell is randomly selected, then the energy of the
delta-electron is sampled, finally the angle of emission of the scattered electron and of the J-ray is determined by
energy-momentum conservation taken into account electron motion on the atomic orbit.

The interaction leaves the atom in an excited state. The deexcitation of the atom is simulated as described in sec-
tion [relax]. Sampling of the excitations is carried out for both the continuous and the discrete parts of the process.

4.5.10 Bremsstrahlung

The class G4LivermoreBremsstrahlungModel calculates the continuous energy loss due to low energy gamma emis-
sion and simulates the gamma production by electrons. The gamma production threshold for a given material w, is
used to separate the continuous and the discrete parts of the process. The energy loss of an electron with the incident
energy 1’ are expressed via the integrand over energy of the gammas:

dE Yo Lt dw
= _ T 0.1eV " dw
o =D

T do ’
fo.lev a0 dw

where o (T) is the total cross-section at a given incident kinetic energy, T', 0.1V is the low energy limit of the EEDL
data. The production cross-section is a complimentary function:

fT do g,

we dw
T do ’
fO.leV o dw
The total cross-section, o, is obtained from an interpolation of the evaluated cross-section data in the EEDL library
[STPerkins89], according to the formula ([eqloglog]) in Section [subsubsigmatot].

oc=o0(T)
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The EEDL data [eal99] of total cross-sections are parametrised [S7Perkins89] according to ([eqloglog]). The proba-
bility of the emission of a photon with energy, w, considering an electron of incident kinetic energy, 7, is generated
according to the formula:

L IC) n—

dw x
The function, F'(z), describing energy spectra of the outcoming photons is taken from the EEDL library. For each
element 15 points in x from 0.01 to 1 are used for the linear interpolation of this function. The function F' is normalised
by the condition F'(0.01) = 1. The energy distributions of the emitted photons available in the EEDL library are for
only a few incident electron energies (about 10 energy points between 10 eV and 100 GeV). For other energies a
logarithmic interpolation formula ([eqloglog]) is used to obtain values for the function, F'(z). For high energies, the
spectral function is very close to:

F(x) =1—x+0.752%

Bremsstrahlung angular distributions
The angular distribution of the emitted photons with respect to the incident electron can be sampled according
to three alternative generators described below. The direction of the outcoming electron is determined from the

energy-momentum balance. This generators are currently implemented in G4ModifiedTsai, G4Generator2BS and
G4Generator2BN classes.

G4ModifiedTsai

The angular distribution of the emitted photons is obtained from a simplified /Bru93] formula based on the Tsai
cross-section [Tsa74][Tsa77], which is expected to become isotropic in the low energy limit.

G4Generator2BS

In G4Generator2BS generator, the angular distribution of the emitted photons is obtained from the 2BS Koch and
Motz bremsstrahlung double differential cross-section [KMS59]:

47%r2 dk 16y%E
doy,0 = d {( Y

137 kY02 +1)iE,
(Eo + E)? [ E¢ + E? 4°FE
(

(y? +1)2E3 y2+1)2E2 (2 + 1)4Eo} lnM(y)}

where k the photon energy,  the emission angle, Ey and E are the initial and final electron energy in units of m.c?,
7o is the classical electron radius and Z the atomic number of the material. y and M (y) are defined as:

Yy = Eoe

i~ (she) * (i)

The adopted sampling algorithm is based on the sampling scheme developed by A. F. Bielajew et al. [AFBCS89]/, and
latter implemented in EGS4. In this sampling algorithm only the angular part of 2BS is used, with the emitted photon
energy, k, determined by GEANT4 (Cdl—‘,;) differential cross-section.
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G4Generator2BN

The angular distribution of the emitted photons is obtained from the 2BN Koch and Motz bremsstrahlung double
differential cross-section [KM59] that can be written as:

doep = A %ﬁd . 8sin® O(2E3 + 1) B
) 87137 & po PEAS

2(E; +2PE +3) 25—  4E L
P2A2 Q*Ag  p3Ao - ppo

[4E0 sin® 0(3k — p2E) | AE3(ES + B?)

paA4 PoAG
2 — 2(TE} — 3EEy + E?)  2k(E} + EEy — 1)
A2 + 2 A
020 Ppo

de ? 4 6k  2k(p? —k?)
B <pA0) - (p@) {Aa TR QA ]}

in which:
EEy—1
EEy—1—ppo
Ny = FEy — pg cos
Q? = P2+ k? — 2pok cos 0
Eﬂ?} 0 {Qﬂ?}
€ = ln €T = hl
{Ep Q-p

where k is the photon energy, 6 the emission angle and (Fy, pp) and (F, p) are the total (energy, momentum) of the
electron before and after the radiative emission, all in units of m.c?.

Since the 2BN cross—section is a 2-dimensional non-factorized distribution an acceptance-rejection technique was the
adopted. For the 2BN distribution, two functions g1 (k) and go(¢) were defined:

0
_ 7.—b _
(k) =k 92(0) = 1+ c6?
such that:
do
>
Ag(k)g2(0) = 5155

where A is a global constant to be completed. Both functions have an analytical integral G and an analytical inverse
G~L. The b parameter of g; (k) was empirically tuned and set to 1.2. For positive # values, g»(f) has a maximum at
L ¢ parameter controls the function global shape and it was used to tune g (#) according to the electron kinetic

V()
energy.

To generate photon energy k according to g; and 6 according to go the inverse-transform method was used. The
integration of these functions gives

k 1-b 1-b
max k — k=
G =0C / Kk = Oy ————mn
" 1—b

0 / 2
B 0 ;o log(1+4c6?)
02_02/0 T = 5,

where C and C'; are two global constants chosen to normalize the integral in the overall range to the unit. The photon
momentum £ will range from a minimum cut value k,,;,, (required to avoid infrared divergence) to a maximum value
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equal to the electron kinetic energy E},, while the polar angle ranges from O to 7, resulting for C; and Co:

1-b 2c

o= Cp=— °
! BT > log(1 + cn?)

k and 6 are then sampled according to:

1—b
k:[ §1+k}mfl}

where &; and &5 are uniformly sampled in the interval (0,1). The event is accepted if:

do

<
uAgi(k)g2(0) < Tkdd

where  is a random number with uniform distribution in (0,1). The A and ¢ parameters were computed in a logarithmic

grid, ranging from 1 keV to 1.5 MeV with 100 points per decade. Since the g2(6) function has a maximum at § = ﬁ,

the ¢ parameter was computed using the relation ¢ = % At the point (kpuin, Omaz) Where ki, is the k cut value,

the double differential cross-section has its maximum value, since it is monotonically decreasing in k£ and thus the
global normalization parameter A is estimated from the relation:

d’c
Agl(k:min)QQ(emaa:) = (dkd9>

—b
where g1 (kmin)92(0maz) = % Since A and c can only be retrieved for a fixed number of electron kinetic

d*c

energies there exists the possibility that Ag1 (kmin)92(Omaz) < ( e dG) for a given E. This is a small violation

that can be corrected introducing an additional multiplicative factor to the A parameter, which was empirically
determined to be 1.04 for the entire energy range.

Comparisons between Tsai, 2BS and 2BN generators

The currently available generators can be used according to the user required precision and timing requirements.
Regarding the energy range, validation results indicate that for lower energies (< 100 keV) there is a significant
deviation on the most probable emission angle between Tsai/2BS generators and the 2BN generator - Figure [br-dist].
The 2BN generator maintains however a good agreement with Kissel data /LKP83], derived from the work of Tseng
and co-workers [HKTL79], and it should be used for energies between 1 keV and 100 keV [ea03]. As the electron
kinetic energy increases, the different distributions tend to overlap and all generators present a good agreement with
Kissel data.

In figure [br-eff] the sampling efficiency for the different generators are presented. The sampling generation efficiency
was defined as the ratio between the number of generated events and the total number of trials. As energies increases
the sampling efficiency of the 2BN algorithm decreases from 0.65 at 1 keV electron kinetic energy down to almost
0.35 at 1 MeV. For energies up to 10 keV the 2BN sampling efficiency is superior or equivalent to the one of the
2BS generator. These results are an indication that precision simulation of low energy bremsstrahlung can be obtained
with little performance degradation. For energies above 500 keV, Tsai generator can be used, retaining a good physics
accuracy and a sampling efficiency superior to the 2BS generator.
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ao/ak (a

Fig. 4.25: Comparison of polar angle distribution of bremsstrahlung photons (k/T" = 0.5) for 10 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

do/ak (o

Fig. 4.26: Comparison of polar angle distribution of bremsstrahlung photons (k/T = 0.5) for 100 keVelectrons in
silver, obtained with Tsai, 2BS and 2BN generator

o 287
A 285

ao/ok (0.0)

Fig. 4.27: Comparison of polar angle distribution of bremsstrahlung photons (k/T" = 0.5) for 500 keV electrons in
silver, obtained with Tsai, 2BS and 2BN generator

104 Chapter 4. Electromagnetic



Physics Reference Manual, Release 10.4

Sampling Efficiency
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Fig. 4.28: Sampling efficiency for Tsai generator, 2BS and 2BN Koch and Motz generators.

4.6 Low Energy Penelope

4.6.1 Penelope physics
Introduction

A new set of physics processes for photons, electrons and positrons is implemented in Geant4: it includes Compton
scattering, photoelectric effect, Rayleigh scattering, gamma conversion, bremsstrahlung, ionization (to be released)
and positron annihilation (to be released). These processes are the Geant4 implementation of the physics models
developed for the PENELOPE code (PENetration and Energy LOss of Positrons and Electrons), version 2001, that are
described in detail in Ref. [eal0]]. The Penelope models have been specifically developed for Monte Carlo simulation
and great care was given to the low energy description (i.e. atomic effects, etc.). Hence, these implementations provide
reliable results for energies down to a few hundred eV and can be used up to ~1 GeV [ealO]][eal02]. For this reason,
they may be used in Geant4 as an alternative to the Low Energy processes. For the same physics processes, the user
now has more alternative descriptions from which to choose, including the cross section calculation and the final state
sampling.

Compton scattering

Total cross section

The total cross section of the Compton scattering process is determined from an analytical parameterization. For
energy E greater than 5 MeV, the usual Klein-Nishina formula is used for o(F). For a more accurate parameterization
is used, which takes into account atomic binding effects and Doppler broadening [eal96]:

"'v2E2 Ec E
U(E) = 271'/_15?(7"‘7_811’1 9)
Z fi®(E — Ui)n;(p2***) d(cos 0)

shells
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where:
r. = classical radius of the electron;
m. = mass of the electron;

0 = scattering angle;

E¢ = Compton energy = fracE1 + (1 —cosh))

m662
fi = number of electrons in the i-th atomic shell;

U; = ionisation energy of the i-th atomic shell;

© = Heaviside step function;

p7*** =highest possible value of p, (projection of the initial momentum of the electron in the direction of the scattering

E(E—U;)(1—cos 8)—m.c?U;
c\/ZE(EfUi)(lfcos 0)+U? ’

angle) =
Finally,

ni(z) =
Lels=(3=v27i02)’] if z<0
1—Lela=(GHV2702)T jf 250
where J; is the value of the p,-distribution profile J;(p,) for the i-th atomic shell calculated in p, = 0. The values
of J;o for the different shells of the different elements are tabulated from the Hartree-Fock atomic orbitals of Ref.
[eal75a]. The integration of Eq.(4.171) is performed numerically using the 20-point Gaussian method. For this
reason, the initialization of the Penelope Compton process is somewhat slower than the Low Energy process.

Sampling of the final state

The polar deflection cos 6 is sampled from the probability density function

rg E?—; EC E .2 max
P(cosf) = Eﬁ(f g s 9) s%qfiG(E = Ui)ni(p2***)

(see Ref. [ealO]] for details on the sampling algorithm). Once the direction of the emerging photon has been set, the
active electron shell i is selected with relative probability equal to Z;0(E — U;)n;[p7***(E, 9)].

A random value of p, is generated from the analytical Compton profile [eal75a]. The energy of the emerging photon
is

E 2
E = 1 Tt [(1—7tcos€)—|— |z |\/(l—rtcos0)2—(l—tTQ)(l—t) )
— B

where

Pz \? Ec
t= (&) ad 7= =2
) md T Z

The azimuthal scattering angle ¢ of the photon is sampled uniformly in the interval (0, 27). It is assumed that the
Compton electron is emitted with energy E. = E — E’ — Uj, with polar angle 6. and azimuthal angle ¢, = ¢ + ,
relative to the direction of the incident photon. In this case cos 6, is given by

E — FE’cos#
VE? + E? —2EF'cosf

cosfl, =

Since the active electron shell is known, characteristic x-rays and electrons emitted in the de-excitation of the ionized
atom can also be followed. The de-excitation is simulated as described in section [relax]. For further details see
[ealO]].
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Rayleigh scattering

Total cross section

The total cross section of the Rayleigh scattering process is determined from an analytical parameterization. The
atomic cross section for coherent scattering is given approximately by /Bor69]

1 2
o(E) = 777‘3/1 1—~_CT()SH[F((], Z))? dcos¥, (4.171)

where F'(q, Z) is the atomic form factor, Z is the atomic number and ¢ is the magnitude of the momentum transfer,
i.e.

E 0
== 2 - i (7)-
q c sin 5

In the numerical calculation the following analytical approximations are used for the form factor:

F(q,2) = f(x,2) =

1+a1z2+a213+a3 z
Z (1+aqz2+asz?)? or

max[f(z,Z), Fg(x,Z)] ifZ>10and f(z,2) < 2

where

sin(2b arctan Q)

2 = Son gy

with

e =206074-—L =1 -\ /1-a, a:a(z—i),
MeC 2meca 16
where « is the fine-structure constant. The function Fk (z, Z) is the contribution to the atomic form factor due to the
two K-shell electrons (see [eal94]). The parameters of expression f(z, Z) have been determined in Ref. [eal94] for
Z=1 to 92 by numerically fitting the atomic form factors tabulated in Ref. [eal75b]. The integration of Eq.(4.171) is
performed numerically using the 20-point Gaussian method. For this reason the initialization of the Penelope Rayleigh
process is somewhat slower than the Low Energy process.

Sampling of the final state

The angular deflection cos 6 of the scattered photon is sampled from the probability distribution function

1+ cos? 6

P(cost) = 5

[F(q, Z)]*.

For details on the sampling algorithm (which is quite heavy from the computational point of view) see Ref. [eal0]].
The azimuthal scattering angle ¢ of the photon is sampled uniformly in the interval (0, 27).

Gamma conversion
Total cross section

The total cross section of the ~y conversion process is determined from the data /BHS87], as described in section [sub-
subsigmatot].
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Sampling of the final state

The energies £ and E; of the secondary electron and positron are sampled using the Bethe-Heitler cross section
with the Coulomb correction, using the semiempirical model of Ref. [eal94]. If

E_ +m.c?
E

€ =
is the fraction of the « energy E which is taken away from the electron,

K = 5 and a=aZ,
MmeC

the differential cross section, which includes a low-energy correction and a high-energy radiative correction, is

do 2 1 2
== rea(z+n)cr§{2(§—e) d1(€) + d2(6)] 4.172)

where:

b1(e) = g —2In(1 4 b?) — 6barctan(b™')
—b?[4 — 4barctan(b™') — 3In(1 + b~ 2)]
+4In(Rmec/h) — 4fc(Z) + Fo(k, Z)
and

¢2(€) = %1 —2In(1 4 b?) — 3barctan(b™ ')

+%b2 [4 — 4barctan(b™') — 3In(1 + b~ ?)]
+4In(Rmec/h) —Afc(Z) + Fo(k, Z),
with

Rmec 1 1

b = - .
h 2xe(l—c¢)

In this case R is the screening radius for the atom Z (tabulated in [HubbellGimmverb80] for Z=1 to 92) and 7 is the
contribution of pair production in the electron field (rather than in the nuclear field). The parameter 7 is approximated
as

N = nNc(l—e"),
where
v = (0.2840 — 0.1909a) In(4/k) + (0.1095 + 0.2206a) 1n2(4/n)

4(0.02888 — 0.04269a) In® (4/k)
4(0.002527 + 0.002623) In* (4/x)

and 7. is the contribution for the atom Z in the high-energy limit and is tabulated for Z=1 to 92 in Ref.
[HubbellGimmverb80]. In the Eq.(4.172), the function fo(Z) is the high-energy Coulomb correction of Ref. [eal54],
given by
fe(Z) = a®[(1+ a*)~" 4 0.202059 — 0.03693a” + 0.00835a*
—0.00201a° + 0.00049a® — 0.00012a® + 0.00003a"?];
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C, = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction (see Ref. [HubbellGimmverb80]);
Fy(k, Z) is a Coulomb-like correction function, which has been analytically approximated as [eal0]]
Fo(k,Z) = (—0.1774 — 12.10a + 11.184a2)(2/k)'/?
+(8.523 + 73.26a — 44.41a%)(2/ k)
—(13.52 + 121.1a — 96.41a%)(2/k)>/?
+(8.946 + 62.05a — 63.41a%)(2/ k).

The kinetic energy E; of the secondary positron is obtained as
E, = E—E_—2m.”.

The polar angles 6_ and 6 of the directions of movement of the electron and the positron, relative to the direction of
the incident photon, are sampled from the leading term of the expression obtained from high-energy theory (see Ref.
[eal69])

p(cosfi) = a(l — B+ cos Hi)*z,

where a is the a normalization constant and 34 is the particle velocity in units of the speed of light. As the directions
of the produced particles and of the incident photon are not necessarily coplanar, the azimuthal angles ¢_ and ¢ of
the electron and of the positron are sampled independently and uniformly in the interval (0, 27).

Photoelectric effect

Total cross section

The total photoelectric cross section at a given photon energy F is calculated from the data /DCullen89], as described
in section [subsubsigmatot].

Sampling of the final state

The incident photon is absorbed and one electron is emitted. The direction of the electron is sampled according to the
Sauter distribution /Sau31]. Introducing the variable v = 1 — cos 6., the angular distribution can be expressed as

p0) = @=0)[555 + 5910~ D06 -]

where

E. 1
=1 A==--1
v + L 3 )
E. is the electron energy, m. its rest mass and (3 its velocity in units of the speed of light c. Though the Sauter
distribution, strictly speaking, is adequate only for ionisation of the K-shell by high-energy photons, in many practical
simulations it does not introduce appreciable errors in the description of any photoionisation event, irrespective of the
atomic shell or of the photon energy.

The subshell from which the electron is emitted is randomly selected according to the relative cross sections of sub-
shells, determined at the energy £ by interpolation of the data of Ref. [eal69]. The electron kinetic energy is the
difference between the incident photon energy and the binding energy of the electron before the interaction in the sam-
pled shell. The interaction leaves the atom in an excited state; the subsequent de-excitation is simulated as described
in section [relax].
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Bremsstrahlung

Introduction

The class G4PenelopeBremsstrahlung calculates the continuous energy loss due to soft v emission and sim-
ulates the photon production by electrons and positrons. As usual, the gamma production threshold 7. for a given
material is used to separate the continuous and the discrete parts of the process.

Electrons

The total cross sections are calculated from the data [STPerkins89], as described in sections [subsubsigmatot] and
[lowebrems]. The energy distribution j—‘j{, (E), i.e. the probability of the emission of a photon with energy W given

an incident electron of kinetic energy F, is generated according to the formula
do F(k) w

aw P k' "TFE

The functions F'(x) describing the energy spectra of the outgoing photons are taken from Ref. /SBS86]. For each
element Z from 1 to 92, 32 points in «, ranging from 1072 to 1, are used for the linear interpolation of this function.
F(k) is normalized using the condition F'(10~'2) = 1. The energy distribution of the emitted photons is available in
the library /[SB86] for 57 energies of the incident electron between 1 keV and 100 GeV. For other primary energies,
logarithmic interpolation is used to obtain the values of the function F'(x). The direction of the emitted bremsstrahlung
photon is determined by the polar angle 6 and the azimuthal angle ¢. For isotropic media, with randomly oriented
atoms, the bremsstrahlung differential cross section is independent of ¢ and can be expressed as

d*o do

TWdeosd — qw P4 E,kicosb).

Numerical values of the “shape function” p(Z, F, &; cos #), calculated by partial-wave methods, have been published
in Ref. [KQPS83] for the following benchmark cases: Z=2, 8, 13, 47,79 and 92; E= 1, 5, 10, 50, 100 and 500 keV;
k=0, 0.6, 0.8 and 0.95. It was found in Ref. [eal0]] that the benchmark partial-wave shape function of Ref. [KOQP83]
can be closely approximated by the analytical form (obtained in the Lorentz-dipole approximation)

p(cos 0) :A§[1+ ( cosf — 3 )2}( 1—ﬁ/2

8 1— ' cosf 1— B cosh)?
3 cosf@ — f3' 2 1— 32
+1 _A)E{l B (1 —ﬁ’cos@m> } (1 — ' cosh)?’

with 8/ = B(1 + B), if one considers A and B as adjustable parameters. The parameters A and B have been
determined, by least squares fitting, for the 144 combinations of atomic numbers, electron energies and reduced
photon energies corresponding to the benchmark shape functions tabulated in /KQPS83]. The quantities In(AZ /) and
B3 vary smoothly with Z, 5 and ~ and can be obtained by cubic spline interpolation of their values for the benchmark
cases. This permits the fast evaluation of the shape function p(Z, E, k; cos #) for any combination of Z, 8 and k.
The stopping power % due to soft bremsstrahlung is calculated by interpolating in £ and  the numerical data of
scaled cross sections of Ref. /BS82]. The energy and the direction of the outgoing electron are determined by using
energy-momentum balance.

Positrons

The radiative differential cross section ZLW(E) for positrons reduces to that for electrons in the high-energy limit,
but is smaller for intermediate and low energies. Owing to the lack of more accurate calculations, the differential
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cross section for positrons is obtained by multiplying the electron differential cross section ‘fi"m; (E) by a k—indendent

factor, i.e.

do™t do~
awv Fy(Z, E)W'

The factor F,(Z, E) is set equal to the ratio of the radiative stopping powers for positrons and electrons, which has
been calculated in Ref. [eal86]. For the actual calculation, the following analytical approximation is used:
Fy(Z,E) = 1—exp(—1.2359- 1071t + 6.1274 - 10~ *¢* — 3.1516 - 10 %¢*
+7.7446 - 1073¢* — 1.0595 - 107%¢° + 7.0568 - 10~°¢°
—1.8080 - 107%¢7),

where

108 FE )

tzl“@*ﬁ@

Because the factor F,(Z, E) is independent on k, the energy distribution of the secondary +’s has the same shape as
electron bremsstrahlung. Similarly, owing to the lack of numerical data for positrons, it is assumed that the shape of
the angular distribution p(Z, E, k; cos ) of the bremsstrahlung photons for positrons is the same as for the electrons.
The energy and direction of the outgoing positron are determined from energy-momentum balance.

lonisation

The G4PenelopeIonisation class calculates the continuous energy loss due to electron and positron ionisation
and simulates the J-ray production by electrons and positrons. The electron production threshold 7, for a given
material is used to separate the continuous and the discrete parts of the process. The simulation of inelastic collisions
of electrons and positrons is performed on the basis of a Generalized Oscillation Strength (GOS) model (see Ref.
[ealO1] for a complete description). It is assumed that GOS splits into contributions from the different atomic electron
shells.

Electrons

The total cross section o~ (E) for the inelastic collision of electrons of energy E is calculated analytically. It can be
split into contributions from distant longitudinal, distant transverse and close interactions,

0 (E) = 04isy + Odisg + 0,

The contributions from distant longitudinal and transverse interactions are

2met 1 Wi QU™ + 2m.c?
Odis,l = m Z fk*ln( £ )@(E_ W) (4.173)

min 2
= Wi Q7 Wi + 2mec
and
2met 1 1 9
Odisit = mov? hzl:l kak {ln <ﬁ) - B - 5F}@(E — W) 4.174)

respectively, where:
m. = mass of the electron;
v = velocity of the electron;

[ = velocity of the electron in units of c;
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fr = number of electrons in the k-th atomic shell;
© = Heaviside step function;
W), = resonance energy of the k-th atomic shell oscillator;

Q7" = minimum  kinematically  allowed recoil energy for energy transfer W, =

\/[\/E(E F2mec) — /(B — W) (B — Wi + 2mec2)]2 Fm2ct — mec?;

0 = Fermi density effect correction, computed as described in Ref. [Fun63].

The value of W, is calculated from the ionisation energy Uy, of the k-th shell as . This relation is derived from the
hydrogenic model, which is valid for the innermost shells. In this model, the shell ionisation cross sections are only
roughly approximated; nevertheless the ionisation of inner shells is a low-probability process and the approximation
has a weak effect on the global transport properties'.

The integrated cross section for close collisions is the Mgller cross section

_ 2mret 1
o = 35 D I Rl (BW)W, (4.175)
k

shells

where

w 2 w E 2 w w?2
e = 1 (5 e () (2 + )
( ) + E-W E—W+ E + m.c? E—W+E2
The integral of Eq.(4.175) can be evaluated analytically. In the final state there are two indistinguishable free electrons
and the fastest one is considered as the “primary”; accordingly, the maximum allowed energy transfer in close colli-
sions is 5. The GOS model also allows evaluation of the spectrum dW of the energy W lost by the primary electron
as the sum of distant longitudinal, distant transverse and close interaction contributions,

do~ _ doy, . doais, +d0'dis,t. (4.176)
dw dw dw dw

In particular,

dogis, 2met 1 Wi Q_ + 2mec
W 5> gy (Q W)CS(W = Wi)O(E — W), (4.177)
Mmev shells

where

Q- = \/[\/E(E +2mec?) —\/(E—W)(E - W + QmeCQ)}2 +m2ct — mec?,

Tt = o X gy [ (7))

shells

O(E — Wi,)8(W — Wy)
and

do; 2met 1
dVCIl/O = Z kaF (E,W)O(W — Wy). (4.178)
€ shells

Eqs.(4.173), (4.174) and (4.175) derive respectively from the integration in dW of Eqs.(4.177), (4.178) and (4.178) in
the interval [0,:math:(W_{max})], where W, .., = F for distant interactions and W,,,,, = g for close. The analytical

! In cases where inner-shell ionisation is directly observed, a more accurate description of the process should be used.
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GOS model provides an accurate average description of inelastic collisions. However, the continuous energy loss
spectrum associated with single distant excitations of a given atomic shell is approximated as a single resonance (a §
distribution). As a consequence, the simulated energy loss spectra show unphysical narrow peaks at energy losses that

are multiples of the resonance energies. These spurious peaks are automatically smoothed out after multiple inelastic
f do”

collisions. The explicit expression of <7,

soft and hard ionisation events, i.€.

Te — Winax -
ot :/ O W and o :/ O g,
0 T,

Eq.(4.176), allows the analytic calculation of the partial cross sections for

daw daw

The first stage of the simulation is the selection of the active oscillator k£ and the oscillator branch (distant or close).
In distant interactions with the k-th oscillator, the energy loss W of the primary electron corresponds to the excitation
energy Wy, i.e. W=W}. If the interaction is transverse, the angular deflection of the projectile is neglected, i.e.
cos 0=1. For longitudinal collisions, the distribution of the recoil energy () is given by

Py(Q) = .
onro .y HQ- <Q < Wiy
0 otherwise

Once the energy loss W and the recoil energy @ have been sampled, the polar scattering angle is determined as

E(E +2m.c®) + (E — W)(E — W + 2m.c?) — Q(Q + 2m.c?)
2/E(E +2m.c2)(E — W)(E — W + 2m.c?)

cosf =

The azimuthal scattering angle ¢ is sampled uniformly in the interval (0,2:math:(pi)). For close interactions, the
distributions for the reduced energy loss k = W/ E for electrons are

P k) = {% * (1 jn)Q - H(llfli) * (E +€ne02)2(1+ ﬁ)}

O(k — HC)@(% —K)

with k. = max(W}y,T.)/E. The maximum allowed value of x is 1/2, consistent with the indistinguishability of the
electrons in the final state. After the sampling of the energy loss W = xE, the polar scattering angle 6 is obtained as

E-W E + 2m.c?
E E—-W+42mec?

cos?f =

The azimuthal scattering angle ¢ is sampled uniformly in the interval (0,2:math:(pi)). According to the GOS model,
each oscillator Wy, corresponds to an atomic shell with f; electrons and ionisation energy Uy. In the case of ionisation
of an inner shell 7 (K or L), a secondary electron (d-ray) is emitted with energy £, = W — U, and the residual ion is
left with a vacancy in the shell (which is then filled with the emission of fluorescence x-rays and/or Auger electrons).
In the case of ionisation of outer shells, the simulated d-ray is emitted with kinetic energy F; = W and the target atom
is assumed to remain in its ground state. The polar angle of emission of the secondary electron is calculated as

WP QIO )~ W
Q(Q + 2mc?) 2W (E + mec?)

cos?fy =

(for close collisions ) = W), while the azimuthal angle is ¢s = ¢ + m. In this model, the Doppler effects on the
angular distribution of the § rays are neglected. The stopping power due to soft interactions of electrons, which is used
for the computation of the continuous part of the process, is analytically calculated as

T. _

c da.
-~ =N 2 _a
S5 /0 W dW

from the expression (4.176), where N is the number of scattering centers (atoms or molecules) per unit volume.
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Positrons

The total cross section o (E) for the inelastic collision of positrons of energy F is calculated analytically. As in the

case of electrons, it can be split into contributions from distant longitudinal, distant transverse and close interactions,
oT(E) = aisy+ 0gist + 05,

The contributions from distant longitudinal and transverse interactions are the same as for electrons, Eq.(4.173) and
(4.174), while the integrated cross section for close collisions is the Bhabha cross section

2met 1
ot = - Z fr . WFWE W)dw, (4.179)
€ shells k

where
w w?2 w3 W4
F+(E,W) :l—b1f+b2E b3 +b4

the Bhabha factors are

b = (7_1)2 2(7+1)2_1 by = (7—1)2 3(7+1)2+1

gl -1 gl (y+1)?
oy —1\22(y 1)y oy —1\2 (y—1)?
b3_( v ) (y+1)2° b4_( v ) (y+1)2’

and ~y is the Lorentz factor of the positron. The integral of Eq.(4.179) can be evaluated analytically. The particles in the
final state are not undistinguishable so the maximum energy transfer W,,,,, in close collisions is E. As for electrons,
the GOS model allows the evaluation of the spectrum d _ of the energy W lost by the primary positron as the sum of
distant longitudinal, distant transverse and close interaction contributions,
do’Jr _ daclo " dgdis,l + do'dis,t (4.180)
dwW dw dW dw ’

where the distant terms d'zl‘g‘;" and dil‘é,‘[j £ are those from Eqs.(4.177) and (4.178), while the close contribution is

do™ 2met
dﬁl; = Z fk—F (E,W)O(W — Wy).
shells

fda'

7> Bq.(4.180), allows an analytic calculation of the partial cross sections

Also in this case, the explicit expression o
for soft and hard ionisation events, i.e.

do™ E ot
U;ft = /O de and O—}—:—a’!d = /TC de

The sampling of the final state in the case of distant interactions (transverse or longitudinal) is performed in the
same way as for primary electrons, see section [ionelect]. For close positron interactions with the k-th oscillator, the
distribution for the reduced energy loss k = W/E is

1 b

Pl (k) = [7 — = 4 by — byk + byk }@(K] — ke)O(1 — k)

K
with k. = max(Wy, T.)/E. In this case, the maximum allowed reduced energy loss « is 1. After sampling the energy
loss W = kE, the polar angle 6 and the azimuthal angle ¢ are obtained using the equations introduced for electrons
in section [ionelect]. Similarly, the generation of § rays is performed in the same way as for electrons. Finally, the
stopping power due to soft interactions of positrons, which is used for the computation of the continuous part of the
process, is analytically calculated as

from the expression (4.180), where NV is the number of scattering centers per unit volume.
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Positron Annihilation

Total Cross Section

The total cross section (per target electron) for the annihilation of a positron of energy E into two photons is evaluated
from the analytical formula [Hei54 ][egs]

2
“E) = Do

{(w +4y41) ln[’er\/’yif} (3+7) \/71}

where r, = classical radius of the electron, and v = Lorentz factor of the positron.

Sampling of the Final State

The target electrons are assumed to be free and at rest: binding effects, that enable one-photon annihilation [Hei54],
are neglected. When the annihilation occurs in flight, the two photons may have different energies, say £_ and E
(the photon with lower energy is denoted by the superscript “—), whose sum is E + 2m.c?. Each annihilation event
is completely characterized by the quantity

E_

¢ = E +2m.c?’

which is in the interval (pin, < ¢ < 3, with

1
Cmin = .
YH14+4/? -1
The parameter ( is sampled from the differential distribution

PO) = oSO +80-0),

where v is the Lorentz factor and

1
S(¢) = ~(v+1)*+ (v +47+1)C @
From conservation of energy and momentum, it follows that the two photons are emitted in directions with polar angles

cosf_ = ’y;_l(’y—i-l—z)

and

cosfy =

N

that are completely determined by (; in particuar, when ¢ = (;4,, cos @ = —1. The azimuthal angles are ¢_ and
¢+ = ¢_ + m; owing to the axial symmetry of the process, the angle ¢_ is uniformly distributed in (0, 27).
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4.7 Monash University low energy photon processes

4.7.1 Monash Low Energy Photon Processes

Introduction

The Monash Compton Scattering models, for polarised (G4LowEPPolarizedComptonModel) and non-polarised
(G4LowEPComptonModel) photons, are an alternative set of Compton scattering models to those of Livermore and
Penelope that were constructed using Ribberfors’ theoretical framework [R75][eal96][Kip0O4]. The limitation of the
Livermore and Penelope models is that only the components of the pre-collision momentum of the target electron con-
tained within the photon plane, two-dimensional plane defined by the incident and scattered photon, is incorporated
into their scattering frameworks [eal01]. Both models are forced to constrain the ejected direction of the Compton
electron into the photon plane as a result. The Monash Compton scattering models avoid this limitation through the
use of a two-body fully relativistic three-dimensional scattering framework to ensure the conservation of energy and
momentum in the Relativistic Impulse Approximation (RIA) [M29][eall4].

Physics and Simulation

Total Cross Section

The Monash Compton scattering models were built using the Livermore and Polarised Livermore Compton scattering
models as templates. As a result the total cross section for the Compton scattering process and handling of polarisation
effects mimic those outlined in Section [ref].

Sampling of the Final State

Q’

Fig. 4.29: Scattering diagram of atomic bound electron Compton scattering. P is the incident photon momentum, Q
the electron pre-collision momentum, P’ the scattered photon momentum and Q' the recoil electron momentum.

The scattering diagram seen in Figure Fig. 4.29 outlines the basic principles of Compton scattering with an electron
of non-zero pre-collision momentum in the RIA.

The process of sampling the target atom, atomic shell and target electron pre-collision momentum mimic that outlined
in Section 9. After the sampling of these parameters the following four equations are utilised to model the scattered
photon energy E’, recoil electron energy T; and recoil electron polar and azimuthal angles (¢ and ) with respect to
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the incident photon direction and out-going plane of polarisation:

B yme (¢ — u cos @)
- 1—cosf + yme(c—u cos O cos (E—usinésinacosﬁ) ’

Tu=FE-FE - FEg,

-Y+VY2—4WZ
2w ’

cos ¢ =

where:
A= E'v'siné,

B =FE'v cosf — Eu,

EFE’
C=c(E'—FE)— —— (1—cosb),
y'me
E/
p="" (¢ —ucosfcosa — usinf cos Bsin o) + m2c? (v — 1) —y'mE’,
c

/ !, !
. YmE'u"
F = (vy'm2uu’ cos Bsina — ——— sin#),
c
G = vy'm2uu sin Bsin a,
/ !
u’ cos ),

H = (yy'm?uu cos a —
W =(FB—HA)? +G?A* + G*B?,

Y =2((AD — FC) (FB — HA) - G*BC),
Z = (AD - FC)* + G* (C* - A?)

and c is the speed of light, m is the rest mass of an electron, u is the speed of the target electron, v’ is the speed of

the recoil electron, v = (1 - (u2 / 62) ) 2 and v = (1 — (u’ 2/ 02) ) ~'/2_Further information regarding the Monash
Compton scattering models can be found in [eall4].

4.8 Charged Hadron Incident

4.8.1 Hadron and lon lonization

Method

The class G4hlonisation provides the continuous energy loss due to ionization and simulates the ’discrete’ part of the
ionization, that is, delta rays produced by charged hadrons. The class G4ionlonisation is intended for the simulation
of energy loss by positive ions with change greater than unit. Inside these classes the following models are used:

* G4BetherBlochModel (valid for protons with " > 2 MeV')

* G4BraggModel (valid for protons with T' < 2 MeV)

* G4BragglonModel (valid for protons with T" < 2 MeV)

* G4ICRU73Q0Model (valid for anti-protons with 7' < 2 MeV)
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The scaling relation ([enloss.sc]) is a basic conception for the description of ionization of heavy charged particles.
It is used both in energy loss calculation and in determination of the validity range of models. Namely the T, =
2M eV limit for protons is scaled for a particle with mass M; by the ratio of the particle mass to the proton mass
T; = T,M,/M,;.

For all ionization models the value of the maximum energy transferable to a free electron 7,,,, is given by the
following relation [ea06]:

2mec? (v — 1)
1+ 2y(me/M) + (me/M)>’

where m. is the electron mass and M is the mass of the incident particle. The method of calculation of the continuous
energy loss and the total cross-section are explained below.

Traw = (4.181)

Continuous Energy Loss

The integration of [comion.a] leads to the Bethe-Bloch restricted energy loss (I' < T,,; formula [ea06], which is
modified taken into account various corrections [Ahl80]:

dE 22 2mc? 322 T, T 2C,
o= 27rr5mc2nel§ [m <12p) — B2 (1 + T::x) -0 Z" + F] (4.182)
where
re  classical electron radius: €2 /(4megmc?)

mc~ mass-energy of the electron

ne;  electrons density in the material

mean excitation energy in the material
atomic number of the material

charge of the hadron in units of the electron change
E/mc?

1 (1/4?)

min(Tcut ) Tmaz)

density effect function

shell correction function

high order corrections

2 NN~

S|

Q> 5

In a single element the electron density is

Nawp
A

(Naw: Avogadro number, p: density of the material, A: mass of a mole). In a compound material
Nopw;
Nel = Z Zi Nats = Z Z; a;li Zp~
1 1
-th

w; is the proportion by mass of the i element, with molar mass A;.

Nel = L Mgt = 24

The mean excitation energy I for all elements is tabulated according to the ICRU recommended values [BIA+84].

Shell Correction

2C. /Z is the so-called shell correction term which accounts for the fact of interaction of atomic electrons with atomic
nucleus. This term more visible at low energies and for heavy atoms. The classical expression for the term /BIA+93]
is used

J; B2

C=> Cbm), v=KLM,..,0=="

L= 0 4.183
€ K a2z?’ ( )
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where « is the fine structure constant, 3 is the hadron velocity, J,, is the ionisation energy of the shell v, €, is Bohr
ionisation energy of the shell v, Z,, is the effective charge of the shell v. First terms C'x and C, can be analytically
computed in using an assumption non-relativistic hydrogenic wave functions [Wal52 ][Wal56]. The results [ Kha68] of
tabulation of these computations in the interval of parameters 7, = 0.005-+10 and 6, = 0.25 -+ 0.95 are used directly.

For higher values of 7, the parameterization [Kha68] is applied:
K K. K
Cl/ = — + 722 7;7

Ui Ui n

where coefficients K; provide smooth shape of the function. The effective nuclear charge for the L-shell can be
reproduced as Z;, = Z — d, d is a parameter shown in Table 4.7.

Table 4.7: Effective nuclear charge for the L-shell [BIA+93].

Z |3 4 5 6 7 8 9 >9
d | 1.72 | 209 | 2.48 | 2.82 | 3.16 | 3.53 | 3.84 | 4.15

For outer shells the calculations are not available, so L-shell parameterization is used and the following scaling relation
[BIA+93][Bic92] is applied:
ny, J,
OI/ - VIJCL(GLaHVT]L)a VV = HV = 75 (4184)
nr JL
where V, is a vertical scaling factor proportional to number of electrons at the shell n,,. The contribution of the shell
correction term is about 10% for protons at T' = 2MeV .

Density Correction

0 is a correction term which takes into account the reduction in energy loss due to the so-called density effect. This
becomes important at high energies because media have a tendency to become polarized as the incident particle
velocity increases. As a consequence, the atoms in a medium can no longer be considered as isolated. To correct for
this effect the formulation of Sternheimer [SP71] is used:

x is a kinetic variable of the particle : x = log;,(73) = In(y?3?)/4.606, and §(x) is defined by

for z<uzp: o0(x)=0
for z € [xg, 21]: 0(z) =4.6062 — C + a(x; — )™ (4.185)
for = > : 0(x) = 4.6062 — C

where the matter-dependent constants are calculated as follows:

hv, = plasma energy of the medium = \/4dmngrime?/a = /Arnegr.he

C = 1+2In(I/hv)

2 = CJ4.606 (4.186)
a = 4.606(xq — z0)/(x1 — o)™

m = 3.

For condensed media

for O < 3.681 29 =0.2 2 =2
F<100eV 3 (i 0> 3681 mg = 0.326C — 1.0 a1 —
I>100eV for C <5215 x9=0.2 T =

forC > 5215 290=0.326C -15 z;=3
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and for gaseous media

for C < 10. zg = 1.6 r1 =4
for C € [10.0, 10.5] x9 = 1.7 1 =4
for C €[10.5, 11.0 x9 = 1.8 T =

for Ce [1107 115[ xo = 1.9 T =4
for C e [115, 1225[ To = 2. r1 =4
for C €[12.25, 13.804] =z = 2. z1=5
for C > 13.804 ro = 0.326C — 2.5 x1 =5.

High Order Corrections

High order corrections term to Bethe-Bloch formula ([hion.d]) can be expressed as
F =G~ S+2(zL + 2°Ly), (4.187)

where G is the Mott correction term, S is the finite size correction term, L is the Barkas correction, Lo is the Bloch
correction. The Mott term [Ahl80] describes the close-collision corrections tend to become more important at large
velocities and higher charge of projectile. The Fermi result is used:

G = rmazf.
The Barkas correction term describes distant collisions. The parameterization of Ref. is expressed in the form:

_ L.29F4(b/2'?) B2
V= T sz 0 TT g2

where F4 is tabulated function /ARB73], b is scaled minimum impact parameter shown in Table 4.8. This and other
corrections depending on atomic properties are assumed to be additive for mixtures and compounds.

Table 4.8: Scaled minimum impact parameter b [BIA+93].

Z [1(H.gas) |1 |2 [3-10]11-17]18 [ 19-25 ] 26-50 | >50
d | 06 180618 14 18|14 1.35 3

For the Bloch correction term the classical expression [BIA+93] is following:

> 1 zZo

2 2
2°Lo = — _, = —.
S nzzl nn+y?) Y75

The finite size correction term takes into account the space distribution of charge of the projectile particle. For muon it
is zero, for hadrons this term become visible at energies above few hundred GeV and the following parameterization
[Ahl80] is used:

2meTmaa:
§=in(l+q), g=""3"

where 1,4, 1s given in relation ([hion.c]), € is proportional to the inverse effective radius of the projectile (Table 4.9).

Table 4.9: The values of the € parameter for different particle types.
mesons, spin = 0 (7%, KT) [ 0.736 GeV
baryons, spin = 1/2 0.843 GeV
ions 0.843 AY/3 GeV
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All these terms break scaling relation ([enloss.sc]) if the projectile particle charge differs from +£1. To take this
circumstance into account in G4ionlonisation process at initialisation time the term F' is ignored for the computation
of the dE/dx table. At run time this term is taken into account by adding to the mean energy loss a value

22
32

where As is the true step length and F' is the high order correction term ([hion.cor]).

AT = ZWTngQnel FAs,

Parameterizations at Low Energies

For scaled energies below T};,,, = 2 MeV shell correction becomes very large and precision of the Bethe-Bloch
formula degrades, so parameterisation of evaluated data for stopping powers at low energies is required. These pa-
rameterisations for all atoms is available from ICRU’49 report [BIA+93]. The proton parametrisation is used in
G4BraggModel, which is included by default in the process G4hlonisation. The alpha particle parameterisation is
used in the G4BragglonModel, which is included by default in the process G4ionlonisation. To provide a smooth
transition between low-energy and high-energy models the modified energy loss expression is used for high energy
Tim
S(T) = Su(T) + (St(Tiim) — St (Thim)) =5 T > Thim,

where S is smoothed stopping power, Sy is stopping power from formula ([hion.d]) and S, is the low-energy param-
eterisation.

The precision of Bethe-Bloch formula for 7' > 10M eV is within 2%, below the precision degrades and at 1keV” only
20% may be garanteed. In the energy interval 1 —10M eV the quality of description of the stopping power varied from
atom to atom. To provide more stable and precise parameterisation the data from the NIST databases are included
inside the standard package. These data are provided for 74 materials of the NIST material database [hion.nist]. The
data from the PSTAR database are included into G4BraggModel. The data from the ASTAR database are included
into G4BragglonModel. So, if Geant4 material is defined as a NIST material, than NIST data are used for low-energy
parameterisation of stopping power. If material is not from the NIST database, then the ICRU’49 parameterisation is
used.

Nuclear Stopping
Nuclear stopping due to elastic ion-ion scattering since Geant4 v9.3 can be simulated with the continuous process

G4NuclearStopping. By default this correction is active and the ICRU’49 parameterisation /BIA+93] is used, which
is implemented in the model class G4ICRU49NuclearStoppingModel.

Total Cross Section per Atom

For T" > I the differential cross section can be written as

do s o 7 1 , T T2

ﬁ:Qﬂ'remc Z@ﬁ 1-p T — —|—E (4.188)
[ea06]. In Geant4 Ti,; > 1 keV. Integrating from T,,; to T}, gives the total cross section per atom :
QTI'TEZ zg 9
0(Z,E, Tewr) = Tmc X (4.189)
1 1 52 1 Tm(w Tmaac - Tcut
— — n +
Tcut Tmaa: Tmam Tcut 2E2

The last term is for spin 1/2 only. In a given material the mean free path is:

A= (ng-0)"t or A= (O nai '01)71
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The mean free path is tabulated during initialization as a function of the material and of the energy for all kinds of
charged particles.

Simulating Delta-ray Production

A short overview of the sampling method is given in Chapter [secmessel]. Apart from the normalization, the cross
section [hion.i] can be factorized :

;L; = f(D)g(T) with T € [Teut, Trmaz) (4.190)

where
() = (Tclut - T;ﬂ) % (4.191)
g(T) = 1-p TZM + % (4.192)

The last term in g(T") is for spin 1/2 only. The energy T is chosen by
1. sampling T from f(7T)
2. calculating the rejection function g(7") and accepting the sampled T with a probability of g(T').

After the successful sampling of the energy, the direction of the scattered electron is generated with respect to the
direction of the incident particle. The azimuthal angle ¢ is generated isotropically. The polar angle € is calculated from
energy-momentum conservation. This information is used to calculate the energy and momentum of both scattered
particles and to transform them into the global coordinate system.

lon Effective Charge

As ions penetrate matter they exchange electrons with the medium. In the implementation of G4ionlonisation the
effective charge approach is used [hion.Ziegler85]. A state of equilibrium between the ion and the medium is assumed,
so that the ion’s effective charge can be calculated as a function of its kinetic energy in a given material. Before and
after each step the dynamic charge of the ion is recalculated and saved in G4 DynamicParticle, where it can be used
not only for energy loss calculations but also for the sampling of transportation in an electromagnetic field.

The ion effective charge is expressed via the ion charge z; and the fractional effective charge of ion ~;:
Zeff = ViZi- (4.193)
For helium ions fractional effective charge is parameterized for all elements
° : 740.052 ?
(Yie)? = 1—exp |- JZ::O C;Q’ (1 + 1000 exp(—(7.6 — Q)2)> ;
Q = max(0,InT), (4.194)
where the coefficients C; are the same for all elements, and the helium ion kinetic energy T is in keV/amu.

The following expression is used for heavy ions [hion.BK]:

_ 2 _ _N\2
e <q+ 1 2 q (50> 111(1+A2)> <1+ (0.18+0.0015Z)Z(32Xp( (7.6 — Q) )), 4.195)
F i
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where q is the fractional average charge of the ion, vy is the Bohr velocity, vr is the Fermi velocity of the electrons in
the target medium, and A is the term taking into account the screening effect:

_\2/3
A=102 1—9)

il VRS (4.196)
Vo 23/3(6 +q)

The Fermi velocity of the medium is of the same order as the Bohr velocity, and its exact value depends on the detailed
electronic structure of the medium. The expression for the fractional average charge of the ion is the following:

q = [1 — exp(0.803y"3 — 1.3167y"® — 0.38157y — 0.008983y2)], (4.197)

where y is a parameter that depends on the ion velocity v;

(Y ’U2
=—(1+£). 4.198
Yy UOZQ/B( +5v%> ( )

The parametrisation of the effective charge of the ion applied if the kinetic energy is below limit value

M;
T < 1OZiﬁp MeV, (4.199)

where M; is the ion mass and M, is the proton mass.

4.8.2 Low energy extentions
Energy losses of slow negative particles

At low energies, e.g. below a few MeV for protons/antiprotons, the Bethe-Bloch formula is no longer accurate in
describing the energy loss of charged hadrons and higher Z terms should be taken in account. Odd terms in Z lead to
a significant difference between energy loss of positively and negatively charged particles. The energy loss of negative
hadrons is scaled from that of antiprotons. The antiproton energy loss is calculated according to the quantum harmonic
oscillator model is used, as described in [eal05 ] and references therein. The lower limit of applicability of the model is
chosen for all materials at 10 keV/. Below this value stopping power is set to constant equal to the dE/dx at 10 keV.

Energy losses of hadrons in compounds

To obtain energy losses in a mixture or compound, the absorber can be thought of as made up of thin layers of pure
elements with weights proportional to the electron density of the element in the absorber (Bragg’s rule):

dE dE
== > (d;«) . (4.200)

i

where the sum is taken over all elements of the absorber, 7 is the number of the element, (‘fl—f),; is energy loss in the
pure i-th element.

Bragg’s rule is very accurate for relativistic particles when the interaction of electrons with a nucleus is negligible. But
at low energies the accuracy of Bragg’s rule is limited because the energy loss to the electrons in any material depends
on the detailed orbital and excitation structure of the material. In the description of Geant4 materials there is a special
attribute: the chemical formula. It is used in the following way:

« if the data on the stopping power for a compound as a function of the proton kinetic energy is available (Table
4.10), then the direct parametrisation of the data for this material is performed;

« if the data on the stopping power for a compound is available for only one incident energy (Table 4.11), then the
computation is performed based on Bragg’s rule and the chemical factor for the compound is taken into account;
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« if there are no data for the compound, the computation is performed based on Bragg’s rule.

In the review [ZM88] the parametrisation stopping power data are presented as

_ f(Ty) Seap(125 keV)
Se(Tp) = S8rags(To) |1+ 5055 ery (nggg(ns) feV) 1)} ) (4.200)

where S.;,(125 keV) is the experimental value of the energy loss for the compound for 125 keV protons or the
reduced experimental value for He ions, Sprqgq(T)) is a value of energy loss calculated according to Bragg’s rule,
and f(T},) is a universal function, which describes the disappearance of deviations from Bragg’s rule for higher kinetic
energies according to:

1

1+ exp [ 148(550207 — 7.0)|

f(Ty) (4.202)

where 3(T),) is the relative velocity of the proton with kinetic energy T),.

Table 4.10: Stopping Power Compounds Paremeterized vs. Energy

Number | Chemical formula

1 AlO

C,0

CH4
(C,Hy)n-Polyethylene
(C,Hy)n-Polypropylene
CgHg)n

C;3Hg

SiO,

H,O

H,0-Gas

Graphite

== \O 0| Q| N | KW

—
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Table 4.11: Stopping Power Compounds Data for Fixed Energy

Number | Chemical formula | Number | Chemical formula
1 H,0 28 C,Hg

2 C,H,0 29 C,F¢

3 C3HgO 30 C,HgO

4 C,H, 31 C3H¢O

5 CH;0H 32 C4H;(O

6 C,Hs;OH 33 CoH,

7 C;H;0H 34 C,H,0

8 Cs3H, 35 CoH,4S

9 NH; 36 SH,

10 CisHjo 37 CH,4

11 C¢Hg 38 CCLF;

12 C4Hyg 39 CCLF,

13 C4Hg 40 CHCL,F

14 C4HzO 41 (CH3),S

15 CCly 42 N,O

16 CF, 43 CsH;(O

17 CeHg 44 CgHg

18 CgH1» 45 (CHo)n

19 CgH;(O 46 (C3He)n

20 CeHio 47 (CgHg)n

21 CgHig 48 C3;Hg C_3H_8
22 CsHyg 49 C3;Hg-Propylene
23 CsHg 50 C3H¢O

24 C3;Hg-Cyclopropane | 51 C3HgS

25 C,H4F, 52 C4H4S

26 C,H,F, 53 C7Hg

27 C4HgO,

Fluctuations of energy losses of hadrons

The total continuous energy loss of charged particles is a stochastic quantity with a distribution described in terms of
a straggling function. The straggling is partially taken into account by the simulation of energy loss by the production
of d-electrons with energy T' > T.. However, continuous energy loss also has fluctuations. Hence in the current
GEANT4 implementation two different models of fluctuations are applied depending on the value of the parameter x
which is the lower limit of the number of interactions of the particle in the step. The default value chosen is x = 10.
To select a model for thick absorbers the following boundary conditions are used:

AE > T.k) or T, < Ik, (4.203)

where A F is the mean continuous energy loss in a track segment of length s, T is the cut kinetic energy of §-electrons,
and [ is the average ionisation potential of the atom.

For long path lengths the straggling function approaches the Gaussian distribution with Bohr’s variance [BIA+93]:

2 Z B
O = KNa 5 Tesf <1 - 2) , (4.204)

where f is a screening factor, which is equal to unity for fast particles, whereas for slow positively charged ions with
B2 <3Z(vo/c)® f=a+ b/fof, where parameters a and b are parametrised for all atoms [QY91][WKC77].

For short path lengths, when the condition [le_cond] is not satisfied, the model described in the charter
[gen_fluctuations] is applied.
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ICRU 73-based energy loss model

The ICRU 73 [ealO5] report contains stopping power tables for ions with atomic numbers 3-18 and 26, covering
a range of different elemental and compound target materials. The stopping powers derive from calculations with
the PASS code [SS02], which implements the binary stopping theory described in [SS02]/SS00]. Tables in ICRU
73 extend over an energy range up to 1 GeV/nucleon. All stopping powers were incorporated into Geant4 and are
available through a parameterisation model (G4lonParametrisedLossModel). For a few materials revised stopping
powers were included (water, water vapor, nylon type 6 and 6/6 from P. Sigmund et al /PSP09] and copper from P.
Sigmund [PSigmund09]), which replace the corresponding tables of the original ICRU 73 report.

To account for secondary electron production above 7, the continuous energy loss per unit path length is calculated

<ITc C ‘

where (dE/dx) ;¢ rurs refers to stopping powers obtained by interpolating ICRU 73 tables and (dE/dzx)s is the mean
energy transferred to d-electrons per path length given by

dE Tmas doy(T)
) = ‘ TdT
< dsc>5 Zi:nam /T C o Td (4.206)

where the index 7 runs over all elements composing the material, n, ; is the number of atoms of the element ¢
per volume, T, is the maximum energy transferable to an electron according to formula and do; /dT specifies the
differential cross section per atom for producing an J-electron following equation For compound targets not considered
in the ICRU 73 report, the first term on the rightern side in equation ([hlei.rstp]) is computed by applying Bragg’s
additivity rule /BIA+93] if tables for all elemental components are available in ICRU 73.

d£
dx

4.9 Muon incident

4.9.1 Muon lonization

The class G4Mulonisation provides the continuous energy loss due to ionization and simulates the ’discrete’ part of
the ionization, that is, delta rays produced by muons. Inside this class the following models are used:

* G4BraggModel (valid for protons with " < 0.2 MeV')
¢ G4BetherBlochModel (valid for protons with 0.2 MeV < T <1 GeV)
e G4MuBetherBlochModel (valid for protons with 7' > 1 GeV)

The limit energy 0.2 MeV is equivalent to the proton limit energy 2M eV because of scaling relation ([enloss.sc]),
which allows simulation for muons with energy below 1 GeV in the same way as for point-like hadrons with spin 1/2
described in the section [en_loss].

For higher energies the G4MuBetherBlochModel is applied, in which leading radiative corrections are taken into
account [KelnerKokoulinPetrukhin97]. Simple analytical formula for the cross section, derived with the logarithmic
are used. Calculation results appreciably differ from usual elastic ;. — e scattering in the region of high energy transfers
me << T < T4, and give non-negligible correction to the total average energy loss of high-energy muons. The
total cross section is written as following:

B a 2¢ dm . E(E — ¢)
o(E,€) =opp(E,¢) [1 + 27Tln <1 + me) In (mi(% gy )] ; (4.207)

here o (F, €) is the differential cross sections, o (FE, €) g is the Bethe-Bloch cross section ([hion.i]), m, is the electron
mass, m,, is the muon mass, F is the muon energy, ¢ is the energy transfer, ¢ = w + T', where T is the electron kinetic
energy and w is the energy of radiative gamma.
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For computation of the truncated mean energy loss ([comion.a]) the partial integration of the expression (4.207) is
performed

S(E, 6'u,p) = SBB(Ey €up) + SRC(Ea 6'u,p)a €up = min(emaw7 €cut)7

where term Spp is the Bethe-Bloch truncated energy loss ([hion.d]) for the interval of energy transfer (0 — €,,,) and
term Sic is a correction due to radiative effects. The function become smooth after log-substitution and is computed
by numerical integration

In€yp
Suc(Breu) = [ E(o(B.€) = aup(E.)dline),
Ineq
where lower limit €; does not effect result of integration in first order and in the class G4MuBetheBlochModel the
default value €, = 100keV is used.

For computation of the discrete cross section ([comion.b]) another substitution is used in order to perform numerical
integration of a smooth function

1/€eup
o(E) = /1 2o(E,e)d(1/e).

/€maz

The sampling of energy transfer is performed between 1/€,, and 1/€p,q, using rejection constant for the function
€20(E,€). After the successful sampling of the energy transfer, the direction of the scattered electron is generated
with respect to the direction of the incident particle. The energy of radiative gamma is neglected. The azimuthal
electron angle ¢ is generated isotropically. The polar angle @ is calculated from energy-momentum conservation. This
information is used to calculate the energy and momentum of both scattered particles and to transform them into the
global coordinate system.

4.9.2 Bremsstrahlung

Bremsstrahlung dominates other muon interaction processes in the region of catastrophic collisions (v > 0.1 ), that is
at “moderate” muon energies above the kinematic limit for knock—on electron production. At high energies (£ > 1
TeV) this process contributes about 40% of the average muon energy loss.

Differential Cross Section

The differential cross section for muon bremsstrahlung (in units of cm? /(g GeV)) can be written as

do(E,e,Z,A) 16 m 4 1 3,
— = BaNA(’ure) GAZ(Z®n+<I>e)(1 U+4U)

= 0 if €>e€enax=FE—p,

where p and m are the muon and electron masses, Z and A are the atomic number and atomic weight of the material,
and N4 is Avogadro’s number. If F and T are the initial total and kinetic energy of the muon, and e is the emitted
photon energy, then e = FE — E’ and the relative energy transfer v = ¢/ FE.

®,, represents the contribution of the nucleus and can be expressed as

o — lnBZ‘1/3(u+5(D;x/€—2))_
" D! (m 4+ 6\/eBZ~1/3) '

= 0 if negative.
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®. represents the contribution of the electrons and can be expressed as
B’ Z72 /3 i

17—2 ;
/ /3

= 0 if e>e=E/(1+p?/2mE);

max

d,= In

= 0 if negative.
In ®,, and ®., for all nuclei except hydrogen,
5= p2e/2BE" = i*v/2(E — e);
D! = DU=Y2) D, =1.54A4%%7;
B= 183, B'=1429, /e =1.648(721271).
For hydrogen (Z=1) B = 202.4, B’ = 446, D), = D,,.

These formulae are taken mostly from Refs. [KKP95] and [KelnerKokoulinPetrukhin97]. They include improved
nuclear size corrections in comparison with Ref. [PS68] in the region v ~ 1 and low Z. Bremsstrahlung on atomic
electrons (taking into account target recoil and atomic binding) is introduced instead of a rough substitution Z(Z +1).
A correction for processes with nucleus excitation is also included /ABB94].

Applicability and Restrictions of the Method

The above formulae assume that:
1. E > u, hence the ultrarelativistic approximation is used;
2. E < 10?Y eV; above this energy, LPM suppression can be expected;

3. v > 1079 ; below 10~% Ter-Mikaelyan suppression takes place. However, in the latter region the cross section
of muon bremsstrahlung is several orders of magnitude less than that of other processes.

The Coulomb correction (for high Z) is not included. However, existing calculations /AB97] show that for muon
bremsstrahlung this correction is small.

Continuous Energy Loss

The restricted energy loss for muon bremsstrahlung (dE/dx),es; With relative transfers v = €/(T + 1) < veut can be

calculated as follows :
dE' €cut Vcut
() :/ eo(E,¢€)de = (T—i—u)/ eo(E,e)dv.
dz rest 0 0

If the user cut veys > Vmax = 1/(T + u), the total average energy loss is calculated. Integration is done using
Gaussian quadratures, and binning provides an accuracy better than about 0.03% for T' = 1 GeV, Z = 1. This rapidly
improves with increasing 7" and Z.

Total Cross Section

The integration of the differential cross section over de gives the total cross section for muon bremsstrahlung:

€max In vmax
Ttot (F, €cut) :/ o(E,€)de :/ ea(E, e)d(Inv),
€ I§

cut N Veut

where Viax = T/(T + ). If veut > Vmax » Otot = 0.
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Sampling

The photon energy ¢, is found by numerically solving the equation :

P :/mx J(E,e,Z,A)de// mXJ(E,e,Z,A)de.

P cut

Here P is the random uniform probability, €pmax = T, and €cuy = (T + f) - Veut- Vmin.cut = 1072 is the minimal
relative energy transfer adopted in the algorithm.

For fast sampling, the solution of the above equation is tabulated at initialization time for selected Z, T" and P. During
simulation, this table is interpolated in order to find the value of €, corresponding to the probability P.

The tabulation routine uses accurate functions for the differential cross section. The table contains values of

zp = In(vp/Vmax)/ In(Vmax/Veut ) s (4.208)

where v, = €,/(T + p) and vmax = T/(T + ). Tabulation is performed in the range 1 < Z < 128,1 < T <
1000 PeV, 10~° < P < 1 with constant logarithmic steps. Atomic weight (which is a required parameter in the cross
section) is estimated here with an iterative solution of the approximate relation:

A=7Z(2+0.015A%3).
For Z =1, A = 11is used.

To find z,, (and thus €,) corresponding to a given probability P, the sampling method performs a linear interpolation

inln Z and In T, and a cubic, 4 point Lagrangian interpolation in In P. For P < Py, a linear interpolation in (P, z)

coordinates is used, with z = 0 at P = 0. Then the energy ¢, is obtained from the inverse transformation of (4.208) :
€p = (T + ,u)vmax (Umax/vcut)zp

The algorithm with the parameters described above has been tested for various Z and T'. It reproduces the differential
cross section to within 0.2 — 0.7 % for T' > 10 GeV. The average total energy loss is accurate to within 0.5%. While
accuracy improves with increasing 7', satisfactory results are also obtained for 1 < 7" < 10 GeV.

It is important to note that this sampling scheme allows the generation of €, for different user cuts on v which are

above Upin.cut- 10 perform such a simulation, it is sufficient to define a new probability variable

P/ =P Otot (vuscr.cut)/atot (vmin.cut)

and use it in the sampling method. Time consuming re-calculation of the 3-dimensional table is therefore not required
because only the tabulation of oot (Vyser.cut) is needed.

The small-angle, ultrarelativistic approximation is used for the simulation (with about 20% accuracy at 0 < 6* ~ 1)
of the angular distribution of the final state muon and photon. Since the target recoil is small, the muon and photon
are directed symmetrically (with equal transverse momenta and coplanar with the initial muon):
Piy=0Dpiy, where pi,=FE0, pi,=c¢b,.
6,, and 6., are muon and photon emission angles. The distribution in the variable r = E#6., /1 is given by
f(rydr ~ rdr/(141%)2.

Random angles are sampled as follows:

= Ee,‘/7

where

1ia7 a:§%7 Tmax = min(1, E'/€) - E6"/p,

max

and £ is a random number uniformly distributed between 0 and 1.
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4.9.3 Positron - Electron Pair Production by Muons

Direct electron pair production is one of the most important muon interaction processes. At TeV muon energies,
the pair production cross section exceeds those of other muon interaction processes over a range of energy transfers
between 100 MeV and 0.1E,,. The average energy loss for pair production increases linearly with muon energy, and
in the TeV region this process contributes more than half the total energy loss rate.

To adequately describe the number of pairs produced, the average energy loss and the stochastic energy loss distribu-
tion, the differential cross section behavior over an energy transfer range of 5 MeV < ¢ < 0.1 -E,, must be accurately
reproduced. This is is because the main contribution to the total cross section is given by transferred energies 5 MeV
<€ <0.01 -E,, and because the contribution to the average muon energy loss is determined mostly in the region
0.001-F,<e<0.1-E,.

For a theoretical description of the cross section, the formulae of Ref. [KokoulinPetrukhin70] are used, along with a
correction for finite nuclear size [RPKokoulinAAPetrukhin71]. To take into account electron pair production in the
field of atomic electrons, the inelastic atomic form factor contribution of Ref. [Kelner98] is also applied.

Differential Cross Section

Definitions and Applicability

In the following discussion, these definitions are used:
* m and p are the electron and muon masses, respectively
* F = FE,, is the total muon energy, /' =T +
e Z and A are the atomic number and weight of the material

* € is the total pair energy or, approximately, the muon energy loss (E — E’)

cv=¢/E
e c=2718...
o A* =183.

The formula for the differential cross section applies when:

*E,>»pFE >2-5GeV)and E, < 10'® — 10'7 eV. If muon energies exceed this limit, the LPM (Landau
Pomeranchuk Migdal) effect may become important, depending on the material

* the muon energy transfer ¢ lies between €, = 4m and €y = E, — 37‘/5 wz /3 although the formal lower
limit is € > 2 m, and the formal upper limit requires E;/L > p.

e Z <40 -50. For higher Z, the Coulomb correction is important but has not been sufficiently studied theoreti-
cally.

Formulae

The differential cross section for electron pair production by muons o(Z, A, E, €) can be written as :

4 Z(Z + 1—wv
o(Z.AE.€)= (TC) N (arg)?

pmax
/ G(Z,E,v, p)dp, (4.209)
0
where

G(Z,E,v,p) = ®c + (m/n)*®,,
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_ !/
(be,p, - BevﬂLe,u

and
®., =0 whenever ., <O0.

B, and B,, do not depend on Z, A, and are given by

— 2 _
Be= [+ )1+ ) + €6+ A (14 ) + 00 - 6 %)

! [(3—p%) +28(1+p%)] for &>10%

B, ~ —
2¢

By, = {(1 +0°) (1 + 3;) — %(1 +28)(1 - pﬂ In(1+¢)

— 2 _
=0 2o - 2

ol

B,~2[5-p*)+B0B+p?)] for £<1077%

Also,
2

I A2 Y
¢ - 2my/eA* Z7 V3 (14 &) (1 +Ye)
Ev(l - p?)

)

1 3mZ/3 ?
|1 1 1+Y,
jin |1+ (M=) e onn)

I’ —In (u/m)A*Z7 13\ /(1+1/6)(1 +Y,)
me 2m/eA*Z 131+ €)(1+Y,,)
1+
Ev(l—p?)

“In B 28\ /(1 +1/6)(1 + YH)] .

For faster computing, the expressions for L’e7 are further algebraically transformed. The functions L’e7 , include the
nuclear size correction [RPKokoulinAAPetrukhin71] in comparison with parameterization [ KokoulinPetrukhin70] :
v — 5—p*+48(1+p% .
“T T 3B)MB 1/ — 7 282 )

v 4+ p2+38(1+p?) .
G2 B+ 1 - 507

Pmax = [1 — 6p%/E*(1 —v)]\/1 — 4m/Ewv.
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Comment on the Calculation of the Integral [dp in Eq.(4.209)

Pmax

The integral | G(Z, E, v, p) dp is computed with the substitutions:
0
t=In(l-p),
l—p= exp(t),
1+p= 2—-exp(t),
L—p*= e'(2-¢).
After that,
Pmax
/ G(Z,E,v,p)dp = / G(Z,E,v,p) e dt, (4.210)
0 tmin

where

dm 1242 4
dm 127 (1 4m
€ EFE' €
2 4 ’
14 (1o -2
EE' ¢

To compute the integral of Eq.(4.210) with an accuracy better than 0.5%, Gaussian quadrature with N = 8 points is
sufficient.

tmin =In

The function ((E, Z) in Eq.(4.209) serves to take into account the process on atomic electrons (inelastic atomic form
factor contribution). To treat the energy loss balance correctly, the following approximation, which is an algebraic
transformation of the expression in Ref. [Kelner98], is used:

E/p
0.073In ——F 0926
(B, 7) = 1+mZ2BE/pu
0.058 In Elp —0.14

L+ 2 BB/
C(E,Z) =0 if the numerator is negative.
ForE <35u, ((E,Z) =0.Alsovy; = 1.95-107° and 72 = 5.30 - 1075.

The above formulae make use of the Thomas-Fermi model which is not good enough for light elements. For hydrogen
(Z = 1) the following parameters must be changed:

o« A* =183 = 202.4;
ey =195-107° = 4.4-107%;
* v =530-10"° = 4.8-107°.

Total Cross Section and Restricted Energy Loss

If the user’s cut for the energy transfer e, is greater than ey, the process is represented by continuous restricted
energy loss for interactions with ¢ < €., and discrete collisions with € > €.y;. Respective values of the total cross
section and restricted energy loss rate are defined as:

Feor = / " (B¢ de;  (dE/dz) esty = / " co(B, ) de.

cut min

For faster computing, In € substitution and Gaussian quadratures are used.
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Sampling of Positron - Electron Pair Production
The eTe™ pair energy ¢p, is found numerically by solving the equation
P = /Gmax o(Z,A,T,e€)de //emax o(Z,A,T,€)de (4.211)
ep cut
or

Ep €max
1-P= / o(Z,A,T,¢)de // o(Z,A,T,e€)de (4.212)
c cut

ut

To reach high sampling speed, solutions of Eqs.(4.211), (4.212) are tabulated at initialization time. Two 3-dimensional
tables (referred to here as A and B) of ep(P, T, Z) are created, and then interpolation is used to sample €p.

The number and spacing of entries in the table are chosen as follows:

* aconstant increment in In 7" is chosen such that there are four points per decade in the range Ti,i, — Tmax. The
default range of muon kinetic energies in Geant4 is 7' = 1 GeV — 1000 PeV.

* a constant increment in In Z is chosen. The shape of the sampling distribution does depend on Z, but very
weakly, so that eight points in the range 1 < Z < 128 are sufficient. There is practically no dependence on the
atomic weight A.

* for probabilities P < 0.5, Eq.(4.211) is used and Table A is computed with a constant increment in In P in the
range 107 < P < 0.5. The number of points in In P for Table A is about 100.

o for P > 0.5, Eq.(4.212) is used and Table B is computed with a constant increment in In(1 — P) in the range
107° < (1 — P) < 0.5. In this case 50 points are sufficient.

The values of In(ep — cut) are stored in both Table A and Table B.
To create the “probability tables” for each (7', Z) pair, the following procedure is used:

* atemporary table of ~ 2000 values of € - 0(Z, A, T, €) is constructed with a constant increment (~ 0.02) in In €
in the range (cut, €max)- € is taken in the middle of the corresponding bin in In e.

¢ the accumulated cross sections
In €max
o1 = / eo(Z,A,T,e)d(lne)
Ine
and

Ine
o9 = / ea(Z,A,T,e)d(lne)
1

n(cut)

are calculated by summing the temporary table over the values above In e (for o1) and below In € (for o5) and
then normalizing to obtain the accumulated probability functions.

* finally, values of In(ep — cut) for corresponding values of In P and In(1 — P) are calculated by linear interpola-
tion of the above accumulated probabilities to form Tables A and B. The monotonic behavior of the accumulated
cross sections is very useful in speeding up the interpolation procedure.

The random transferred energy corresponding to a probability P, is then found by linear interpolation in In Z and
In T, and a cubic interpolation in In P for Table A or in In(1 — P) for Table B. For P < 10~7 and (1 — P) < 1072,
linear extrapolation using the entries at the edges of the tables may be safely used. Electron pair energy is related to
the auxiliary variable = In(ep — cut) found by the trivial interpolation ep = e® + cut.

Similar to muon bremsstrahlung (section [secmubrem]), this sampling algorithm does not re-initialize the tables for
user cuts greater than cut,,;,. Instead, the probability variable is redefined as

Pl - PUtot (CUt'LLse7')/0tot (CUtmin)7
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and P’ is used for sampling.

In the simulation of the final state, the muon deflection angle (which is of the order of m/F) is neglected. The
procedure for sampling the energy partition between et and e~ and their emission angles is similar to that used for
the v — et e~ conversion.

4.9.4 Muon Photonuclear Interaction

The inelastic interaction of muons with nuclei is important at high muon energies (£ > 10 GeV), and at relatively
high energy transfers v (v/E > 1072). It is especially important for light materials and for the study of detector
response to high energy muons, muon propagation and muon-induced hadronic background. The average energy loss
for this process increases almost lineary with energy, and at TeV muon energies constitutes about 10% of the energy
loss rate.

The main contribution to the cross section o (E, v/) and energy loss comes from the low Q?-region ( Q% < 1 GeV?).
In this domain, many simplifications can be made in the theoretical consideration of the process in order to obtain
convenient and simple formulae for the cross section. Most widely used are the expressions given by Borog and
Petrukhin [BorogPetrukhin75], and Bezrukov and Bugaev [BBS8I]. Results from these authors agree within 10% for
the differential cross section and within about 5% for the average energy loss, provided the same photonuclear cross
section, o, , is used in the calculations.

Differential Cross Section

The Borog and Petrukhin formula for the cross section is based on:
* Hand’s formalism [Han63] for inelastic muon scattering,

* a semi-phenomenological inelastic form factor, which is a Vector Dominance Model with parameters estimated
from experimental data, and

* nuclear shadowing effects with a reasonable theoretical parameterization [BCG72].

For £ > 10 GeV, the Borog and Petrukhin cross section, differential in transferred energy, is

o(E,v) = U()®(E,v), 4.213)
o Aeﬁ‘NAV 1
U(v) 1 N ()=, (4.214)
F2(] — 2,2
v? 27 (u2 5 (l i A;(le— v))
<I>(E,v)1)1+[1v+2(1+A2>}ln 1+@ 1_’_i+@ , (4.215)
A 2M A

where v is the energy lost by the muon, v = v/E, and p and M are the muon and nucleon (proton) masses, respectively.
A is a Vector Dominance Model parameter in the inelastic form factor which is estimated to be A% = 0.4 GeVZ.

For A.g, which includes the effect of nuclear shadowing, the parameterization /BCG72]
Ao = 0.22A + 0.78A%89

is chosen.
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A reasonable choice for the photonuclear cross section, o.,x, is the parameterization obtained by Caldwell et al.
[eal79] based on the experimental data on photoproduction by real photons:

oyn = (492 +11.1In K + 151.8/VK) - 107%*cm? K in GeV. (4.216)

The upper limit of the transferred energy is taken to be vp.x = F — M/2. The choice of the lower limit v, is
less certain since the formula (4.213), (4.214), (4.215) is not valid in this domain. Fortunately, v,;, influences the
total cross section only logarithmically and has no practical effect on the average energy loss for high energy muons.
Hence, a reasonable choice for vp,;, is 0.2 GeV.

In Eq.(4.214), Acg and o, N appear as factors. A more rigorous theoretical approach may lead to some dependence
of the shadowing effect on v and E; therefore in the differential cross section and in the sampling procedure, this
possibility is forseen and the atomic weight A of the element is kept as an explicit parameter.

The total cross section is obtained by integration of Eq.(4.213) between vy, and v ax; to facilitate the computation,
a In(v)—substitution is used.

Sampling
Sampling the Transferred Energy

The muon photonuclear interaction is always treated as a discrete process with its mean free path determined by the
total cross section. The total cross section is obtained by the numerical integration of Eq.(4.213) within the limits vy,
and vy,.x. The process is considered for muon energies 1GeV < T < 1000PeV, though it should be noted that above
100 TeV the extrapolation (Eq.(4.216)) of o,y may be too crude. The random transferred energy, v, is found from
the numerical solution of the equation :

P:/ U(E,V)dy// ( o(E,v)dv . 4.217)

min

Here P is the random uniform probability, with v = E — M/2 and vpin = 0.2 GeV. For fast sampling, the
solution of Eq.(4.217) is tabulated at initialization time. During simulation, the sampling method returns a value
of v, corresponding to the probability P, by interpolating the table. The tabulation routine uses Eq.(4.213) for the
differential cross section. The table contains values of

Zp = In(Vp/Vimax)/ 10 (Vmax/Vmin), (4.218)

calculated at each point on a three-dimensional grid with constant spacings in In(7"), In(A4) and In(P) . The sampling
uses linear interpolations in In(7T") and In(A), and a cubic interpolation in In(P). Then the transferred energy is
calculated from the inverse transformation of Eq.(4.218), v/, = Vmax (Vmax/Vmin)*?. Tabulated parameters reproduce
the theoretical dependence to better than 2% for T' > 1 GeV and better than 1% for 7" > 10 GeV.

Sampling the Muon Scattering Angle

According to Refs. [BorogPetrukhin75 ][ munu.bor77], in the region where the four-momentum transfer is not very
large (Q2 < 3GeV?), the ¢ — dependence of the cross section may be described as:

do (1 —t/tmax)

E ~ t(l + t/Uz)(l + t/m%) [(1 - y)(l - tmin/t) + yz/QL (4219)

where t is the square of the four-momentum transfer, Q? = 2(EE’ — PP’ cos) — u?). Also, tmin = (uy)?/(1 —v),
y=v/F and ty.x = 2Mv. v = E — E’ is the energy lost by the muon and E is the total initial muon energy. M is
the nucleon (proton) mass and m3 = A% ~ 0.4 GeV? is a phenomenological parameter determing the behavior of the

4.9. Muon incident 135



Physics Reference Manual, Release 10.4

inelastic form factor. Factors which depend weakly, or not at all, on ¢ are omitted. To simulate random ¢ and hence the
random muon deflection angle, it is convenient to represent Eq.(4.219) in the form :

o(t) ~ f(t)g(t),
where
1
)= —,
1® t(14t/t1)
o(t) = L= t/tmax (1= 4)(1 = tmin/t) + y*/2

L+t/ts (I-y)+y?/2 ’

and
t; = min(v?, m2) ty = max(v?, md). (4.220)
tp is found analytically from Eq.(4.220) :
tmaxtl

tP: )

P
tmax(tmin + tl) :| ¢
max

tmax +11) | 77—~
( * 1) |:tmin(tmax +tl>

where P is a random uniform number between 0 and 1, which is accepted with probability g(¢). The conditions of
Eq.(4.220) make use of the symmetry between 2 and m3 in Eq.(4.219) and allow increased selection efficiency, which
is typically > 0.7. The polar muon deflection angle € can easily be found from'.

tp — tmi
2 P min
S 0/2) = .
S 0/2) = TEE =2 —atom

The hadronic vertex is generated by the hadronic processes taking into account the four-momentum transfer.

4.10 Atomic Relaxation

4.10.1 Atomic relaxation

Atomic relaxation processes can be induced by any ionisation process that leaves the interested atom in an excited
state (i.e. with a vacancy in its electronic structure). Processes inducing atomic relaxation in Geant4 are photoelectric
effect, Compton and ionization (both Standard and Lowenergy).

Geant4 uses the Livermore Evaluation Atomic Data Library EADL [STPerkins], that contains data to describe the
relaxation of atoms back to neutrality after they are ionised. It is assumed that the binding energy of all subshells
(from now on shells are the same for neutral ground state atoms as for ionised atoms /ST Perkins]).

Data in EADL includes the radiative and non-radiative transition probabilities for each sub-shell of each element,
for Z=1 to 100. The atom has been ionised by a process that has caused an electron to be ejected from an atom,
leaving a vacancy or “hole” in a given subshell. The EADL data are then used to calculate the complete radiative and
non-radiative spectrum of X-rays and electrons emitted as the atom relaxes back to neutrality.

Non-radiative de-excitation can occur via the Auger effect (the initial and secondary vacancies are in different shells)
or Coster-Kronig effect (transitions within the same shell).

! This convenient formula has been shown to the authors by D.A. Timashkov.
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Fluorescence

The simulation procedure for the fluorescence process is the following:

1. If the vacancy shell is not included in the data, energy equal to the binding energy of the shell is deposited
locally

2. If the vacancy subshell is included in the data, an outer subshell is randomly selected taking into account the
relative transition probabilities for all possible outer subshells.

3. In the case where the energy corresponding to the selected transition is larger than a user defined cut value (equal
to zero by default), a photon particle is created and emitted in a random direction in 47, with an energy equal to
the transition energy, provided by EADL.

4. the procedure is repeated from step 1, for the new vacancy subshell.

The final local energy deposit is the difference between the binding energy of the initial vacancy subshell and the sum
of all transition energies which were taken by fluorescence photons. The atom is assumed to be initially ionised with
an electric charge of +1e.

Sub-shell data are provided in the EADL data bank [STPerkins| for Z=1 through 100. However, transition probabilities
are only explicitly included for Z=6 through 100, from the subshells of the K, L, M, N shells and some O subshells.
For subshells O,P,Q: transition probabilities are negligible (of the order of 0.1%) and smaller than the precision with
which they are known. Therefore, for the time being, for Z=1 through 5, only a local energy deposit corresponding
to the binding energy B of an electron in the ionised subshell is simulated. For subshells of the O, P, and Q shells, a
photon is emitted with that energy B.

Auger process

The Auger effect is complimentary to fluorescence, hence the simulation process is the same as for the fluorescence,
with the exception that two random shells are selected, one for the transition electron that fills the original vacancy,
and the other for selecting the shell generating the Auger electron.

Subshell data are provided in the EADL data bank [STPerkins] for Z = 6 through 100. Since in EADL no data for
elements with Z < 5 are provided, Auger effects are only considered for 5 < Z < 100 and always due to the EADL
data tables, only for those transitions which have a probabiliy to occur > 0.1% of the total non-radiative transition
probability. EADL probability data used are, however, normalized to one for Fluorescence + Auger.

PIXE

PIXE (Particle Induced X-Ray Emission) can be simulated for ionisation continuous processes perfomed by ions.
Ionised shells are selected randomly according the ionisation cross section of each shell once known the (continuous)
energy loss along the step [en_loss].

Different shell ionisation cross sections models are available in different energy ranges:
» ECPSSR:cite:ecpssrK,:cite:ecpssrL internal Geant4 calculation for K and L shells.

* ECPSSR calculations from Factor Form according to Reis:cite:reis for K and L shells from 0.1 to 100 MeV and
for M shells from 0.1 to 10 MeV.

» empirical “reference” K-shell values from Paul for protons:cite: PaulP and for for alphas:cite: PaulAlpha. Ener-
gies ranges are 0.1 - 10 MeV/amu circa, depending on the atomic number that varies between 4 and 32.

 semi-empirical L-subshell values from Orlic:cite:orlic_semiemp. Energy Range 0.1-10 MeV for Z between 41
and 92.

Outside Z and energy of limited shell ionisation cross sections, the ECPSSR internal calculation method is applied.

Please refer to ref.:cite:mantero and original papers to have detailed information of every model.
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4.11 Geant4-DNA

4.11.1 Geant4-DNA processes and models

The Geant4-DNA processes and models (theoretical, semi-empirical) are adapted for track structure simulations in
liquid water down to the eV scale. They are described on a dedicated web site: http://geant4-dna.org, which includes
a full list of publications.

Any report or published results obtained using the Geant4-DNA software shall cite the following publication : Com-
parison of Geant4 very low energy cross section models with experimental data in water, S. Incerti et al., Med. Phys.
37 (2010) 4692-4708

4.12 Microelectronics

4.12.1 The MicroElec! extension for microelectronics applications

The Geant4-MicroElec extension [/nc], developed by CEA, aims at modeling the effect of ionizing radiation in highly
integrated microelectronic components. It describes the transport and generation of very low energy electrons by
incident electrons, protons and heavy ions in silicon.

All Geant4-MicroElec physics processes and models simulate step-by-step interactions of particles in silicon down
to the eV scale; they are pure discrete processes. Table [muelec:proc] summarizes the list of physical interactions
per particle type that can be modeled using the Geant4-MicroElec extension, along with the corresponding process
classes, model classes, low energy limit applicability of models, high energy applicability of models and energy
threshold below which the incident particle is killed (stopped and the kinetic energy is locally deposited). All models
are interpolated. For now, they are valid for silicon only (use the G4_Si Geant4-NIST material).

Particle Interaction Process, Model, Range Kill

Electron Elastic scattering | G4MicroElastic G4MicroElecElasticModel 16.7 eV (*)
5eV < E < 100 MeV

Electron Tonisation G4MicroEleclnelastic G4MicroElecInelasticModel | —
16.7eV < F < 100 MeV

Protons, ions | Ionisation G4MicroElecInelastic G4MicroElecInelasticModel | —
50keV/u E < 23 MeV/u

Table: List of G4MicroElec physical interactions
(*) because of the low energy limit applicability of the inelastic model.

All details regarding the physics and formula used for these processes and models and available in /[AV/2] for incident
electrons and in [AVP[2] for incident protons and heavy ions.

4.13 Polarized Electron/Positron/Gamma Incident

4.13.1 Introduction

With the EM polarization extension it is possible to track polarized particles (leptons and photons). Special emphasis
will be put in the proper treatment of polarized matter and its interaction with longitudinal polarized electrons/positrons

! Previously called MuElec.
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or circularly polarized photons, which is for instance essential for the simulation of positron polarimetry. The imple-
mentation is base on Stokes vectors [McMaster1961]. Further details can be found in [Laihem_thesis].

In its current state, the following polarization dependent processes are considered
* Bhabha/Mgller scattering,
¢ Positron Annihilation,
» Compton scattering,
e Pair creation,
* Bremsstrahlung.

Several simulation packages for the realistic description of the development of electromagnetic show-
ers in matter have been developed. A prominent example of such codes is EGS (Electron Gamma
Shower):cite:egs4. For this simulation framework extensions with the treatment of polarized particles exist [polln-
tro:Floettmann:thesis][pollntro:Namito:1993sv][polIntro:Liu:2000ey]; the most complete has been developed by
K. Flottmann [pollntro:Floettmann:thesis]. It is based on the matrix formalism [McMaster1961], which enables a
very general treatment of polarization. However, the Flottmann extension concentrates on evaluation of polarization
transfer, i.e. the effects of polarization induced asymmetries are neglected, and interactions with polarized media are
not considered.

Another important simulation tool for detector studies is Geant3 [pollntro:Brun:1985ps]. Here also some effort has
been made to include polarization [pollntro:Alexander:2003fh][pollntro:Hoogduin:thesis], but these extensions are
not publicly available.

In general the implementation of polarization in this EM polarization library follows very closely the approach by
K. Flsttmann [pollntro:Floettmann:thesis]. The basic principle is to associate a Stokes vector to each particle and
track the mean polarization from one interaction to another. The basics for this approach is the matrix formalism as
introduced in [McMaster1961].

Stokes vector

The Stokes vector [pollntro:Stokes:1852][McMaster1961] is a rather simple object (in comparison to e.g. the spin
density matrix), three real numbers are sufficient for the characterization of the polarization state of any single electron,
positron or photon. Using Stokes vectors all possible polarization states can be described, i.e. circular and linear
polarized photons can be handled with the same formalism as longitudinal and transverse polarized electron/positrons.

The Stokes vector can be used also for beams, in the sense that it defines a mean polarization.

In the EM polarization library the Stokes vector is defined as follows:

Photons Electrons
&1 | linear polarization polarization in x direction
&> | linear polarization but 7 /4 to right | polarization in y direction
&3 | circular polarization polarization in z direction

This definition is assumed in the particle reference frame, i.e. with the momentum of the particle pointing to the z
direction, cf. also next section about coordinate transformations. Correspondingly a 100% longitudinally polarized
electron or positron is characterized by

0
0 |
+1

£

where £1 corresponds to spin parallel (anti parallel) to particle’s momentum. Note that this definition is similar, but
not identical to the definition used in McMaster [McMaster1961].
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Many scattering cross sections of polarized processes using Stokes vectors for the characterization of initial and final
states are available in [McMaster1961]. In general a differential cross section has the form

do(¢™M,¢@, g1 ¢@)
ds) ’

i.e. it is a function of the polarization states of the initial particles C(l) and ¢ ) as well as of the polarization states of
the final state particles & Y and 3 @ (in addition to the kinematic variables F, 0, and ¢).

Consequently, in a simulation we have to account for
* Asymmetries:

¢ Polarization of beam (¢ (1)) and target ( (2)) can induce azimuthal and polar asymmetries, and may also influence
on the total cross section (Geant4: GetMeanFreePath()).

* Polarization transfer / depolarization effects

* The dependence on the final state polarizations defines a possible transfer from initial polarization to final state
particles.

Transfer matrix

Using the formalism of McMaster, differential cross section and polarization transfer from the initial state (¢ (1)) to
one final state particle (§ (1)) are combined in an interaction matrix 7'

(@) 1
(&0 )=7(cb)-

where I and O are the incoming and outgoing currents, respectively. In general the 4 x 4 matrix T depends on the
target polarization ¢ (2) (and of course on the kinematic variables E, 6, ¢). Similarly one can define a matrix defining
the polarization transfer to second final state particle like

0 .
<é”>:T(<®>'

In this framework the transfer matrix 7" is of the form

S A Ay As

Py My My Mgz
Py, My My Mso
P3 Mz Mas Mss

The matrix elements 7;; can be identified as (unpolarized) differential cross section (.5), polarized differential cross
section (A;), polarization transfer (}/;;), and (de)polarization (F;). In the Flottmann extension the elements A; and P;
have been neglected, thus concentrating on polarization transfer only. Using the full matrix takes now all polarization
effects into account.

The transformation matrix, i.e. the dependence of the mean polarization of final state particles, can be derived from
the asymmetry of the differential cross section w.r.t. this particular polarization. Where the asymmetry is defined as
usual by

_ o(+1) —o(-1)
o(+1) +o(-1) "

The mean final state polarizations can be determined coefficient by coefficient. In general, the differential cross section
is a linear function of the polarizations, i.e.

do(¢™M,¢@, M) ¢@)
d2

= Qw @)+ Ao co) €W + B o) - €?

T
+EW M ey €P (4.221)
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In this form, the mean polarization of the final state can be read off easily, and one obtains

1
My — = A d 4.222
(&) B e e (¢ ¢(2) an ( )

1

—B . 4.223
B o) (c) c@)) ( )

Note, that the mean polarization states do not depend on the correlation matrix M(C“>,C<2))' In order to account for
correlation one has to generate single particle Stokes vector explicitly, i.e. on an event by event basis. However, this
implementation generates mean polarization states, and neglects correlation effects.

Coordinate transformations

Y
‘ z
photon
S
‘(fy
electron \ e
X

Fig. 4.30: The interaction frame and the particle frames for the example of Compton scattering. The momenta
of all participating particle lie in the x-z-plane, the scattering plane. The incoming photon gives the z direction.
The outgoing photon is defined as particle I and gives the z-direction, perpendicular to the z-axis. The y-axis is
then perpendicular to the scattering plane and completes the definition of a right handed coordinate system called
interaction frame. The particle frame is defined by the Geant4 routine G4ThreeMomemtum::rotateUz().

Three different coordinate systems are used in the evaluation of polarization states:

* World frame The geometry of the target, and the momenta of all particles in Geant4 are noted in the world
frame X, Y, Z (the global reference frame, GRF). It is the basis of the calculation of any other coordinate
system.

« Particle frame Each particle is carrying its own coordinate system. In this system the direction of motion
coincides with the z-direction. Geant4 provides a transformation from any particle frame to the World frame by
the method G4ThreeMomemtum: : rotateUz (). Thus, the y-axis of the particle reference frame (PRF) lies
in the X-Y -plane of the world frame.

The Stokes vector of any moving particle is defined w.r.t. the corresponding particle frame. Particles at rest
(e.g. electrons of a media) use the world frame as particle frame.

¢ Interaction frame For the evaluation of the polarization transfer another coordinate system is used, defined
by the scattering plane, cf.fig. [pol.interframe]. There the z-axis is defined by the direction of motion of the
incoming particle. The scattering plane is spanned by the z-axis and the x-axis, in a way, that the direction
of particle 1 has a positive x component. The definition of particle I depends on the process, for instance in
Compton scattering, the outgoing photon is referred as particle 1'.

All frames are right handed.

! Note, for an incoming particle travelling on the Z-axis (of GRF), the y-axis of the PRF of both outgoing particles is parallel to the y-axis of
the interaction frame.
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Polarized beam and material

Polarization of beam particles is well established. It can be used for simulating low-energy Compton scattering of
linear polarized photons. The interpretation as Stokes vector allows now the usage in a more general framework. The
polarization state of a (initial) beam particle can be fixed using standard the ParticleGunMessenger class. For example,
the class G4ParticleGun provides the method SetParticlePolarization(), which is usually accessable via

/gun/polarization <Sx> <Sy> <Sz>

in a macro file.

In addition for the simulation of polarized media, a possibility to assign Stokes vectors to physical volumes is provided
by a new class, the so-called G4PolarizationManager. The procedure to assign a polarization vector to a media, is done
during the detector construction. There the logical volumes with certain polarization are made known to polarization
manager. One example DetectorConstruction might look like follows:

G4double Targetthickness = .010xmm;
G4double Targetradius = 2.5%mm;

G4Tubs xsolidTarget =
new G4Tubs ("solidTarget",
0.0,
Targetradius,
Targetthickness/2,
0.0xdeg,
360.0xdeg );

G4LogicalVolume * logicalTarget =
new G4LogicalVolume (solidTarget,
iron,
"logicalTarget",
0,0,0);

G4VPhysicalVolume * physicalTarget =
new G4PVPlacement (0, G4ThreeVector (0.+mm, O.*mm, O.xmm),
logicalTarget,
"physicalTarget",
worldLogical,
false,
0);

G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();
polMgr—->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));

Once a logical volume is known to the G4PolarizationManager, its polarization vector can be accessed from a macro
file by its name, e.g. the polarization of the logical volume called “logicalTarget” can be changed via

/polarization/volume/set logicalTarget 0. 0. -0.08

Note, the polarization of a material is stated in the world frame.

4.13.2 lonization

Method

The class G4ePolarizedlonization provides continuous and discrete energy losses of polarized electrons and positrons
in a material. It evaluates polarization transfer and — if the material is polarized — asymmetries in the explicit delta
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rays production. The implementation baseline follows the approach derived for the class G4elonization described
in sections [en_loss] and [sec:em.eion]. For continuous energy losses the effects of a polarized beam or target are
negligible provided the separation cut T, is small, and are therefore not considered separately. On the other hand, in
the explicit production of delta rays by Mgller or Bhabha scattering, the effects of polarization on total cross section
and mean free path, on distribution of final state particles and the average polarization of final state particles are taken
into account.

Total cross section and mean free path

Kinematics of Bhabha and Mgller scattering is fixed by initial energy

Ly,
"Y =

me?

and variable

E,, —mc?

€= ——mm—,
2

Ey, —mc

which is the part of kinetic energy of initial particle carried out by scatter. Lower kinematic limit for € is 0, but in order
to avoid divergencies in both total and differential cross sections one sets

€min = T =

B, —mce?’

1

where T,,,;,, has meaning of minimal kinetic energy of secondary electron. And, €y,,x = 1(1/2) for Bhabha(Mgller)
scatterings.

Total Mgller cross section

The total cross section of the polarized Mgller scattering can be expressed as follows

27r72r2 {

M e M (1) ~(2) M (1) ~(2) (1) ~(2) M
[0} C' C‘ ( C C C ) i| b
Gpl ( 1)2( 1) g9 3 63 0L 1 1 2 2 or

where the r, is classical electron radius, and

1 1 -1 /1 24 1—
aé\/l = - _‘_,_u ——x |+ " 17
l—z = ~2 2 272 T
—3+42 Ha-2 2y (—1+2 1-
o — (329497 A-20) 29 (-1429)) (1-a
22 22 T
2(yv=-1) 2z-1)  (1-37) 11—z
M _
oM = 3 + g (4.224)

Total Bhabha cross section

The total cross section of the polarized Bhabha scattering can be expressed as follows

272
o= 2 [+ 0o + (06l + (0 oF]
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where
B 1—x 2(71+3x—6x2+4x3)
I Y ey 3(1+7)°
n —1—5x+12x2—10x3+4x4+—3—96—}—8352—4;103—111(:6)
2(1+7)x (1+7)
n 3+4x—92%+323 -2t 4+ 62 In(x)
3z
o8 2(1—3x+6x2—4x3)+—14+15x—3x2+2x3—91n(x)
k 3(147)° 3(1+7)
n 5+3m—12x2+4x3—|—31n(:v)+7—9x+3x2—m3+6ln(3€)
3(1—|—fy)2 3
B 2 (-143z—62>+42%) —7-32+1822 —82° — 3 In(x)
’ 3(1+7)° 3(1+7)°
L 543z —122% + 423+ 9 In(z) 4.225)
6 (1+7) ’

Mean free path

With the help of the total polarized Mgller cross section one can define a longitudinal asymmetry A} and the trans-
verse asymmetry A} by

M

AM_UL

L _O'M

0

and

M

AMiaT
T — _M-*

)

Similarly, using the polarized Bhabha cross section one can introduce a longitudinal asymmetry AP and the transverse
asymmetry AZ via

and
AB = 9T

These asymmetries are depicted in figures [pol.moller1] and [pol.bhabhal] respectively.

If both beam and target are polarized the mean free path as defined in section [sec:em.eion] has to be modified. In
the class G4ePolarizedlonization the polarized mean free path A\P°! is derived from the unpolarized mean free path
:math:)‘(lambda”{rm unpol}‘ via

)\unpol

14+ ¢ A+ (¢ + 0¢?) ar

)\pol _
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Ein, MeV

Fig. 4.31: Mgller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
Teus = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and 2 MeV.

AT, % (b)

— Ein, MeV
10 15 20

Fig. 4.32: Mgller total cross section asymmetries depending on the total energy of the incoming electron, with a cut-off
T.ut = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.

AL, 1, % (a)

Ein, MeV
0.6 0.8 1.2 1.4 1.6 1.8 2

i

Fig. 4.33: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off Ty = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Between 0.5 MeV and
2 MeV.
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Ar, 7, % (b)

Ein, MeVvV
2

Fig. 4.34: Bhabha total cross section asymmetries depending on the total energy of the incoming positron, with a
cut-off T, = 1keV. Transverse asymmetry is plotted in blue, longitudinal asymmetry in red. Up to 10 MeV.

Sampling the final state

Differential cross section

The polarized differential cross section is rather complicated, the full result can be found in [po-
IIoni:Star:2006][polloni:Ford: 1957][polloni:Stehle:1957]. In G4PolarizedMollerCrossSection the complete result is
available taking all mass effects into account, only binding effects are neglected. Here we state only the ultra-
relativistic approximation (URA), to show the general dependencies.

dU(]yRA _ 1"62 o
dedp — y+1
R —eté MA@ 1)@\ 1
vzere) | coere ( _ ) L
4(6— 1)26 C CS _ 6(1 —6) 2 CQ Cl Cl 4

2
(WD) _ e (2)) 1-et2e ( () _ ¢V <2>> 2-3e+26
+(3<3 C ( —6)6 C C 4(176)26

(4.226)

The corresponding cross section for Bhabha cross section is implemented in G4PolarizedBhabhaCrossSection. In the
ultra-relativistic approximation it reads
B 2
dogra  Te

dedyp y—1 %

1—ete?)’ —1) (2—e+e? 1—¢)?2
( 2626) +C31><<2>( )(46 € €)+<<§1)<§2> Cf”é‘@))( 46)

1 1 2 2 264’3627263 2) (1 2 27364’262
(%)C() Eé)g()) v Jr(( (1) 53 ()) =

(4.227)

where
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Te classical electron radius

g Ek'l / m€C2

€ (EP1 — meCQ)/(E’ﬁ — mec2)

Ey, energy of the incident electron/positron
B, energy of the scattered electron/positron

mec® | electron mass

Stokes vector of the incoming electron/positron

C(Q)
5(1)

Stokes vector of the target electron

Stokes vector of the outgoing electron/positron

13 @) Stokes vector of the outgoing (2nd) electron .

Sampling

The delta ray is sampled according to methods discussed in Chapter 2. After exploitation of the symmetry in the
Mgller cross section under exchanging € versus (1 — ¢), the differential cross section can be approximated by a simple

function fM (e):

1 €
M _ - 0
f (6)_ 621—260
with the kinematic limits given by
Tcut 1
= << Z
€ Ey, — mec? =€=3
A similar function £ (€) can be found for Bhabha scattering:
1 €
B _ 0
f (6) - 62 1— €o
with the kinematic limits given by
Ten
€ = out <e<l1

Ey, — mec?
The kinematic of the delta ray production is constructed by the following steps:

1. eis sampled from f(e)

2. calculate the differential cross section, depending on the initial polarizations ¢ M) and ¢ @),

3. eis accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The ¢ is diced uniformly.
5. ¢ is determined from the differential cross section, depending on the initial polarizations ¢ (1) and ¢ 2)

Note, for initial states without transverse polarization components, the ¢ distribution is always uniform. In figure

[pol.moller2] the asymmetries indicate the influence of polarization. In general the effect is largest around € = %

After both ¢ and € are known, the kinematic can be constructed fully. Using momentum conservation the momenta of
the scattered incident particle and the ejected electron are constructed in global coordinate system.
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A% Moller asymmetries
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Fig. 4.35: Differential cross section asymmetries in % for Mgller scattering ( red - Azz(e€), green - Ax x (€), blue -
Ay (€), lightblue - Azx(€))

A% Bhabha asymmetries
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Fig. 4.36: Differential cross section asymmetries in % for Bhabha scattering ( red - Az~ (¢), green - Ax x (¢), blue -
Ayy (6), lightblue -Azx (6))
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Polarization transfer

After the kinematics is fixed the polarization properties of the outgoing particles are determined. Using the dependence
of the differential cross section on the final state polarization a mean polarization is calculated according to method
described in section [sec:pol.intro].

The resulting polarization transfer functions €§1,2) (€) are depicted in figures [pol.moller3] and [pol.bhabha3].

T Beam P=1 <> Target P=1
1

0.75
0.5
0.25

-0.5

Fig. 4.37: Polarization transfer functions in Mgller scattering. Longitudinal polarization §§2) of electron with energy

E,, in blue; longitudinal polarization fél) of second electron in red. Kinetic energy of incoming electron T}, =
10MeV

T Beam P=1 <> Target P=-1

Fig. 4.38: Polarization transfer functions in Mgller scattering. Longitudinal polarization &gz) of electron with energy

E,, in blue; longitudinal polarization fgl) of second electron in red. Kinetic energy of incoming electron T}, =
10MeV

4.13.3 Positron - Electron Annihilation

Method

The class G4eplusPolarizedAnnihilation simulates annihilation of polarized positrons with electrons in a material.
The implementation baseline follows the approach derived for the class G4eplusAnnihilation described in section
[sec:em.annil]. It evaluates polarization transfer and — if the material is polarized — asymmetries in the produced
photons. Thus, it takes the effects of polarization on total cross section and mean free path, on distribution of final
state photons into account. And calculates the average polarization of these generated photons. The material electrons
are assumed to be free and at rest.
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T Beam P = 1 <> Target P = 1

0.5

Fig. 4.39: Polarization Transfer in Bhabha scattering. Longitudinal polarization §§2) of electron with energy F,,, in

blue; longitudinal polarization fgl) of scattered positron. Kinetic energy of incoming positron 7j,, = 10MeV

T Beam P = 1 <> Target P = -1
1
0.8
0.6
0.4
0.2
€
0.2 0.4 0.6 0.8 1

Fig. 4.40: Polarization Transfer in Bhabha scattering. Longitudinal polarization §§2) of electron with energy F,,, in
blue; longitudinal polarization Q())l) of scattered positron. Kinetic energy of incoming positron 7}, = 10MeV
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Total cross section and mean free path

Kinematics of annihilation process is fixed by initial energy

5= Lo
me?
and variable
€ = Epl
Ej, +mc?’

which is the part of total energy available in initial state carried out by first photon. This variable has the following

kinematical limits
1 v—1 1 v—1
“(1—-y/—=) <e< z(1 — .
2( v+1) ‘ 2< " 'y+1>

Total Cross Section

The total cross section of the annihilation of a polarized e*e™ pair into two photons could be expressed as follows

2
oo = 7 [t + Vol + (Y + (067 o]

where

A~ BN VT2 + (1 4y (4+9) Iy + /=147
4(v*-1)
=1+ B6+7(@A+3))+B+7 (T+7+79%)) m(y+v4* - 1)
4(y=1)* (1+7)
G+ V-1+7*—(1+57) In(y+v/-1+?)

4(=1+9)* (1+7)

o =
Mean free path

With the help of the total polarized annihilation cross section one can define a longitudinal asymmetry Af and the
transverse asymmetry A%, by

and

hS

A_ 97
Ar = —;.
)

These asymmetries are depicted in figure [pol.annihil].

If both incident positron and target electron are polarized the mean free path as defined in section [sec:em.annil] has
to be modified. The polarized mean free path AP°! is derived from the unpolarized mean free path A"*P°! via

)\unpol

1+ VG A+ (6P + V6™ Ar

)\pol _
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Fig. 4.41: Annihilation total cross section asymmetries depending on the total energy of the incoming positron Ey, .
The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.

Ar,r,% (b)
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-10

Fig. 4.42: Annihilation total cross section asymmetries depending on the total energy of the incoming positron Ey, .
The transverse asymmetry is shown in blue, the longitudinal asymmetry in red.
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Sampling the final state

Differential Cross Section

The fully polarized differential cross section is implemented in the class G4PolarizedAnnihilationCrossSection, which
takes all mass effects into account, but binding effects are neglected [polAnnihi:Star:2006][polAnnihi:Page:1957]. In
the ultra-relativistic approximation (URA) and concentrating on longitudinal polarization states only the cross section
is rather simple:

dUSRA re? 1—2e+2¢€ (1) ~(2)
YOUrA  _ 1 )
dedp T-1 7 8e—ze (1+&"
(1-26) (¢ + ) (V- o
* 8(e—1)e¢ (4.228)
where
Te classical electron radius
~ Ey, /mec?
Ey, energy of the incident positron
mec? | electron mass
¢ M Stokes vector of the incoming positron
¢ @) Stokes vector of the target electron

13 @) Stokes vector of the 1st photon
3 @) Stokes vector of the 2nd photon .

A

Fig. 4.43: Annihilation differential cross section in arbitrary units. Black line corresponds to unpolarized cross section;
red line — to the antiparallel spins of initial particles, and blue line — to the parallel spins. Kinetic energy of the incoming
positron Tp, = 10MeV.

Sampling

The photon energy is sampled according to methods discussed in Chapter 2. After exploitation of the symmetry in the
Annihilation cross section under exchanging e versus (1 — ¢), the differential cross section can be approximated by a

simple function f(e):
FQ = T ()

€ €min

1 v—1
€min = 3 1- 1 y
2 y+1

1 v—1
max — 5 1 . 4.22
¢ 2 < + \/'y-i-l) ( %

The kinematic of the two photon final state is constructed by the following steps:

with the kinematic limits given by

1. eis sampled from f(e)

2. calculate the differential cross section, depending on the initial polarizations ¢ ) and ¢ @),
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3. e is accepted with the probability defined by the ratio of the differential cross section over the approximation
function f(e).

4. The ¢ is diced uniformly.
5. is determined from the differential cross section, depending on the initial polarizations C(l) and C(Q).

A short overview over the sampling method is given in Chapter 2. In figure [pol.annihi2] the asymmetries indicate the
influence of polarization for an 10MeV incoming positron. The actual behavior is very sensitive to the energy of the
incoming positron.

A% Annihilation asymmetries

75

50
25

-25
-50
-75

-100

Fig. 4.44: [pol.annihi2]Annihilation differential cross section asymmetries in%. Red line corrsponds to Az 7 (€), green
line — Ax x (€), blue line — Ayy (€), lightblue line — Az x (¢)). Kinetic energy of the incoming positron Tj;, = 10MeV.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
method described in section [sec:pol.intro].

The resulting polarization transfer functions ¢(1:?) (€) are depicted in figure [pol.annihi3].

T Beam P = 1 <> Target P = 1

Fig. 4.45: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization fél) of the
photon with energy m(+ + 1)¢; red line — circular polarization §§2) of the photon photon with energy m(y+1)(1—¢).
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T Beam P = 1 <> Target P = -1

Fig. 4.46: Polarization Transfer in annihilation process. Blue line corresponds to the circular polarization fél) of the
photon with energy m(+y + 1)e; red line — circular polarization £§2) of the photon photon with energy m(y+1)(1—¢).

Annihilation at Rest

The method AtRestDoIt treats the special case where a positron comes to rest before annihilating. It generates
two photons, each with energy E, ,, = mec? and an isotropic angular distribution. Starting with the differential cross
section for annihilation with positron and electron spins opposed and parallel, respectively,:cite:polAnnihi: Page: 1957

_ A2 2 _ 12 _ 2 2
doy = ~ 178 )Tlﬁ_(;%fsz)é; 5" 0)" 1 cos 0 (4.230)
B%(1 — cos* 0)
2 =~ Py @20

In the limit 8 — O the cross section doj becomes one, and the cross section doy vanishes. For the opposed spin
state, the total angular momentum is zero and we have a uniform photon distribution. For the parallel case the total
angular momentum is 1. Here the two photon final state is forbidden by angular momentum conservation, and it can
be assumed that higher order processes (e.g. three photon final state) play a dominant role. However, in reality 100%
polarized electron targets do not exist, consequently there are always electrons with opposite spin, where the positron
can annihilate with. Final state polarization does not play a role for the decay products of a spin zero state, and can be
safely neglected. (Is set to zero)

4.13.4 Polarized Compton scattering

Method

The class G4PolarizedCompton simulates Compton scattering of polarized photons with (possibly polarized) electrons
in a material. The implementation follows the approach described for the class G4ComptonScattering introduced in
section [sec:em.compton]. Here the explicit production of a Compton scattered photon and the ejected electron is
considered taking the effects of polarization on total cross section and mean free path as well as on the distribution of
final state particles into account. Further the average polarizations of the scattered photon and electron are calculated.
The material electrons are assumed to be free and at rest.

Total cross section and mean free path

Kinematics of the Compton process is fixed by the initial energy

= Ekl

mc?

X
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and the variable

which is the part of total energy avaible in initial state carried out by scattered photon, and the scattering angle

1 /1
h=1-—(--1
COSs (6 )

The variable € has the following limits:

1
Trox < °°

Total Cross Section

The total cross section of Compton scattering reads

’/TT'e2

O,C

C 1) ~(2) _C
pol — 2 [UO +<§) Lg)UL

X2(1+2X)
where

¢ 2X (24X (14X)8+X)—(14+2X)* (24 (2—X) X) In(1+2X)
oy = X

and

0f =2X (14X (4+5X)—(1+X) (14+2X)* In(1+2X)

[SH-
A-, % (a)

Fig. 4.47: Compton total cross section asymmetry depending on the energy of incoming photon. BBBBBBBBBBB-

Between 0 and ~ 1 MeV.

Mean free path

When simulating the Compton scattering of a photon with an atomic electron, an empirical cross section formula is
used, which reproduces the cross section data down to 10 keV (see section [sec:em.compton]). If both, beam and

target, are polarized this mean free path has to be corrected.
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Fig. 4.48: Compton total cross section asymmetry depending on the energy of incoming photon. Up to 10MeV.

In the class G4ComptonScattering the polarized mean free path AP°! is defined on the basis of the the unpolarized
mean free path A\""P°! via

)\unpol
APt = M -2
14+¢377Cs Ag
where
4G = %L
)

is the expected asymmetry from the the total polarized Compton cross section given above. This asymmetry is depicted
in figure [pol.comptonl].

Sampling the final state
Differential Compton Cross Section

In the ultra-relativistic approximation the dependence of the differential cross section on the longitudinal/circular
degree of polarization is very simple. It reads

d;iy T (62;6 Ly L (06 4 (2 e — 0 )
+622—+€1 (Ve —¢f? 55,2))) (4.232)
where
Te classical electron radius

X By, /mec?
Ey, energy of the incident photon
mec? | electron mass

The fully polarized differential cross section is available in the class G4PolarizedComptonCrossSection. It takes all
mass effects into account, but binding effects are neglected [polCompt:Star:2006][polCompt:Lipps:1954]. The cross
section dependence on € for right handed circularly polarized photons and longitudinally polarized electrons is plotted
in figure [pol.compton2a]
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d? o€
dedg¢ Compton cross section

N R Y © O

Fig. 4.49: Compton scattering differential cross section in arbitrary units. Black line corresponds to the unpolarized
cross section; red line — to the antiparallel spins of initial particles, and blue line — to the parallel spins. Energy of the
incoming photon Ej,, = 10MeV.
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Fig. 4.50: Compton scattering differential cross section asymmetries in%. Red line corresponds to the asymmetry due
to circular photon and longitudinal electron initial state polarization, green line — due to circular photon and transverse
electron initial state polarization, blue line — due to linear photon and transverse electron initial state polarization.
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Sampling

The photon energy is sampled according to methods discussed in Chapter 2. The differential cross section can be
approximated by a simple function ®(¢):

1
Dle)=—-+e¢
with the kinematic limits given by
- (4.233)
min T 70X ’
€max = 1 (4.234)

The kinematic of the scattered photon is constructed by the following steps:

1. eis sampled from ®(e)

2. calculate the differential cross section, depending on the initial polarizations ¢ () and ¢ ), which the correct
normalization.

3. eis accepted with the probability defined by ratio of the differential cross section over the approximation func-
tion.

4. The ¢ is diced uniformly.
5. ¢ is determined from the differential cross section, depending on the initial polarizations ¢ () and C(Q).

In figure [pol.compton2] the asymmetries indicate the influence of polarization for an 10MeV incoming positron. The
actual behavior is very sensitive to energy of the incoming positron.

Polarization transfer

After the kinematics is fixed the polarization of the outgoing photon is determined. Using the dependence of the
differential cross section on the final state polarizations a mean polarization is calculated for each photon according to
the method described in section [sec:pol.intro].

The resulting polarization transfer functions (12 (€) are depicted in figure [pol.compton3].

Y: Circ=1, e : POL=1

-1

Fig. 4.51: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization §§2) of
the electron, red line — circular polarization %1) of the photon.
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Y: Circ=-1, e : POL=0

Fig. 4.52: Polarization Transfer in Compton scattering. Blue line corresponds to the longitudinal polarization §§2> of
the electron, red line — circular polarization fél) of the photon.

4.13.5 Polarized Bremsstrahlung for electron and positron

Method

The polarized version of Bremsstrahlung is based on the unpolarized cross section. Energy loss, mean free path, and
distribution of explicitly generated final state particles are treated by the unpolarized version G4eBremsstrahlung. For
details consult section [sec:em.ebrem].

The remaining task is to attribute polarization vectors to the generated final state particles, which is discussed in the
following.

Polarization in gamma conversion and bremsstrahlung

Gamma conversion and bremsstrahlung are cross-symmetric processes (i.e. the Feynman diagram for electron
bremsstrahlung can be obtained from the gamma conversion diagram by flipping the incoming photon and outgo-
ing positron lines) and their cross sections closely related. For both processes, the interaction occurs in the field of
the nucleus and the total and differential cross section are polarization independent. Therefore, only the polarization
transfer from the polarized incoming particle to the outgoing particles is taken into account.

\{ K

i

N1 N2 NI N2

Gamma conversion Bremsstrahlung

Fig. 4.53: Feynman diagrams of Gamma conversion and bremsstrahlung processes.

For both processes, the scattering can be formulated by:

K1 (k1, ¢ + N (ki VYY) — Py (p1, €D) + Pa(p2, €P)) + Na(pas,, €M)
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Where N7 (kar,, ¢ W 1)) and Na(py,, & W 2)) are the initial and final state of the field of the nucleus respectively as-
sumed to be unchanged, at rest and unpolarized. This leads to kx;, = ka,, = 0 and ¢ M) = I3 W2) — ¢

In the case of gamma conversion process: K1 (k1, ¢ (1)) is the incoming photon initial state with momentum k; and
polarization state ¢ P, (p1, 5(1)) and Py (p2, 5(2)) are the two photons final states with momenta p; and p» and
polarization states & M and £ )

In the case of bremsstrahlung process: K, (ky, (")) is the incoming lepton e~ (&™) initial state with momentum k1
and polarization state ¢ @, P1(p1, & (1)) is the lepton e~ (e™) final state with momentum p; and polarization state & W,
Pa(pa, & (2)) is the bremsstrahlung photon in final state with momentum p5 and polarization state £ @),

Polarization transfer from the lepton ¢~ (¢*) to a photon

The polarization transfer from an electron (positron) to a photon in a bremsstrahlung process was first calculated by
Olsen and Maximon [polBrems:Olsen_Maximon] taking into account both Coulomb and screening effects. In the
Stokes vector formalism, the e~ (e™) polarization state can be transformed to a photon polarization finale state by
means of interaction matrix Té’. It defined via

0 1
( £® > =Ty ( 0 ) : (4.235)

and
1 0 0 O
D 0 0 O
b
1)~ 00 0 0 , (4.236)
0 T 0 L
where
I = (E+4e)(3+2D) — 2e1e5(1 + 4u%ET) (4.237)
D = {86162u2§2 } /1 (4.238)
T = { Akené(1 — 2§)ur} /1 (4.239)
L = k{(e1 +e)(3+20) — 2e5(1 + 4u?€2D)} /I (4.240)
and
€1 | Total energy of the incoming lepton e* (e~ ) in units mc?
€o | Total energy of the outgoing lepton e™ (e™) in units mc?
k | = (e1 — €2), the energy of the bremsstrahlung photon in units of mc?
p | Electron (positron) initial momentum in units mc
k | Bremsstrahlung photon momentum in units mc
u | Component of p perpendicular to k in units mc and u = |u|
§ [ =1/0+u?)
Coulomb and screening effects are contained in I', defined as follows
1 ¢
' = In 5 -2—-f(2)+F 5 for A <120 (4.241)
111
' = In (1> —2—f(z) forA>120 (4.242)
€73
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with

1275 eqeaf k
ﬂ with Z the atomic number and § =

A
121k 2€1€2

(4.243)

f(Z) is the coulomb correction term derived by Davies, Bethe and Maximon [eal54]. F(/8) contains the screening
effects and is zero for A < 0.5 (No spreening effects). For :math:(0.5 le Delta le 120 )* (intermediate screening) it is a
slowly decreasing function. The F(£/0) values versus A are given in table [koch] and used with a linear interpolation
in between.

The polarization vector of the incoming e~ (e') must be rotated into the frame defined by the scattering plane (x-
z-plane) and the direction of the outgoing photon (z-axis). The resulting polarization vector of the bremsstrahlung
photon is also given in this frame.

A | —F (5/5) A _F (g/a)
05 | 00145 400 | 2.00
1.0 0.0490 45.0 2.114
2.0 | 0.1400 500 | 2216
4.0 0.3312 60.0 2.393
80 | 0.6758 700 | 2.545
15.0 | 1.126 80.0 2.676
20.0 | 1.367 90.0 | 2.793
25.0 | 1.564 100.0 | 2.897
30.0 | 1.731 120.0 | 3.078
35.0 | 1.875

Table: F(£/6) for intermediate values of the screening factor /KMS59].

Using Eq.(4.235) and the transfer matrix given by Eq.(4.236) the bremsstrahlung photon polarization state in the
Stokes formalism [polBrems:McMaster1][ McMaster1961] is given by

& D
5(2) — 552) ~ 0
(2) (1)L + C(l)T
3 1 2

Remaining polarization of the lepton after emitting a bremsstrahlung photon
The e~ (e™) polarization final state after emitting a bremsstrahlung photon can be calculated using the interac-

tion matrix le which describes the lepton depolarization. The polarization vector for the outgoing e~ (e™) is not
given by Olsen and Maximon. However, their results can be used to calculate the following transfer matrix [pol-

Brems:klausFl][polBrems:hoogduin].
O 1
(e )= () 240

1
D
0 (4.245)
0

Moo
o oo
+ oo
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where
I = (€ +e)(3+2D) — 2 165(1 + 4T (4.246)
F = e {4kéu(1 - 2£)r} /T (4.247)
E = « {41@(25 - 1)r} /I (4.248)
M = {41%162(1 i . 2u2£2r)} /I (4.249)
P = {k2(1 +8T(E - 0.5)2} /T (4.250)
and

Total energy of the incoming et /e~ in units mc?

Total energy of the outgoing e* /e~ in units mc?

= (€1 — €2), energy of the photon in units of mc?

Electron (positron) initial momentum in units mc

Photon momentum in units mc

Component of p perpendicular to k in units mc and u = |u

==

Using Eq.(4.244) and the transfer matrix given by Eq.(4.245) the e~ (e™) polarization state after emitting a
bremsstrahlung photon is given in the Stokes formalism by

&V VM + VB
W= g’ |~ M
& S+ Py +VF

4.13.6 Polarized Gamma conversion into an electron—positron pair

Method

The polarized version of gamma conversion is based on the EM standard process G4GammaConversion. Mean free
path and the distribution of explicitly generated final state particles are treated by this version. For details consult
section [sec:em.conv].

The remaining task is to attribute polarization vectors to the generated final state leptons, which is discussed in the
following.

Polarization transfer from the photon to the two leptons

Gamma conversion process is essentially the inverse process of Bremsstrahlung and the interaction matrix is ob-
tained by inverting the rows and columns of the bremsstrahlung matrix and changing the sign of eo, cf. section
[sec:pol.bremsstrahlung]. It follows from the work by Olsen and Maximon [polPair:Olsen_Maximon] that the po-
larization state £(1) of an electron or positron after pair production is obtained by

0 1
( €W ) =17 < ¢ ) (4.251)

and

TP ~ , (4.252)

co o~
cocoly
cocoo
~No o
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where
I = (€ +e)(3+2D)+ 2 6(1 + 42D (4.253)
D = { 8e1eaué r} /I (4.254)
T = { Akesf(1 — 2§)ur} /1 (4.255)
L = k{(e1 — ) (34 20) + 2ex(1 + 4u2E?T)} /1 (4.256)
and
€1 total energy of the first lepton et (e™) in units mc?
€2 total energy of the second lepton e~ (e ™) in units mc?
k = (e1 + €2) | energy of the incoming photon in units of mc?
p electron=positron initial momentum in units mc
k photon momentum in units mc
u electron/positron initial momentum in units mc
u = |u|

Coulomb and screening effects are contained in I', defined in section [sec:pol.bremsstrahlung].

Using Eq.(4.251) and the transfer matrix given by Eq.(4.252) the polarization state of the produced e~ (e*) is given in
the Stokes formalism by:

5(1) (W
w_ [ S )
f - 52 ~ (?)
% GL

4.13.7 Polarized Photoelectric Effect

Method

This section describes the basic formulas of polarization transfer in the photoelectric effect class
(G4PolarizedPhotoElectricEffect). The photoelectric effect is the emission of electrons from matter upon the
absorption of electromagnetic radiation, such as ultraviolet radiation or x-rays. The energy of the photon is completely
absorbed by the electron and, if sufficient, the electron can escape from the material with a finite kinetic energy. A
single photon can only eject a single electron, as the energy of one photon is only absorbed by one electron. The
electrons that are emitted are often called photoelectrons. If the photon energy is higher than the binding energy the
remaining energy is transferred to the electron as a kinetic energy

E};n, =k — Baheu
In Geant4 the photoelectric effect process is taken into account if:
k > Bspeu

Where £ is the incoming photon energy and B, the electron binding energy provided by the class G4AtomicShells.

The polarized version of the photoelectric effect is based on the EM standard process G4PhotoElectricEffect. Mean
free path and the distribution of explicitly generated final state particles are treated by this version. For details consult
section [sec:em.pee].

The remaining task is to attribute polarization vectors to the generated final state electron, which is discussed in the
following.
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Polarization transfer

The polarization state of an incoming polarized photon is described by the Stokes vector 5 (1), The polarization trans-
fer to the photoelectron can be described in the Stokes formalism using the same approach as for the Bremsstrahlung
and gamma conversion processes, cf. [sec:pol.bremsstrahlung] and [sec:pol.conv]. The relation between the photo-
electron’s Stokes parameters and the incoming photon’s Stokes parameters is described by the interaction matrix 7}’
derived from H. Olsen [polPEE:H.Olsen.Kgl] and reviewed by H.-W McMaster [McMaster1961]:

I I
(5)-7(&)

In general, for the photoelectric effect as a two-body scattering, the cross section should be correlated with the spin
states of the incoming photon and the target electron. In our implementation the target electron is not polarized and
only the polarization transfer from the photon to the photoelectron is taken into account. In this case the cross section
of the process remains polarization independent. To compute the matrix elements we take advantage of the available
kinematic variables provided by the generic G4PhotoelectricEffect class. To compute the photoelectron spin state
(Stokes parameters), four main parameters are needed:

* The incoming photon Stokes vector 5 &Y

* The incoming photon’s energy k.

« the photoelectron’s kinetic energy Ef. or the Lorentz factors 3 and .
 The photoelectron’s polar angle 6 or cos 6.

The interaction matrix derived by H. Olsen [polPEE:H.Olsen.Kgl] is given by:

1+D —-D 0 0
- 0O 0 0 B
= 0 0 o 0 (4.258)
0 0 0 A
Where
1 2
D = -|— =2 42
k[ke(lﬁcosf)) } (4:259)
A= |2 geospr— 2 (4.260)
e+ 1 | ke ke2(1 — Bcosb) '
€ 2
B = —fsinf|——1 4.261
e—i—l@bm {ke(l—ﬁcos@) ] ( )

Using Eq.(4.257) and the transfer matrix given by Eq.(4.258) the polarization state of the produced e~ is given in the
Stokes formalism by:

1
& o8
D=1 Y =] o (4.262)
1
v ¢ A

From equation (4.262) one can see that a longitudinally (transversally) polarized photoelectron can only be produced
if the incoming photon is circularly polarized.
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4.14 X-Ray production

4.14.1 Transition radiation

The Relationship of Transition Radiation to X-ray Cherenkov Radiation

X-ray transition radiation (XTR ) occurs when a relativistic charged particle passes from one medium to another of
a different dielectric permittivity. In order to describe this process it is useful to begin with an explanation of X-ray
Cherenkov radiation, which is closely related.

The mean number of X-ray Cherenkov radiation (XCR) photons of frequency w emitted into an angle 6 per unit
distance along a particle trajectory is [griCR]

PNper

W o
hdodedi® — mhe ! W4} (4-263)

Here the quantity Z is introduced as the complex formation zone of XCR in the medium:

w2 -
7—2+7P+92

L c
L=— 2

T >
1=
oy

Z = , Y i=1-p2% (4.264)

with [ and w,, the photon absorption length and the plasma frequency, respectively, in the medium. For the case of
a transparent medium, ! — oo and the complex formation zone reduces to the coherence length L of XCR. The
coherence length roughly corresponds to that part of the trajectory in which an XCR photon can be created.

Introducing a complex quantity Z with its imaginary part proportional to the absorption cross-section (~ [7!) is
required in order to account for absorption in the medium. Usually, wf, Jw? > c/wl. Then it can be seen from Egs.
(4.263) and (4.264) that the number of emitted XCR photons is considerably suppressed and disappears in the limit of
a transparent medium. This is caused by the destructive interference between the photons emitted from different parts
of the particle trajectory.

The destructive interference of X-ray Cherenkov radiation is removed if the particle crosses a boundary between two
media with different dielectric permittivities, €, where

Here the standard high-frequency approximation for the dielectric permittivity has been used. This is valid for energy
transfers larger than the K'-shell excitation potential.

If layers of media are alternated with spacings of order L, the X-ray radiation yield from a trajectory of unit length can
be increased by roughly {/L times. The radiation produced in this case is called X-ray transition radiation (XTR).

Calculating the X-ray Transition Radiation Yield

Using the methods developed in Ref. [Gri02] one can derive the relation describing the mean number of XTR photons
generated per unit photon frequency and 62 inside the radiator for a general XTR radiator consisting of n different
absorbing media with fluctuating thicknesses:

d*Nin o' n-l
hdw d6? ~ MCQ“’GQRe {Z(Zv: — Zi1)*+
=1

n—1 k

1 k
t.
+ 2 - (Zz — Zi+1) H Fj (Zk — Zk+1) s Fj = exp |:2éj:| .
1 =1 J=i1+1

E
I
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In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values F;, (j = 1,2) can be estimated

as:
.o vi—1 — y
oo v\ Vit Uit t. . Vi
= a, (4) 2 S LR B i
’ /0 ’ (tj) I(v;) QXP{ 5 27 %z,
where Z; is the complex formation zone of XTR (similar to relation (4.264) for XCR) in the j-th medium

[Gri02][JAOO]. T is the Euler gamma function, t_j is the mean thickness of the j-th medium in the radiator and v; > 0
is the parameter roughly describing the relative fluctuations of ¢;. In fact, the relative fluctuation is §t; /t; ~ 1/, /7;.

In the particular case of n foils of the first medium (77, F}) interspersed with gas gaps of the second medium (Z5, F»),
one obtains:
d2 N in 2c

P = F 2w92Re{<R(n)>}’ F=FF,, (4.265)
w mTne

(4.266)

(R™) = (2, — Z5)? {n(l —P)(1-F) (1= F) B[l - ] }

1-F (1-F)?

Here (R(™) is the stack factor reflecting the radiator geometry. The integration of ((4.265)) with respect to 2 can
be simplified for the case of a regular radiator (v, — 00), transparent in terms of XTR generation media, and
n > 1 [Gar71]. The frequency spectrum of emitted XTR photons is given by:

AN, /~1<W2 g PNin _ dom
o hdw d? ~ Thw

(Cy + Cy)?

hdw

kmaz
. Z ( (k‘ - Ornm) SiIl2 |: 7Tt1 (k+ 02):| ’

Lo (k= C1)*(k+ Cy)? t1+ o
O, = bai=ud) o1 feltitts) | b+ bl
' drew ’ T Ae 2 w '

The sum in ((4.267)) is defined by terms with & > k,,;, corresponding to the region of 8 > 0. Therefore k,,;n
should be the nearest to C,,;,, integer k.in > Chnin. The value of k4, is defined by the maximum emission angle

62, .. ~ 10772, It can be evaluated as the integer part of

t to) 1
Mg» kmam - kmzn ~ 102 - ]‘03 > 1.

Cmax = szn + 4
Tc

Numerically, however, only a few tens of terms contribute substantially to the sum, that is, one can choose ka0 ~
kmin + 20. Equation ((4.267)) corresponds to the spectrum of the total number of photons emitted inside a regular
transparent radiator. Therefore the mean interaction length, A x 7, of the XTR process in this kind of radiator can be

introduced as:
Amac V, -1
max dN’L’ﬂ
hd
/h “ hdw ] )

Wmin

Axtr = n(ti +t2)

where fiwpin ~ 1 keV, and Aw,p,q, ~ 100 keV for the majority of high energy physics experiments. Its value is
constant along the particle trajectory in the approximation of a transparent regular radiator. The spectrum of the total
number of XTR photons after regular transparent radiator is defined by ((4.267)) with:

n—1
1-— exp[—n(altl + 0'21?2)]
N = Neff = exp|—k(o1t1 + oota)] = ,
s kz::() [ ( 1 2 2)] 1-— exp[—(altl + Ogtz)]

where o1 and o4 are the photo-absorption cross-sections corresponding to the photon frequency w in the first and the
second medium, respectively. With this correction taken into account the XTR absorption in the radiator ((4.267))
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corresponds to the results of /FS75]. In the more general case of the flux of XTR photons after a radiator, the XTR
absorption can be taken into account with a calculation based on the stack factor derived in [GMGY75]:

1-Q"(1+ Q)1+ F)—2F —2Q1 F»

(RD.) = (Ll—w{

1-Q 21— F)
N (1—F1)(Q1—F1)F2(Q"—F")}
(1-F)(Q—-F) ’

Q=Q1-Q2, Qj=exp|-t;/l;] =exp[-0ojt;], j=1,2.

Both XTR energy loss ((4.266)) and flux ((4.267)) models can be implemented as a discrete electromagnetic process
(see below).

Simulating X-ray Transition Radiation Production

A typical XTR radiator consists of many (~ 100) boundaries between different materials. To improve the tracking
performance in such a volume one can introduce an artificial material /JAOO/, which is the geometrical mixture of foil
and gas contents. Here is an example:

// In DetectorConstruction of an application
// Preparation of mixed radiator material

foilGasRatio = fRadThickness/ (fRadThickness+fGasGap) ;

foilDensity = 1.39xg/cm3; // Mylar

gasDensity = 1.2928»mg/cm3 ; // Air

totDensity = foilDensityxfoilGasRatio +

gasDensity* (1.0-foilGasRatio) ;

fractionFoil = foilDensityxfoilGasRatio/totDensity;

fractionGas = gasDensity*(l.0-foilGasRatio) /totDensity;

G4Materialx radiatorMat = new G4Material ("radiatorMat",
totDensity,
ncomponents = 2 );

radiatorMat->AddMaterial ( Mylar, fractionFoil );

radiatorMat->AddMaterial ( Air, fractionGas );

G4cout << * (G4Material::GetMaterialTable()) << Gdendl;

// materials of the TR radiator

fRadiatorMat = radiatorMat; // artificial for geometry
fFoilMat = Mylar;

fGasMat = Air;

This artificial material will be assigned to the logical volume in which XTR will be generated:

solidRadiator = new G4Box ("Radiator",
1.1lxAbsorberRadius ,
1.1+xAbsorberRadius,
0.5*radThick ) ;
logicRadiator = new G4LogicalVolume( solidRadiator,
fRadiatorMat, // !!!
"Radiator");
physiRadiator = new G4PVPlacement (O,
G4ThreeVector (0,0, zRad) ,
"Radiator", logicRadiator,
physiWorld, false, O )

XTR photons generated by a relativistic charged particle intersecting a radiator with 2n interfaces between different
media can be simulated by using the following algorithm. First the total number of XTR photons is estimated using a
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Poisson distribution about the mean number of photons given by the following expression:

w2 Oraz  _2NM 94 [ O rmaz
N® = / d / o> ——— = — / d / 02do°Re { (RM™) } .
w: v 0 dwdf? w2 ), W 0 e{( >}

Here 02, ~ 10772, hw; ~ 1 keV, hwy ~ 100 keV, and (R(™) correspond to the geometry of the experiment.
For events in which the number of XTR photons is not equal to zero, the energy and angle of each XTR quantum is
sampled from the integral distributions obtained by the numerical integration of expression ((4.265)). For example,

the integral energy spectrum of emitted XTR photons, IV gfj , is defined from the following integral distribution:

_(n 20 [“2 0o .
N = @/w wdw/o 92d92Re{<R< >>}.

In Geant4 XTR generation inside or after radiators is described as a discrete electromagnetic process. It is convenient
for the description of tracks in magnetic fields and can be used for the cases when the radiating charge experiences
a scattering inside the radiator. The base class G4VXTRenergyLoss is responsible for the creation of tables with
integral energy and angular distributions of XTR photons. It also contains the PostDolt function providing XTR
photon generation and motion (if fExitFlux=true) through a XTR radiator to its boundary. Particular models like
G4RegularXTRadiator implement the pure virtual function GetStackFactor, which calculates the response of the XTR
radiator reflecting its geometry. Included below are some comments for the declaration of XTR in a user application.

In the physics list one should pass to the XTR process additional details of the XTR radiator involved:

// In PhysicsList of an application

else if (particleName == "e-") // Construct processes for electron with XTR
{
pmanager—>AddProcess (new G4MultipleScattering, -1, 1,1 );
pmanager—>AddProcess (new G4eBremsstrahlung(), -1,-1,1 );
pmanager—>AddProcess (new Eml0StepCut (), -1,-1,1 );

// in regular radiators:
pmanager->AddDiscreteProcess (

new G4RegularXTRadiator // XTR dEdx in general regular radiator
// new G4XTRRegularRadModel - XTR flux after general regular radiator
// new G4TransparentRegXTRadiator - XTR dEdx in transparent
// regular radiator
// new G4XTRTransparentRegRadModel - XTR flux after transparent
// regular radiator

(pDet->GetLogicalRadiator (), // XTR radiator

pDet->GetFoilMaterial (), // real foil
pDet->GetGasMaterial (), // real gas
pDet->GetFoilThick (), // real geometry
pDet->GetGasThick (),
pDet->GetFoilNumber (),
"RegularXTRadiator"));

// or for foam/fiber radiators:

pmanager->AddDiscreteProcess (

new G4GammaXTRadiator - XTR dEdx in general foam/fiber radiator
// new G4XTRGammaRadModel - XTR flux after general foam/fiber radiator
( pDet->GetLogicalRadiator (),
1000.,
100.,

pDet->GetFoilMaterial (),
pDet->GetGasMaterial (),
pDet—->GetFoilThick (),
pDet->GetGasThick (),
pDet->GetFoilNumber (),
"GammaXTRadiator"));
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Here for the foam/fiber radiators the values 1000 and 100 are the v parameters (which can be varied) of
the Gamma distribution for the foil and gas gaps, respectively. Classes G4TransparentRegXTRadiator and
G4XTRTransparentRegRadModel correspond ((4.267)) to n and n.y ¢, respectively.

4.14.2 Scintillation

Every scintillating material has a characteristic light yield, Y (photons/MeV'), and an intrinsic resolution which gen-
erally broadens the statistical distribution, o;/0s > 1, due to impurities which are typical for doped crystals like
Nal(T1) and CsI(Tl). The average yield can have a non-linear dependence on the local energy deposition. Scintilla-
tors also have a time distribution spectrum with one or more exponential decay time constants, 7;, with each decay
component having its intrinsic photon emission spectrum. These are empirical parameters typical for each material.

The generation of scintillation light can be simulated by sampling the number of photons from a Poisson distribution.
This distribution is based on the energy lost during a step in a material and on the scintillation properties of that
material. The frequency of each photon is sampled from the empirical spectra. The photons are generated evenly
along the track segment and are emitted uniformly into 47 with a random linear polarization.

4.14.3 Cerenkov Effect

The radiation of Cerenkov light occurs when a charged particle moves through a dispersive medium faster than the
speed of light in that medium. A dispersive medium is one whose index of refraction is an increasing function of
photon energy. Two things happen when such a particle slows down:

1. a cone of Cerenkov photons is emitted, with the cone angle (measured with respect to the particle momentum)
decreasing as the particle loses energy;

2. the momentum of the photons produced increases, while the number of photons produced decreases.

When the particle velocity drops below the local speed of light, photons are no longer emitted. At that point, the
Cerenkov cone collapses to zero. In order to simulate Cerenkov radiation the number of photons per track length must
be calculated. The formulae used for this calculation can be found below and in [/DJackson98][ pdg2]. Let n be the
refractive index of the dielectric material acting as a radiator. Here n = ¢/¢’ where ¢’ is the group velocity of light in
the material, hence 1 < n. In a dispersive material n is an increasing function of the photon energy € (dn/de > 0). A
particle traveling with speed 5 = v/c will emit photons at an angle 6 with respect to its direction, where 6 is given by

1
cost) = —

pn

From this follows the limitation for the momentum of the emitted photons:

N(€min) = %

Photons emitted with an energy beyond a certain value are immediately re-absorbed by the material; this is the window
of transparency of the radiator. As a consequence, all photons are contained in a cone of opening angle cos 6,4, =
1/(Bn(€maz))- The average number of photons produced is given by the relations :

az? az?
N= —sin’ =—(1- =
d o Sil Odedx e ( 25 )dedx
o photons 1

370z

Q

eVem (1= n2 32 Jdedz
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and the number of photons generated per track length is

N , [ 1 ) 1o de
% ~ 370z /Emjn de (1 — n2ﬁ2) = 370z |:€maw — €min — 62 / 77,2(6):|

€min

The number of photons produced is calculated from a Poisson distribution with a mean of (n) = StepLength dN/dx.
The energy distribution of the photon is then sampled from the density function

4.14.4 Synchrotron Radiation

Photon spectrum

Synchrotron radiation photons are emitted by relativistic charged particles traveling in magnetic fields. The prop-
erties of synchrotron radiation are well understood and described in textbooks:cite:SokolovTernov,BookJDJackson,
BookHofmannSynRad.

In the simplest case, we have an electron of momentum p moving perpendicular to a homogeneous magnetic field B.
The magnetic field will keep the particle on a circular path, with radius

p_ myBe 3.336m

=B~ oB Numerically we have  p[m] = p[GeV /c] BIT] (4.267)

In general, there will be an arbitrary angle 6 between the local magnetic field B and momentum vector p of the particle.
The motion has a circular component in the plane perpendicular to the magnetic field, and in addition a constant
momentum component parallel to the magnetic field. For a constant homogeneous field, the resulting trajectory is a
helix.

The critical energy of the synchrotron radiation can be calculated using the radius p of Eq.(4.267) and angle € or the
magnetic field perpendicular to the particle direction B, = B'sin 6 according to

3 .
yisind 3k g (4.268)

E. =
p 2m

he

3
2
Half of the synchrotron radiation power is radiated by photons above the critical energy.
With x we denote the photon energy ., expressed in units of the critical energy E.

T=—=". (4.269)
The photon spectrum (number of photons emitted per path length s and relative energy z) can be written as

(4.270)

d2N V3a eBJ_/ K
dsda:_ 2w 5/3

where o = €2/ 4meghc is the dimensionless electromagnetic coupling (or fine structure) constant and K /3 1s the
modified Bessel function of the third kind.

The number of photons emitted per unit length and the mean free path A between two photon emissions is obtained by
integration over all photon energies. Using

/000 dx/;oK5/3(f)df = 5%
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we find that
dN S €BJ_ 1

ds 2+/3 mpe TN
Here we are only interested in ultra-relativistic (8 = 1) particles, for which A only depends on the field B and not on
the particle energy. We define a constant Az such that

_ A Ghere Ap = V3 me _ o eies T

A= 28
B, 5 ae

As an example, consider a 10GeV electron, travelling perpendicular to a 1T field. It moves along a circular path of
radius p = 33.356 m. For the Lorentz factor we have v = 19569.5 and 8 = 1 — 1.4 x 10~°. The critical energy is
E. = 66.5keV and the mean free path between two photon emissions is A = 0.16183 m.

Validity

The spectrum given in Eq.(4.270) can generally be expected to provide a very accurate description for the synchrotron
radiation spectrum generated by GeV electrons in magnetic fields.

Here we discuss some known limitations and possible extensions.

For particles traveling on a circular path, the spectrum observed in one location will in fact not be a continuous
spectrum, but a discrete spectrum, consisting only of harmonics or modes n of the revolution frequency. In practice,
the mode numbers will generally be too high to make this a visible effect. The critical mode number corresponding to
the critical energy is n. = 3/2+3. 10GeV electrons for example have n. ~ 10'3.

Synchrotron radiation can be neglected for slower particles and only becomes relevant for ultra-relativistic particles
with > 103. Using 3 = 1 introduces an uncertainty of about 1/2+2 or less than 5 x 1077,

It is rather straightforward to extend the formulas presented here to particles other than electrons, with arbitrary charge
¢ and mass m, see [BurkhardtEdge1998]. The number of photons and the power scales with the square of the charge.

The standard synchrotron spectrum of Eq.(4.270) is only valid as long as the photon energy remains small compared to
the particle energy:cite: FritzzHerlach1971,Erber:1988tk. This is a very safe assumption for GeV electrons and standard
magnets with fields of order of Tesla.

An extension of synchrotron radiation to fields exceeding several hundred Tesla, such as those present in the beam-
beam interaction in linear-colliders, is also known as beamstrahlung. For an introduction see:cite:Chen_LNP_296.

The standard photon spectrum applies to homogeneous fields and remains a good approximation for magnetic fields
which remain approximately constant over a the length p/~, also known as the formation length for synchrotron
radiation. Short magnets and edge fields will result instead in more energetic photons than predicted by the standard
spectrum.

We also note that short bunches of many particles will start to radiate coherently like a single particle of the equivalent
charge at wavelengths which are longer than the bunch dimensions.

Low energy, long-wavelength synchrotron radiation may destructively interfere with conducting sur-
faces:cite:Murphy: 1996yt.

The soft part of the synchrotron radiation spectrum emitted by charged particles travelling through a medium will be
modified for frequencies close to and lower than the plasma frequency:cite:Grichine:2002ns.

Direct inversion and generation of the photon energy spectrum

The task is to find an algorithm that effectively transforms the flat distribution given by standard pseudo-random gen-
erators into the desired distribution proportional to the expressions given in Eqs.(4.270),(4.271). The transformation
is obtained from the inverse '~ of the cumulative distribution function F(z) = [ f(t)dt.
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Leaving aside constant factors, the probability density function relevant for the photon energy spectrum is
SynRad(z) = / Ks3(t)dt . (4.271)

Numerical methods to evaluate K /3 are discussed in [Luke_special_func]. An efficient algorithm to evaluate the
integral SynRad using Chebyshev polynomials is described in:cite: Umstaetter_synrad. This has been used in an earlier
version of the Monte Carlo generator for synchrotron radiation using approximate transformations and the rejection
method:cite:LEP_Note_632.

The cumulative distribution function is the integral of the probability density function. Here we have
SynRadlInt(z) = / SynRad(z) dz , (4.272)
with normalization
o 5w
SynRadInt(0) = SynRad(z)dx = 5
0

such that 22SynRadlInt(xz) gives the fraction of photons above z.

It is possible to directly obtain the desired distribution with a fast and accurate algorithm using an analytical description
based on simple transformations and Chebyshev polynomials. This approach is used here.

We now describe in some detail how the analytical description was obtained. For more details see [InvSyn-
FracInt_report].

It turned out to be convenient to start from the normalized complement rather then Eq.(4.272) directly, that is
3 [T [ 3
SynFracInt(z) = —/ / Ks)3(t)dt dz = 1 — — SynRadInt(z) ,
51 0 z 5m

which gives the fraction of photons below z.

Figure[plot:SynFracIntxyLog] shows on the left hand side y = SynFracInt(x) and on the right hand side the inverse
2 = InvSynFraclnt(y) together with simple approximate functions. We can see, that SynFracInt can be approximated
by /3 for small arguments, and by 1 — e~ for large . Consequently, we have for the inverse, InvSynFracInt(y),
which can be approximated for small y by »? and for large y by —log(1 — y).

Good convergence for InvSynFracInt(y) was obtained using Chebyshev polynomials combined with the approximate
expressions for small and large arguments. For intermediate values, a Chebyshev polynomial can be used directly.
Table[tab:InvSynFraclnt] summarizes the expressions used in the different intervals.

Y 2 = InvSynFracInt(y)

y < 0.7 y> Pon(y)

0.7 <y < 0.9999 | Pon(y)

y > 0.9999 —log(1 — y)Pcn(—log(1 —y))

The procedure for Monte Carlo simulation is to generate y at random uniformly distributed between O at 1, as provided
by standard random generators, and then to calculate the energy « in units of the critical energy according to x =
InvSynFracInt(y).

The numerical accuracy of the energy spectrum presented here is about 14 decimal places, close to the machine
precision. Fig.[gesynrad_Direct_gen_1] shows a comparison of generated and expected spectra.

A Geant4 display of an electron moving in a magnetic field radiating synchrotron photons is presented in
Fig.[plot:SynRadGeant4]
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Fig. 4.54: SynFracInt on a log z scale. The functions /3, % and 1 — =%, — log(1 — y) are shown as dashed lines.
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Fig. 4.55: InvSynFracInt on a log x scale. The functions 2'/3, y* and 1 — e=®, —log(1 — ¥) are shown as dashed
lines.
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power spectrum x dN/dx

Fig. 4.56: Comparison of the exact (smooth curve) and generated (histogram) spectra for 2 x 107 events. The photon
spectrum is shown on the left and the power spectrum on the right side.
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Fig. 4.57: Geant4 display. 10 GeV e* moving initially in x-direction, bends downwards on a circular path by a 0.1T
magnetic field in z-direction.
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Properties of the Power Spectra

The normalised probability function describing the photon energy spectrum is

3

n,(7) = B

/ Ks s (t)dt . 4273)

n~(z) gives the fraction of photons in the interval x to x + dx, where x is the photon energy in units of the critical
energy. The first moment or mean value is

*° 8
] /0 zn(z)dx 53

implying that the mean photon energy is I 58\/5 = 0.30792 of the critical energy. The second moment about the mean,

or variance, is

o 211

2 2
= dz =
o /0 (x — p)"ny(x)dx 675

and the r.m.s. value of the photon energy spectrum is o = % = 0.5591.

The normalised power spectrum is

Po(z) = 98—f x/oo Kss(t)dt |

P, (x) gives the fraction of the power which is radiated in the interval z to x + dz.

Half of the power is radiated below the critical energy
1
/ P, (z) dx = 0.5000
0

The mean value of the power spectrum is

o 55
= z P, (x)dr = ——= = 1.32309 .
The variance is
o0 2351
2 2
frng — P _
7= [ a— Py e = 20

sy e /2351 _
and the rm.s. widthis o = s = 1.16642.

4.15 Optical Photons

4.15.1 Interactions of optical photons

Optical photons are produced when a charged particle traverses:
1. adielectric material with velocity above the Cerenkov threshold;

2. a scintillating material.
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Physics processes for optical photons

A photon is called optical when its wavelength is much greater than the typical atomic spacing, for instance when
A > 10nm which corresponds to an energy £ < 100eV. Production of an optical photon in a HEP detector is
primarily due to:

1. Cerenkov effect;
2. Scintillation.
Optical photons undergo three kinds of interactions:
1. Elastic (Rayleigh) scattering;
2. Absorption;

3. Medium boundary interactions.

Rayleigh scattering

For optical photons Rayleigh scattering is usually unimportant. For A = .2um we have o gayicign = .2b for Na or O,
which gives a mean free path of ~ 1.7 km in air and ~ 1 m in quartz. Two important exceptions are aerogel, which is
used as a Cerenkov radiator for some special applications and large water Cerenkov detectors for neutrino detection.

The differential cross section in Rayleigh scattering, do /dS?, is proportional to 1 + cos? §, where @ is the polar angle
of the new polarization with respect to the old polarization.

Absorption

Absorption is important for optical photons because it determines the lower A limit in the window of transparency of
the radiator. Absorption competes with photo-ionization in producing the signal in the detector, so it must be treated
properly in the tracking of optical photons.

Medium boundary effects

When a photon arrives at the boundary of a dielectric medium, its behaviour depends on the nature of the two materials
which join at that boundary:

¢ Case dielectric — dielectric.

The photon can be transmitted (refracted ray) or reflected (reflected ray). In case where the photon can only be
reflected, total internal reflection takes place.

* Case dielectric — metal.
The photon can be absorbed by the metal or reflected back into the dielectric. If the photon is absorbed it can
be detected according to the photoelectron efficiency of the metal.

¢ Case dielectric — black material.

A black material is a tracking medium for which the user has not defined any optical property. In this case the
photon is immediately absorbed undetected.

Photon polarization

The photon polarization is defined as a two component vector normal to the direction of the photon:
a1 el o ai e'®e
. =e ° .
aget®2 agei®e
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where &, = (®; — ®3)/2 is called circularity and ®, = (®; + P2)/2 is called overall phase. Circularity gives the
left- or right-polarization characteristic of the photon. RICH materials usually do not distinguish between the two
polarizations and photons produced by the Cerenkov effect and scintillation are linearly polarized, that is ®. = 0.

The overall phase is important in determining interference effects between coherent waves. These are important only
in layers of thickness comparable with the wavelength, such as interference filters on mirrors. The effects of such
coatings can be accounted for by the empirical reflectivity factor for the surface, and do not require a microscopic
simulation. Geant4 does not keep track of the overall phase.

Vector polarization is described by the polarization angle tan ¥ = a5 /ay. Reflection/transmission probabilities are
sensitive to the state of linear polarization, so this has to be taken into account. One parameter is sufficient to describe
vector polarization, but to avoid too many trigonometrical transformations, a unit vector perpendicular to the direction
of the photon is used in Geant4. The polarization vector is a data member of G4DynamicParticle.

Tracking of the photons

Optical photons are subject to in flight absorption, Rayleigh scattering and boundary action. As explained above,
the status of the photon is defined by two vectors, the photon momentum (p' = hE) and photon polarization (€). By
convention the direction of the polarization vector is that of the electric field. Let also @ be the normal to the material
boundary at the point of intersection, pointing out of the material which the photon is leaving and toward the one
which the photon is entering. The behaviour of a photon at the surface boundary is determined by three quantities:

1. refraction or reflection angle, this represents the kinematics of the effect;
2. amplitude of the reflected and refracted waves, this is the dynamics of the effect;

3. probability of the photon to be refracted or reflected, this is the quantum mechanical effect which we have to
take into account if we want to describe the photon as a particle and not as a wave.

As said above, we distinguish three kinds of boundary action, dielectric — black material, dielectric — metal, dielectric
— dielectric. The first case is trivial, in the sense that the photon is immediately absorbed and it goes undetected.

To determine the behaviour of the photon at the boundary, we will at first treat it as an homogeneous monochromatic
plane wave:

F= E’Oeil_{»f—iwt

Case dielectric — dielectric

In the classical description the incoming wave splits into a reflected wave (quantities with a double prime) and a
refracted wave (quantities with a single prime). Our problem is solved if we find the following quantities:

B — F eil_c"-i‘fiwt
= Ly

B — pr eiﬁ“.fﬂut
=L

For the wave numbers the following relations hold:
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Where the speed of the wave in the medium is v = ¢/, /1€ and the quantity n = ¢/v = ,/ue€ is called refractive index
of the medium. The condition that the three waves, refracted, reflected and incident have the same phase at the surface
of the medium, gives us the well known Fresnel law:

—

(E : f)surf = (]_é/ : f)surf = (k// ’ f)surf
ksini = k'sinr = k" sinr’

where 7,7, are, respectively, the angle of the incident, refracted and reflected ray with the normal to the surface.
From this formula the well known condition emerges:

T=7
sin we n
sinr L€ n

The dynamic properties of the wave at the boundary are derived from Maxwell’s equations which impose the continuity
of the normal components of D and B and of the tangential components of E and H at the surface boundary. The
resulting ratios between the amplitudes of the the generated waves with respect to the incoming one are expressed in
the two following cases:

1. aplane wave with the electric field (polarization vector) perpendicular to the plane defined by the photon direc-
tion and the normal to the boundary:

E} 2n cos 2n cosi

Ey ncosi:ﬁn’cosr ncosi+n' cosr

. o .
Ej mcost— 5N CoST  pcosi—n'cosr

Eo ncosiJr“ﬁ,n’cosr ncosi +mn' cosr
where we suppose, as it is legitimate for visible or near-visible light, that p/p' ~ 1;
2. aplane wave with the electric field parallel to the above surface:

E| 2n cos1 2n cos i

Ey /’T‘,n’cosiJrncosr n/ cost +ncosr

J . .
Ef 7 CcoSt—ncosr  p'cosi—mncosr

FEy ﬁn’cosi—l—ncosr n/ cost + ncosr

with the same approximation as above.
We note that in case of photon perpendicular to the surface, the following relations hold:

E(’)_ 2n E(’)’_n’fn
E, n'+n E, n'+n

where the sign convention for the parallel field has been adopted. This means that if n’ > n there is a phase inversion
for the reflected wave.

Any incoming wave can be separated into one piece polarized parallel to the plane and one polarized perpendicular,
and the two components treated accordingly.

To maintain the particle description of the photon, the probability to have a refracted or reflected photon must be
calculated. The constraint is that the number of photons be conserved, and this can be imposed via the conservation
of the energy flux at the boundary, as the number of photons is proportional to the energy. The energy current is given
by the expression:
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and the energy balance on a unit area of the boundary requires that:
S-a=8-a-85"-a

Scosi =S cosr+ S" cosi
1 1 1
8%an3 cosi = S%En/E(? cosr + %;nE{)’Q cosi
If we set again p/p’ = 1, then the transmission probability for the photon will be:
20
Eq

!
on' cosr

T=(%)

N COoS 1

and the corresponding probability to be reflected willbe R =1 —T.

In case of reflection, the relation between the incoming photon (E , €), the refracted one (E’ ,€) and the reflected one
(K", e") is given by the following relations:

F=kxi
S €q . q
L= (=)=
91 "]
€ =¢€-€L
, 2n cos 1
€=

n/ cost + ncosr

, 2n cos i
N i e E—
L ncost+ n/cosr
!
n
€l = e el
n
1 /
€, =€, —€e|
After transmission or reflection of the photon, the polarization vector is re-normalized to 1. In the case where sinr =
nsini/n’ > 1 then there cannot be a refracted wave, and in this case we have a total internal reflection according to
the following formulas:

Case dielectric — metal

In this case the photon cannot be transmitted. So the probability for the photon to be absorbed by the metal is estimated
according to the table provided by the user. If the photon is not absorbed, it is reflected.

Mie Scattering in Henyey-Greensterin Approximation

(Author: X. Qian, 2010-07-04)

Mie Scattering (or Mie solution) is an analytical solution of Maxwell’s equations for the scattering of optical photon
by spherical particles. The general introduction of Mie scattering can be found in Ref. /wik/7]. The analytical express
of Mie Scattering are very complicated since they are a series sum of Bessel functions [Fit/4]. Therefore, the exact
expression of Mie scattering is not suitable to be included in the Monte Carlo simulation.
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One common approximation made is called “Henyey-Greensterin” [ZS70]. It has been used by Vlasios Vasileiou in
Geant4 simulation of Milagro experiment /Col07]. In the HG approximation,

do 1—g¢?

dQ (14 g2 —2gcos(6))3/2

where
dQ) = dcos(0)do

and g = (cos(#)) can be viewed as a free constant labeling the angular distribution.

Therefore, the normalized density function of HG approximation can be expressed as:

cos(0o) do
P(cos(by)) = o g—ﬂdcos(ﬂ) = ! _92( ! - )
’ 11, 2 dcos(0) 29 (1+g2—2gcos(fy)) 1+g

Therefore,

1-g¢? 12) =2 (1+9)*(1—g+9gp)

1 2
cos() = 5- - (149" = ( (1 — g+ 2gp)?

g L—g+2g-p
where p is a uniform random number between 0 and 1.

Similarly, the backward angle where §, = ™ — 0 can also be simulated by replacing 0 to ;. Therefore the final
differential cross section can be viewed as:

do do do
0= Tm(ef,gf) +(1— T)E(%gb)

This is the exact approach used in Ref. [Vas]. Here r is the ratio factor between the forward angle and backward angle.

In implementing the above MC method into Geant4, the treatment of polarization and momentum are similar to that
of Rayleigh scattering. We require the final polarization direction to be perpendicular to the momentum direction. We
also require the final momentum, initial polarization and final polarization to be in the same plane.

4.16 Phonon-Lattice interactions

4.16.1 Introduction

Phonons are quantized vibrations in solid-state lattices or amorphous solids, of interest to the low-temperature physics
community. Phonons are typically produced when a heat source excites lattice vibrations, or when energy from
radiation is deposited through elastic interactions with nuclei of lattice atoms. Below 1 K, thermal phonons are highly
suppressed; this leaves only acoustic and optical phonons to propagate.

There is significant interest from the condensed-matter community and direct dark-matter searches to integrate phonon
production and propagation with the excellent nuclear and electromagnetic simulations available in Geant4. An effort
in this area began in 2011 by the SuperCDMS Collaboration:cite:Brandt and is continuing; initial developments in
phonon propagation have been incorporated into the Geant4 toolkit for Release 10.0.

As quasiparticles, phonons at low temparatures may be treated in the Geant4 particle-tracking framework,
carrying well defined momenta, and propagating in specific directions until they interact:cite:Brandt. The
present implementation handles ballistic transport, scattering with mode-mixing, and anharmonic downcover-
sion:cite:Tamural [Tam93 ][ Tam85] of acoustic phonons. Optical phonon transport and interactions between propa-
gating phonons and thermal background phonons are not treated.

Production of phonons from charged particle energy loss or by photon-lattice interactions are in development, but are
not yet included in the Geant4 toolkit.
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4.16.2 Phonon Propagation
The propagation of phonons is governed by the three-dimensional wave equation:cite: Wolfe:
pwie; = Cijimkikmer (4.274)

where p is the crystal mass density and Cj;p,; is the elasticity tensor; the phonon is described by its wave vector E,
frequency w and polarization €.

For a given wave vector k, Eq.(4.274) has three eigenvalues w and three polarization eigenvectors €. The three polar-
ization states are labelled Fast Transverse (FT), Slow Transverse (ST) and Longitudinal (L). The direction and speed
of propagation of the phonon are given by the group velocity vy, = dw/dk, which may be computed from Eq.(4.274):

dw(k o
7 = % — Viw(F) (4.275)

Since the lattice tensor Cj;y,; is anisotropic in general, the phonon group velocity vy is not parallel to the momentum
vector fik. This anisotropic transport leads to a focussing effect, where phonons are driven to directions which cor-
respond to the highest density of eigenvectors k. Experimentally, this is seen:cite:Nothrop as caustics in the energy
distribution resulting from a point-like phonon source isotropic in E—space, as shown in Fig. 4.58.
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Fig. 4.58: Left: outline of phonon caustics in germanium as predicted by Nothrop and Wolfe [Nothrop]. Right:
Phonon caustics as simulated using the Geant4 phonon transport code.

alt Left: outline of phonon caustics in germanium as predicted by Nothrop and Wolfe [Nothrop]. Right: Phonon
caustics as simulated using the Geant4 phonon transport code.

4.16.3 Lattice Parameters

4.16.4 Scattering and Mode Mixing

In a pure crystal, isotope scattering occurs when a phonon interacts with an isotopic substitution site in the lattice. We
treat it as an elastic scattering process, where the phonon momentum direction (wave vector) and polarization are both
randomized. The scattering rate for a phonon of frequency v (w/2w) is given by:cite: Tamura?2

Fscatter = BV4 (4276)
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where I'scq11er 18 the number of scattering events per unit time, and B is a constant of proportionality derived from the
elasticity tensor (see Eq. 11 and Table 1 in [7am85]). For germanium, B = 3.67 x 10~4! s:math:(3). [TamS85]

At each scattering event, the phonon polarziation may change between any of the three states L, ST, F'I. The
branching ratios for the polarizations are determined by the relative density of allowed states in the lattice. This
process is often referred to as mode mixing.

4.16.5 Anharmonic Downconversion

An energetic phonon may interact in the crystal to produce two phonons of reduced energy. This anharmonic down-
Conversion conserves energy (E =K +E’ "), but not momentum, since momentum is exchanged with the bulk lattice. In
principle, all three polarization states may decay through downconversion. In practice, however, the rate for L-phonons
completely dominates the energy evolution of the system, with downconversion events from other polarization states
being negligigible:cite:Tamura?2.

The total downconversion rate I',,,;, for an L-phonon of frequency v is given by:cite: Tamura2
Conn = A (4.277)
where (as in Eq.(4.276)) A is a constant of proportionality derived from the elasticity tensor (see Eq. 11 and Table 1

in [Tam85]). For germanium, A = 6.43 x 107%%s*, [Tams85]

Downconversion may produce either two transversely polarized phonons, or one transverse and one longitudinal. The
relative rates are determined by dynamical constants derived from the elasticity tensor Cj ;.

As can be seen from Eqs.(4.276) and (4.277), phonon interactions depend strongly on energy ~v. High energy phonons
(v ~ THz) start out in a diffusive regime with high isotope scattering and downconversion rates and mean free paths of
order microns. After several such interactions, mean free paths increase to several centimeters or more. This transition
from a diffuse to a ballistic transport mode is commonly referred to as “quasi-diffuse” and it controls the time evolution
of phonon heat pulses.

Simulation of heat pulse propagation using our Geant4 transport code has been described previously:cite:Brandt and
shows good agreement with experiment.

4.17 Precision multi-scale modeling

4.17.1 Overview

The physics simulation tools grouped in this domain reflect ongoing research in key issues of particle transport:

e multi-scale simulation and its implications on condensed and discrete transport schemes [tns_pixe],
[n5_mc2009], [n5_nss2009], [nss_mutants], [mc_mutants],

* epistemic uncertainties in physics models and parameters [tns_epistemic],

* innovative software design techniques [chep_photons], [mc_photons], [nss_photons], [mc_datamanagement],
[nss_datamanagement] in support of physics modeling,

* the assessment of the accuracy of data libraries used by Monte Carlo simulation codes [tns_relax_prob],
[nss_binding], [nss_datalib], [mc_datalib], [mc_beb], [nss_beb],

* precision models of particle interactions with matter, quantitatively assessed through comparison with experi-
mental measurements of the model constituents [tns_pixe], [mc_beb], [nss_beb].

The main features of the simulation tools developed in this research context, which are so far released in Geant4, are
summarized below. They concern impact ionisation by protons and « particles, and the following particle induced
X-ray emission (PIXE), which are encompassed in the Geant4 “electromagnetic/pii” package.
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4.17.2 Impact ionisation by hadrons and PIXE

Despite the simplicity of its nature as a physical effect, PIXE represents a conceptual challenge for general-purpose
Monte Carlo codes, since it involves an intrinsically discrete effect (the atomic relaxation) intertwined with a process
(ionisation) affected by infrared divergence, therefore usually treated in Monte Carlo codes by means of con The
largely incomplete knowledge of ionisation cross sections by hadron impact, limited to the innermost atomic shells
both as theoretical calculations and experimental measurements, further complicates the achievement of a conceptually
consistent description of this process.

Early developments of proton and « particle impact ionisation cross sections in Geant4 are reviewed in a detailed
paper devoted to PIXE simulation with Geant4 [tns_pixe]. This article also presents new, extensive developments for
PIXE simulation, their validation with respect to experimental data and the first Geant4-based simulation involving
PIXE in a concrete experimental use case: the optimization of the graded shielding of the X-ray detectors of the
eROSITA [erosita] mission. The new developments described in [tns_pixe] are released in Geant4 in the pii package
(in source/processes/electromagnetic/pii).

The developments for PIXE simulation described in [tns_pixe] provide a variety of proton and « particle cross sections
for the ionisation of K, L and M shells:

* theoretical calculations based on the ECPSSR [ecpssr] model and its variants (with Hartree-Slater corrections
[ecpssr_hs], with the “united atom” approximation [ecpssr_ua] and specialized for high energies [ecpssr_he]),

* theoretical calculations based on plane wave Born approximation (PWBA),

» empirical models based on fits to experimental data collected by Paul and Sacher [paul_sacher] (for protons, K
shell), Paul and Bolik [paul_bolik] (for o, K shell), Kahoul et al. [kahoul]) (for protons, K, shell), Miyagawa et
al. [miyagawa], Orlic et al. [orlic_semiemp] and Sow et al. [sow] for L shell.

The cross section models available in Geant4 are listed in Table [tab_models].

Protons, K shell

Model Z range

ECPSSR ECPSSR High Energy ECPSSR Hartree-Slater ECPSSR United Atom | 6-92 6-92 6-92 6-92 6-

ECPSSR reference [paul_sacher] PWBA Paul and Sacher Kahoul et al. 92 6-92 6-92 6-92

Protons, L shell

Model Z range

ECPSSR ECPSSR United Atom PWBA Miyagawa et al. Orlic et al. Sow et al. 6-92 6-92 6-92 40-92
43-92 43-92

Protons, M shell
Model | Z range
ECPSSR | 6-92 PWBA | 6-92

«, K shell

Model Z range

ECPSSR ECPSSR Hartree-Slater ECPSSR reference [paul_bolik] PWBA 6-92 6-92 6-92 6-92
«, L and M shell

Model Z range

ECPSSR PWBA 6-92 6-92

The calculation of cross sections in the course of the simulation is based on the interpolation of tabulated values, which
are collected in a data library. The tabulations corresponding to theoretical calculations span the energy range between
10 keV and 10 GeV; empirical models are tabulated consistently with the energy range of validity documented by their
authors, that corresponds to the range of the data used in the empirical fits and varies along with the atomic number
and sub-shell.

ECPSSR tabulations have been produced using the ISICS software [isics][isics2006], 2006 version; an extended ver-
sion, kindly provided by ISICS author S. Cipolla [isics2008], has been exploited to produce tabulations associated
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with recent high energy modelling developments [ecpssr_he].

An example of the characteristics of different cross section models is illustrated in Fig. [fig_crossk29]. Fig.
[fig_crossk6] shows various cross section models for the ionisation of carbon K shell by proton, compared to ex-
perimental data reported in [paul_sacher].
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0.1 1 10 100 1000 10000
Energy (MeV)
— ECPSSR = ECPSSR-HS  =———ECPSSR-UA ——ECPSSR-HE
=== PWBA = cceeee Paul and Sacher««+«-- Kahoul et al.

Fig. 4.59: Cross section for the ionisation of copper K shell by proton impact according to the various implemented
modeling options: ECPSSR model, ECPSSR model with “united atom” (UA) approximation, Hartree-Slater (HS) cor-
rections and specialized for high energies (HE); plane wave Born approximation (PWBA); empirical models by Paul
and Sacher and Kahoul et al. The curves reproducing some of the model implementations can be hardly distinguished
in the plot due to their similarity.

The implemented cross section models have been subject to rigorous statistical analysis to evaluate their compatibility
with experimental measurements reported in [paul_sacher], [orlic_exp], [sokhi] and to compare the relative accuracy
of the various modelling options.

The validation process involved two stages: first goodness-of-fit analysis based on the ? test to evaluate the hypothesis
of compatibility with experimental data, then categorical analysis exploiting contingency tables to determine whether
the various modelling options differ significantly in accuracy. Contingency tables were analyzed with the x? test and
with Fisher’s exact test.

The complete set of validation results is documented in [tns_pixe]. Only the main ones are summarized here; Geant4
users interested in detailed results, like the accuracy of different cross section models for specific target elements,
should should refer to [tns_pixe] for detailed information.

Regarding the K shell, the statistical analysis identified the ECPSSR model with Hartree-Slater correction as the
most accurate in the energy range up to approximately 10 MeV; at higher energies the ECPSSR model in its plain
formulation or the empirical Paul and Sacher one (within its range of applicability) exhibit the best performance. The
scarceness of high energy data prevents a definitive appraisal of the ECPSSR specialization for high energies.

Regarding the L shell, the ECPSSR model with “united atom” approximation exhibits the best accuracy among the
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Fig. 4.60: Cross section for the ionisation of carbon K shell by proton impact according to the various implemented
modeling options, and comparison with experimental data [paul_sacher]: ECPSSR model, ECPSSR model with
“united atom” (UA) approximation, Hartree-Slater (HS) corrections and specialized for high energies (HE); plane
wave Born approximation (PWBA); empirical models by Paul and Sacher and Kahoul et al. The curves reproducing
some of the model implementations can be hardly distinguished in the plot due to their similarity.
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various implemented models; its compatibility with experimental measurements at 95% confidence level ranges from
approximately 90% of the test cases for the L3 sub-shell to approximately 65% for the L; sub-shell. According to the
results of the categorical analysis, the ECPSSR model in its original formulation can be considered an equivalently
accurate alternative. The Orlic et al. model exhibits the worst accuracy with respect to experimental data; its accuracy
is significantly different from the one of the ECPSSR model in the “united atom” variant.

In the current Geant4 release the implementation of the hadron impact ionisation process (G4Impactlonisation) is
largely based on the original G4hLowEnergylonisation process [lowe_chep],:cite:lowe_nss, [tns_antiprotons]. Thanks
to the adopted component-based software design, the simulation of PIXE currently exploits the existing Geant4 atomic
relaxation [relax] component to produce secondary X-rays resulting from impact ionisation.

4.18 Shower Parameterizations

4.18.1 Gflash Shower Parameterizations

The computing time needed for the simulation of high energy electromagnetic showers can become very large, since it
increases approximately linearly with the energy absorbed in the detector. Using parameterizations instead of individ-
ual particle tracking for electromagnetic (sub)showers can speed up the simulations considerably without sacrificing
much precision. The Gflash package allows the parameterization of electron and positron showers in homogeneous
(for the time being) calorimeters and is based on the parameterization described in Ref. [para.grind] .

Parameterization Ansatz

The spatial energy distribution of electromagnetic showers is given by three probability density functions (pdf),

dE(F) = E f(t)dt f(r)dr f(¢)d¢,

describing the longitudinal, radial, and azimuthal energy distributions. Here ¢ denotes the longitudinal shower depth in
units of radiation length, » measures the radial distance from the shower axis in Moliere units, and ¢ is the azimuthal
angle. The start of the shower is defined by the space point where the electron or positron enters the calorimeter, which
is different from the original Gflash. A gamma distribution is used for the parameterization of the longitudinal shower
profile, f(t). The radial distribution f(r), is described by a two-component ansatz. In ¢, it is assumed that the energy
is distributed uniformly: f(¢) = 1/27.

Longitudinal Shower Profiles

The average longitudinal shower profiles can be described by a gamma distribution [para.longo]:

1 dE(t) (Bt)*~ ! Bexp(—pt)
(%) = 10 = P

The center of gravity, (t), and the depth of the maximum, 7', are calculated from the shape parameter « and the scaling
parameter [ according to:

o

B
- (4.278)
T a—1

B

In the parameterization all lengths are measured in units of radiation length (X)), and energies in units of the critical
energy (E, = 2.66 (XO%) 1'1). This allows material independence, since the longitudinal shower moments are equal
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in different materials, according to Ref. [rossi] . The following equations are used for the energy dependence of T},
and (apom), with y = E/E, and t = 2/ X, x being the longitudinal shower depth:

Thom = Iny + 1
Qhom = a1+ (a2 +a3/Z)Iny.

The y-dependence of the fluctuations can be described by:
o= (s1+solny)~ L (4.279)

The correlation between In 7},,,, and In a0y, s given by:
p(InThom, Inhom) = p = 1 +r2lny. (4.280)

From these formulae, correlated and varying parameters «; and f3; are generated according to
InT7; \ _ (InT) Lo &
In o (In ) 29

C_(aanT) 0 ) 2oV
- 0 1 —
olna) J\ e -y

o(lne) and o(InT) are the fluctuations of Ty, and (pem- The values of the coefficients can be found in Ref.
[para.grind].

with

Radial Shower Profiles

For the description of average radial energy profiles,

1 dE(t,r)

f(T):F(t) ar

a variety of different functions can be found in the literature. In Gflash the following two-component ansatz, an
extension of that in Ref.:cite:para.nim90, was used:

f(r)= pfe(r)+ (1 =p)fr(r)
2r R2 2r R?
= Phe +}§%,)2 +1-Pgz +RT%)2
with
0<p<1.

Here Rc (Rr) is the median of the core (tail) component and p is a probability giving the relative weight of the core
component. The variable 7 = ¢/T", which measures the shower depth in units of the depth of the shower maximum,
is used in order to generalize the radial profiles. This makes the parameterization more convenient and separates the
energy and material dependence of various parameters. The median of the core distribution, R¢, increases linearly
with 7. The weight of the core, p, is maximal around the shower maximum, and the width of the tail, Ry, is minimal
at7 ~ 1.

The following formulae are used to parameterize the radial energy density distribution for a given energy and material:

R hom(T) = z1 + 29T
Ry hom(7) =  ki{exp(ks(T — ko)) + exp(ka(T — k2))}
p2 —T p2—T
Phom(T) = P1€xp { — exp ( ) }
D3 b3
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The parameters z; - - - p3 are either constant or simple functions of In F or Z.

Radial shape fluctuations are also taken into account. A detailed explanation of this procedure, as well as a list of all
the parameters used in Gflash, can be found in Ref. [para.grind].

Gflash Performance

The parameters used in this Gflash implementation were extracted from full simulation studies with Geant 3. They
also give good results inside the Geant4 fast shower framework when compared with the full electromagnetic shower
simulation. However, if more precision or higher particle energies are required, retuning may be necessary. For the
longitudinal profiles the difference between full simulation and Gflash parameterization is at the level of a few percent.
Because the radial profiles are slightly broader in Geant3 than in Geant4, the differences may reach > 10%. The gain
in speed, on the other hand, is impressive. The simulation of a 1 TeV electron in a PbW O, cube is 160 times faster
with Gflash. Gflash can also be used to parameterize electromagnetic showers in sampling calorimeters. So far,
however, only homogeneous materials are supported.
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CHAPTER
FIVE

HADRONIC

5.1 Elastic

5.1.1 Coherent elastic scattering

Nucleon-Nucleon elastic Scattering

The classes G4LEpp and G4LEnp provide data-driven models for proton-proton (or neutron-neutron) and neutron-
proton elastic scattering over the range 10-1200 MeV. Final states (primary and recoil particle) are derived by sampling
from tables of the cumulative distribution function of the centre-of-mass scattering angle, tabulated for a discrete set
of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1 degree intervals and sampling is done
using bi-linear interpolation in energy and CDF values. The data are derived from differential cross sections obtained
from the SAID database, R. Arndt, 1998.

In class G4LEpp there are two data sets: one including Coulomb effects (for p-p scattering) and one with
no Coulomb effects (for n-n scattering or p-p scattering with Coulomb effects suppressed). The method
G4LEpp::SetCoulombEffects can be used to select the desired data set:

¢ SetCoulombEffects(0): No Coulomb effects (the default)
¢ SetCoulombEffects(1): Include Coulomb effects

The recoil particle will be generated as a new secondary particle. In class G4LEnp, the possiblity of a charge-exchange
reaction is included, in which case the incident track will be stopped and both the primary and recoil particles will be
generated as secondaries.

5.2 Elastic_he

5.2.1 Hadron-nucleus Elastic Scattering at Medium and High Energy

Method of Calculation
The Glauber model /Gla70] is used as an alternative method of calculating differential cross sections for elastic and
quasi-elastic hadron-nucleus scattering at high and intermediate energies.

For high energies this includes corrections for inelastic screening and for quasi-elastic scattering the exitation of a
discrete level or a state in the continuum is considered.

The usual expression for the Glauber model amplitude for multiple scattering was used

-

F(q) = % / d2bet M (D). (5.1)
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Here M (D) is the hadron-nucleus amplitude in the impact parameter representation

: label : helast.eq2
M(g) —1_ [1 _ efAfd?’rF(l;fg)p(F)]A’

k is the incident particle momentum, ¢’ = k' — k is the momentum transfer, and K’ is the scattered particle momentum.
Note that |(ﬂ2 = —t - invariant momentum transfer squared in the center of mass system. I'(b) is the hadron-nucleon
amplitude of elastic scattering in the impact-parameter representation

: label : helast.eq3
- 1

@) =— / dge= 40 4(g).

2k

The exponential parameterization of the hadron-nucleon amplitude is usually used:

: label : helast.eq4
khN hN

_ —0.5q2B
F@) = =P,

Here 0"V = o!¥ (1—ia) ol is the total cross section of a hadron-nucleon scattering, B is the slope of the diffraction
cone and « is the ratio of the real to imaginary parts of the amplitude at ¢ = 0. The value k™" is the hadron momentum

in the hadron-nucleon coordinate system.

The important difference of these calculations from the usual ones is that the two-gaussian form of the nuclear density
was used

: label : helast.eqb
plr) = C(e” /R — pem /R,
where R; Ry and p are the fitting parameters and C' is a normalization constant.

This density representation allows the expressions for amplitude and differential cross section to be put into analytical
form. It was earlier used for light [BW6S8][ helast.2b][ helast.2c][ helast.3] and medium [KSS83]/[EKSS81] nuclei.
Described below is an extension of this method to heavy nuclei. The form helast.eqg5 is not physical for a heavy
nucleus, but nevertheless works rather well (see figures below). The reason is that the nucleus absorbs the hadrons very
strongly, especially at small impact parameters where the absorption is full. As a result only the peripherial part of the
nucleus participates in elastic scattering. Eq. helast . eg5 therefore describes only the edge of a heavy nucleus.

Substituting Eqs. helast.eg5 and helast.eqg4 into Egs. (5.1), helast.eg2 and helast.eq3 yields the

following formula
A k k—m
zkl Z ohN Jk k R3
2 &~ 27T(R3 pR3 = O R} +2B

pR3 1" m__ k—m \ '
R3+2B R?+2B  R?+2B

(5.2)

2 -1
X exp | — -7 mn + k—m
4 \R}+2B R}+2B
An analogous procedure can be used to get the inelastic screening corrections to the hadron-nucleus amplitude A M (5)

[NNikolskiiS+77]. In this case an intermediate inelastic diffractive state is created which rescatters on the nucleons of
the nucleus and then returns into the initial hadron Hence it is nessesary to integrate the production cross section over

the mass distribution of the exited system < dod M2 The expressions for the corresponding amplitude are quite long and
so are not presented here. The corrections for the total cross-sections can be found in [NNikolskiiS+77].
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The full amplitude is the sum M (b) + AM (b).

The differential cross section is connected with the amplitude in the following way

dfa_ do o
|| dq%‘M k%‘M

do
=|F(q))*,

2

The main energy dependence of the hadron-nucleus elastic scattering cross section comes from the energy dependence

. diff . . .
of the parameters of hadron-nucleon scattering (/Y o B and %). At interesting energies these parameters were

x

fixed at their well-known values. The fitting of the nuclear density parameters was performed over a wide range of
atomic numbers (A = 4 — 208) using experimental data on proton-nuclei elastic scattering at a kinetic energy of
T, = 1GeV.

The fitting was perfomed both for individual nuclei and for the entire set of nuclei at once. It is necessary to note that
for every nucleus an optimal set of density parameters exists and it differs slightly from the one derived for the full set
of nuclei.

A comparision of the phenomenological cross sections [ABV78] with experiment is presented in Figs. [helast.figl] -
[helast.fig9]

In this comparison, the individual nuclei parameters were used. The experimental data were obtained in Gatchina

(Russia) and in Saclay (France) [ABV78]. The horizontal axis is the scattering angle in the center of mass system

. . . do .. mb .. 4 . .
O ¢ and the vertical axis is ear in 5o Comparisions were also made for p* H e elastic scatering at T_1GeV [7],

45GeV and 301GeV [3]. The resulting cross sections % are shown in the Figs. [helast.figl0] - [helast.fig12].

In order to generate events the distribution function F of a corresponding process must be known. The differential
cross section is proportional to the density distribution. Therefore to get the distribution function it is sufficient to
integrate the differential cross section and normalize it:

5.4)

Expressions (5.2) and (5.3) allow analytic integration in Eq. (5.4) but the result is too long to be given here.

For light and medium nuclei the analytic expression is more convenient for calculations than the numerical integration
of Eq. (5.4), but for heavy nuclei the latter is preferred due to the large number of terms in the analytic expression.

5.3 LowEnergyChargedParticles

5.3.1 Low Energy Charged Particle Interactions

Introduction

The low energy charged particle transport class library described here simulates the interactions of protons, deuterons,
tritons, He-3 and alpha particle with kinetic energies up to 200 MeV. The upper limit is set by the comprehensive
evaluated neutron scattering data libraries that the simulation is based on. It reuses the code of the low energy neutron
interactions package, with some small modifications to take into account the change of incident particle.

Only the inelastic interactions are included in this model, while the elastic interaction is treated approximately by other
Geant4 models, and the interference between Coulumb and nuclear elastic is neglected.

5.3. LowEnergyChargedParticles 205



Physics Reference Manual, Release 10.4

Flastic scattering p—Be9 at T=1 GeV

do/dQ, mb/Ster
o
(&)

Fig. 5.1: Elastic proton scattering on “Be at 1 GeV
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Flastic scattering p—B11 at T=1 CeV

do/dQ, mb/Ster
o
(&)

Fig. 5.2: Elastic proton scattering on !B at 1 GeV
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Elastic scattering p—C12 at T=1 GeV

O
[

do/dQ, mb/Ster
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)

Fig. 5.3: Elastic proton scattering on '2C at 1 GeV
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Elastic scattering p—016 at T=1 GeV

do/dQ, mb/Ster
o
(&)

Fig. 5.4: Elastic proton scattering on 60 at 1 GeV
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Flastic scattering p—Si28 at T=1 GeV
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Fig. 5.5: Elastic proton scattering on 22Si at 1 GeV
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Flastic scattering p—Ca40 at T=1 GeV

do/dQ, mb/Ster
o
~

Fig. 5.6: Elastic proton scattering on “°Ca at 1 GeV
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Elastic scattering p—Ni58 at T=1 GeV

do/dQ, mb/Ster
o
~

Fig. 5.7: Elastic proton scattering on *Ni at 1 GeV
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Flastic scattering p—/r90 at T=1 GeV

do/dQ, mb/Ster
T \\\HH‘ T \\\HH‘ T \\\HH‘ T \\\HH‘

Fig. 5.8: Elastic proton scattering on °°Zr at 1 GeV
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Flastic scattering p—Pb208 at T=1 CeV
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do/dQ, mb/Ster
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Fig. 5.9: Elastic proton scattering on 2°°Pb at 1 GeV
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t), mb/(Giv/c)z

Flastic scattering p—He4 at T=1 GeV
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Fig. 5.10: Elastic proton scattering on *He at 1 GeV
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Elastic scattering p—He4 at T=45 GeV
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Fig. 5.11: Elastic proton scattering on *He at 45 GeV
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Flastic scattering p—He4 at T=301 CeV
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Fig. 5.12: Elastic proton scattering on *He at 301 GeV
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Physics and Verification

Inclusive Cross-sections

Cross-section data is taken from the ENDF/B-VILrl:cite:ENDF evaluated data library for those few elements where
data exist. As these isotopes are only a few, most of the isotopes data are taken from the TENDL data library, which
uses the TALY'S nuclear model. The format is exactly the same as for the low energy neutron data libraries. While the
energy of the TENDL files goes up to 200 MeV, in the case of ENDF it only reaches 150 MeV for most isotopes and
for some is even less.

The treatment of this data is done with the same code as for the low energy neutron package. It should be mentioned
that for all except a few low Z isotopes in the ENDF data library, there is no information about individual decay
channels, but only about the total cross section plus particle yields. Therefore the same remark as for the neutron
package holds: there is no event-by-event conservation of energy, nor of atomic or mass number.

The absence of treatment of the correlation between inelastic and elastic interactions affects the emission of charged
particles, while it does not for neutron and gamma emission. The effect is expected to increase with incident energy
and modify the secondary particle spectra.

5.4 LowEnergyNeutrons

5.4.1 Geant4 Low Energy Nuclear Data (LEND) Package

Low Energy Nuclear Data

Geant4 Low Energy Nuclear Data (LEND) Package GALEND is a set of low energy nuclear interaction models in
Geant4. The LEND package uses Generalized Nuclear Data (GND) which is a modern format for storing nuclear data.
To use the package, users must download data from and set the environment variable “G4LENDDATA” to point to
the directory where the data is unpacked. GNDv1.3.tar.gz is a tar ball which can be downloaded from the ftp site and
includes GND-formatted nuclear data for incident neutrons and gammas which are converted from the ENDF/B-VIL.r1
library. A total of 421 target nuclides from H to Es are available for the neutron- incident data and 162 nuclides from
H to Pt for the gamma-incident data. The cross sections and final state products of the interactions are extracted from
the data using the General Interaction Data Interface (GIDI). G4ALEND then allow them to be used in Geant4 hadronic
cross section and model. G4LEND is a data-driven model; therefore the data library quality is crucial for its physics
performance. Energy range of the package is also a function of data library. In the case of the data which converted
from ENDF/B-VILrl, it can handle neutrons interaction from below thermal energy up to 20MeV for most target
nuclides. The upper limit of the energy enhances up to 150 MeV for some target nuclides. One important limitation
of the model is that it does not guarantee conservation laws beyond the 2 body interaction.

5.4.2 Neutrons

Capture

The final state of radiative capture is described by either photon multiplicities, or photon production cross-sections,
and the discrete and continuous contributions to the photon energy spectra, along with the angular distributions of the
emitted photons.

For the description of the photon multiplicity there are two supported data representations. It can either be tabulated
as a function of the energy of the incoming neutron for each discrete photon as well as the eventual continuum
contribution, or the full transition probability array is known, and used to determine the photon yields. If photon
production cross-sections are used, only a tabulated form is supported.
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The photon energies E., are associated to the multiplicities or the cross-sections for all discrete photon emissions. For
the continuum contribution, the normalised emission probability f is broken down into a weighted sum of normalised
distributions g.

f(E—E,) = Zpi(E)gi(E — Ey)

The weights p; are tabulated as a function of the energy E of the incoming neutron. For each neutron energy, the
distributions g are tabulated as a function of the photon energy. As in the ENDF/B-VI data formats:cite: ENDF, several
interpolation laws are used to minimise the amount of data, and optimise the descriptive power. All data are derived
from evaluated data libraries.

The techniques used to describe and sample the angular distributions are identical to the case of elastic scattering, with
the difference that there is either a tabulation or a set of legendre coefficients for each photon energy and continuum
distribution.

As an example of the results is shown in Fig. 5.13 the energy distribution of the emitted photons for the radiative cap-
ture of 15 MeV neutrons on Uranium (3®U). Similar comparisons for photon yields, energy and angular distributions
have been performed for capture on 238U, 23°U, 23Na, and '*N for a set of incoming neutron energies. In all cases
investigated the agreement between evaluated data and Monte Carlo is very good.

Cross-sections

All cross-section data are taken from the ENDF/B-VI:cite:ENDF evaluated data library.

All inclusive cross-sections are treated as point-wise cross-sections for reasons of performance. For this purpose, the
data from the evaluated data library have been processed, to explicitly include all neutron nuclear resonances in the
form of point-like cross-sections rather than in the form of parametrisations. The resulting data have been transformed
into a linearly interpolable format, such that the error due to linear interpolation between adjacent data points is smaller
than a few percent.

The inclusive cross-sections comply with the cross-sections data set interface of the Geant4 hadronic design. They
are, when registered with the tool-kit at initialisation, used to select the basic process. In the case of fission and
inelastic scattering, point-wise semi-inclusive cross-sections are also used in order to decide on the active channel for
an individual interaction. As an example, in the case of fission this could be first, second, third, or forth chance fission.

Elastic

The final state of elastic scattering is described by sampling the differential scattering cross-sections 3—5. Two rep-
resentations are supported for the normalised differential cross-section for elastic scattering. The first is a tabulation
of the differential cross-section, as a function of the cosine of the scattering angle 6 and the kinetic energy F of the
incoming neutron.

do do
@ = m (COS 0, E)
The tabulations used are normalised by o/(27) so the integral of the differential cross-sections over the scattering

angle yields unity.
In the second representation, the normalised cross-section are represented as a series of legendre polynomials
P;(cos 8), and the legendre coefficients a; are tabulated as a function of the incoming energy of the neutron.

ng

27 do 2041
“Z(cost, E) = > E)P,
(B a0 (cosb, E) 2 5 a;(E)P,(cos )

Describing the details of the sampling procedures is outside the scope of this paper.
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Fig. 5.13: Comparison of data and Monte Carlo for photon energy distributions for radiative capture of 15 MeV
neutrons on Uranium (2387)). The points are evaluated data, the histogram is the Monte Carlo prediction.
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An example of the result we show in Fig. 5.14 for the elastic scattering of 15 MeV neutrons off Uranium a comparison
of the simulated angular distribution of the scattered neutrons with evaluated data. The points are the evaluated data,
the histogram is the Monte Carlo prediction.

In order to provide full test-coverage for the algorithms, similar tests have been performed for 2Ge, 1268y, 2387,
“He, and 27 Al for a set of neutron kinetic energies. The agreement is very good for all values of scattering angle and
neutron energy investigated.

Fission

For neutron induced fission, we take first chance, second chance, third chance and forth chance fission into account.

Neutron yields are tabulated as a function of both the incoming and outgoing neutron energy. The neutron angular
distributions are either tabulated, or represented in terms of an expansion in legendre polynomials, similar to the
angular distributions for neutron elastic scattering. In case no data are available on the angular distribution, isotropic
emission in the centre of mass system of the collision is assumed.

There are six different possibilities implemented to represent the neutron energy distributions. The energy distribution
of the fission neutrons f(E — E’) can be tabulated as a normalised function of the incoming and outgoing neutron
energy, again using the ENDF/B-VI interpolation schemes to minimise data volume and maximise precision.

The energy distribution can also be represented as a general evaporation spectrum,
f(E—E) = f(E/O(E)).

Here FE is the energy of the incoming neutron, E’ is the energy of a fission neutron, and ©(FE) is effective temperature
used to characterise the secondary neutron energy distribution. Both the effective temperature and the functional
behaviour of the energy distribution are taken from tabulations.

Alternatively energy distribution can be represented as a Maxwell spectrum,
f(E = E') « VE/9E)
or a evaporation spectrum
f(E— E') « E/9F),

In both these cases, the temperature is tabulated as a function of the incoming neutron energy.

The last two options are the energy dependent Watt spectrum, and the Madland Nix spectrum. For the energy depen-
dent Watt spectrum, the energy distribution is represented as

f(E—=E'") « e P/ B ginh \/b(E)E'.

Here both the parameters a, and b are used from tabulation as function of the incoming neutron energy. In the case of
the Madland Nix spectrum, the energy distribution is described as

1
(BB = S[o(E < Ki>) + g(B',< Ky >)].
Here
1
9B <K >) = oo [ B (1) =By (1) +9(3/2,02) = 9(3/2,01)
/E/_ / K 2
w (B < K >)= ( ®< >) , and

\/ F! / 2

up(E' < K >) = VE' + V< K >) .

©
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elastic scattering off U238, 15 MeV neutrons
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Fig. 5.14: Comparison of data and Monte Carlo for the angular distribution of 15 MeV neutrons scattered elastically
off Uranium (238377 The noints are evaluated data and the histooram is the Monte Carlo nrediction The lower nlot
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Here K] is the kinetic energy of light fragments and K, the kinetic energy of heavy fragments, F (z) is the exponential
integral, and ~(z) is the incomplete gamma function. The mean kinetic energies for light and heavy fragments are
assumed to be energy independent. The temperature © is tabulated as a function of the kinetic energy of the incoming
neutron.

Fission photons are describes in analogy to capture photons, where evaluated data are available. The measured nuclear
excitation levels and transition probabilities are used otherwise, if available.

As an example of the results is shown in Fig. 5.15 the energy distribution of the fission neutrons in third chance fission
of 15 MeV neutrons on Uranium (23%U). This distribution contains two evaporation spectra and one Watt spectrum.
Similar comparisons for neutron yields, energy and angular distributions, and well as fission photon yields, energy and
angular distributions have been performed for 238U, 23°U, 234U, and 24! Am for a set of incoming neutron energies.
In all cases the agreement between evaluated data and Monte Carlo is very good.

This document describes the format of GANDL4.5. The previous version of G4NDL does not have entries for data
library identification and names of original data libraries, but other formats are same, i.e., the first element of the old
version is equivalent to the 3rd element of a new version.

Since G4NDLA4 .4, files in the data library are compressed by zlib:cite:z/ib. In this section, we will explain the format
of GANDL in its pre-compressed form.

Cross Section

Each file in the cross section directories has the following entries:
* the first entry is identification of library (in this case G4NDL)
* the second entry original data library from which the file came

¢ the third entry is a dummy entry but the value usually corresponds to the MT number of reaction in ENDF
formats (2:Elastic, 102:Capture, 18:Fission; files in the directory of inelastic cross section usually have 0 for
this entry). [1]

* the fourth entry is also a dummy
* the fifth entry represents the number of (energy, cross section) pairs (in eV, barn) to follow.

This is an example of cross section file format:

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)
2 (3rd entry) \\MT
0 (4th entry)
682 (5th entry) \\number of E-XS pairs
1.000000e-05 2.043634e+01 1.062500e-05 2.043634e+01 ,,,,,
(lst pair of E and XS) (2nd pair of E and XS)

2.000000e+07 4.827462e-01
(682th pair of E and XS)

Final State

Unlike the format of the cross section files, the format of the final state files is not straightforward and pretty com-
plicated. Even though each of these files follows the same format rules, the actual length and appearance of each file
will depend on the specific data. The format rules of the final state files are a subset of the ENDF-6 format and a deep
understanding of the format is required to correctly interpret the content of the files. Because of limited resources, we
do not plan to provide a complete documentation on this part in the near future.
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third chance fission on U238, 15 MeV neutrons
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Fig. 5.15: Comparison of data and Monte Carlo for fission neutron energy distributions for induced fission by 15 MeV
neutrons on Uranium (?3807). The curve represents evaluated data and the histogram is the Monte Carlo prediction.
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Thermal Scattering Cross Section

The format of the thermal scattering cross section data is similar to that of the cross section data described above:
¢ the 1st and 2nd entries have the same meaning

¢ the 3rd and 4th entries are also dummies and not used in simulation. However the 3rd entry has the value of
3 that represents MF number of ENDF-6 format and the 4th entry has the value of MT numbers of ENDF-6
format.

* the 5th entry is the temperature (in Kelvin)
* the 6th entry represents the number of (energy, cross section) pairs given for the temperature in entry 5.

e If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of pairs, and paired E and cross section data.

This is an example of thermal scattering cross section file format:

G4ANDL (1st entry)
ENDF/B-VII.1 (2nd entry)
3 (3rd entry) \\MF
223 (4th entry) \\MT
296 (5th entry) \\temperature
2453 (6th entry) \\number of E-XS pairs
1.000000e-5 3.456415e+2 1.125000e-5 3.272908e+2 ,,,,,
(lst pair of E and XS) (2nd pair of E and XS)

4.000040e+0 0.000000e+0 2.000000e+7 0.000000e+0
(2452nd pair of E and XS) (2453rd pair of E and XS)

3 (MF')
223 (MT)
350 (temperature)
2789 (Number of E-XS pair)
1.000000e-5 4.457232e+2 1.125000e-5 4.220525e+2 ,,,,,,
(1st pair of E and XS) (2nd pair of E and XS)

Coherent Final State

The final state files have a similar format:
* the st and 2nd entries have the same meaning before

¢ the 3rd and 4th entries are also dummy entries and not used in simulation. However the 3rd entry has the value
of 7 that represents MF number of ENDF-6 format and the 4th entry has the value 2 as MT number of the
ENDF-6 format.

* the 5th entry represents temperature

¢ the 6th entry shows the number of Bragg edges given. This is followed by pairs of Bragg edge energies in eV
and structure factors.

e If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of Bragg edges, and paired energy of Bragg edge
and structure factors. However the energies of the Bragg edges only appear in the first data block.

This is an example of thermal scattering coherent final state file:

G4NDL (1st entry)
ENDF/B-VII.1 (2nd entry)
7 (3rd entry) // MF
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2 (4th entry) // MT
296 (5th entry) // temperature
248 (6th entry) // number of Bragg edges
4.555489e-4 0.000000e+0 1.822196e-3 1.347465e-2 ,,,,,,
(lst pair of E and S) (2nd pair of E and S)
1.791770e+0 6.259710e-1 5.000000e+0 6.259711e-1
(247th pair of E, 9) (248th pair of E, 9)
7 (MF')
2 (MT)
400 (temperature)
248 (# of Bragg edge structure factors without energies)

0.000000e+0 1.342127e-2 ,,,,,
(lst pair of E and 9)
4.994888e-1 4.994889%e-1
(247th pair of E and S)

Incoherent Final State

The incoherent final state files have a similar format:
¢ the 1st and 2nd entry has same meaning before

¢ the 3rd and 4th entries are dummy entries and not used in simulation. However the 3rd entry has the value of
6 that represents the MF number of the ENDF-6 format and the 4th entry is the MT number of the ENDF-6
format.

* the 5th entry is the temperature of this data block
* the 6th entry is the number of isoAngle data sets, described below.

e If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of isoAngle data sets and the isoAngle data sets.

The format of the isoAngle data set is following.

* Up to the 8th entry, only 2nd and 5th entry has real meaning in simulation and the 2nd entry has energy of
incidence neutron and 5th entry is the number of equal probability bins (N) in mu.

* 9th to (9+N-2)th entries are the boundary values of the equal probability bins. The lowest and highest boundary
of -1 and 1 are obvious thus they are omitted from entries.

This is an example of isoAngle data set

0.000000e+0 1.000000e-5 0 0 10 10
(1st entry) (2nd entry) (3rd entry) (4th entry) (5th entry) (6th entry)
1.000000e-05 1.000000e+00 -8.749199e-01 -6.247887e-01
(7th entry) (8th entry) (2nd boundary) (3rd boundary)
6.252111e-01 8.750801e-01

(9th boundary) (10th boundary)

rrr

This is an example of thermal scattering incoherent final state file

G4ANDL (1st entry)
ENDF/B-VII.1 (2nd entry)
6 (3rd entry) \ \MF
224 (4th entry) \\MT
296 (5th entry) \\temperature
2452 (6th entry) \\number of isoAngle data sets
0.000000e+0 1.000000e-5 0 0 10 10
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(1st isoAngle data set)
1.000000e-05 1.000000e+00 -8.749199e-01 -6.247887e-01 -3.747014e-01
-1.246577e-01 1.253423e-01 3.752985e-01 6.252111e-01 8.750801e-01
0.000000e+0 1.125000e-5 0 0 10 10
(2452st isoAngle data set)
4.000040e+00 1.000000e+00 9.889886e-01 9.939457e-01 9.958167e-01
9.970317e-01 9.979352e-01 9.986553e-01 9.992540e-01 9.997666e-01

6 (MF)
224 (MT)
350 (temperature)
2788 (sumber of isoAngle data sets)
0.000000e+0 1.000000e-5 0 0 10 10

1.000000e-05 1.000000e+00 -8.749076e-01 -6.247565e-01 —-3.746559e-01
-1.246055e-01 1.253944e-01 3.753440e-01 6.252433e-01 8.750923e-01

rrrrrrrrrrrrrrrrrrr

Inelastic Final State

As before, the top six entries are similar:
* the 1st and 2nd entries have the same meaning.

¢ the 3rd and 4th entries are dummy entries and not used in simulation. However the 3rd entry has the value of 6
that represents the MF number of ENDF-6 format and the 4th entry corresponding to MT number of ENDF-6
format.

¢ the 5th entry is the temperature [K] of this data block

* the 6th entry is number of E-(E’-isoAngle) data sets, where E is the energy of the incident neutron and E’ is
energy of the scattered neutron.

* If there are multiple temperatures listed, which is typical, then for each temperature there is a corresponding
data block which consists of MF, MT, temperature, number of E-(E’-isoAngle) data set and E-(E’-isoAngle)
data.

The format of E-(E’-isoAngle) is following.
e The 1st, 3rd and 4th entries are dummies and not be used in simulation.
e The 2nd entry is the energy of the incident neutron(E)
* the 5th entry is the number of entries to be found after the 6th entry.

* the 6th entry corresponds to the number of entries of each E’-isoAngle data set. The first entry of E’-isoAngle
data set represents energy of scattered neutron(E’) and 2nd entry is probability of E->E’ scattering. Following
entries correspond to boundaries of iso-probability bins in mu. The lowest and highest boundaries are also
omitted. The first and last E’-isoAng set should always have all 0 values excepting for energy of scattering
neutron.

This is an example of E-(E’-isoAngle) data set

0.000000e+0 1.000000e-5 0 0 2080 10

(1st entry) (2nd entry) (3rd entry) (4th entry) (5th entry) (6th entry)

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

(1st E’-isoAng data set)

6.103500e-10 3.127586e+00 -8.741139%9e-01 -6.226646e-01 -3.716976e-01
-1.212145e-01 1.287860e-01 3.783033e-01 6.273366e-01 8.758833e-01

(2nd E’-isoAng data set)
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rrrrrrrrrrrrrrrrrrrrrg

7.969600e-01 5.411300e-13 -8.750360e-01 -6.254547e-01 -3.755898e-01
-1.257686e-01 1.241790e-01 3.742614e-01 6.242919e-01 8.753607e-01

(207th E’-isoAng data set)

8.199830e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

(208th E’-isoAng data set)

This is an example of thermal scattering inelastic final state file

G4ANDL (1st entry)
ENDF/B-VII.1 (2nd entry)
6 (3rd entry) \ \MF
222 (4th entry) \\MT
293.6 (5th entry) \\temperature
107 (6th entry) \\number of E-(E’-isoAngle) data sets

0.000000e+0 1.000000e-5 0 0 2080 10
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
6.103500e-10 3.127586e+00 —-8.741139%9e-01 -6.226646e-01 -3.716976e-01
-1.212145e-01 1.287860e-01 3.783033e-01 6.273366e-01 8.758833e-01
1.220700e-09 4.423091e+00 —-8.737468e-01 -6.216975e-01 -3.703295e-01
-1.196465e-01 1.303546e-01 3.796722e-01 6.283050e-01 8.762478e-01

Further Information

A detailed description of the file format has been created by reverse engineering the code by a user, Wesley Ford, who
was a masters student at McMaster University [g4ndl-format] under the supervision of Prof. Adriaan Buijs and has
kindly agreed for its inclusion here:

The link provides a document which describes G4ANDL format and as a consequence readers and expert users may
obtain useful information from it. Especially detailed descriptions of variable names used in the package and their
meanings will be useful to developers who consider extensions of the package.

HPorLEP

The high precision neutron models discussed in the previous section depend on an evaluated neutron data library
(G4ANDL) for cross sections, angular distributions and final state information. However the library is not complete
because there are no data for several key elements. In order to use the high precision models, users must develop
their detectors using only elements which exist in the library. In order to avoid this difficulty, alternative models were
developed which use the high precision models when data are found in the library, but use the low energy parameterized
neutron models when data are missing.

The alternative models cover the same types of interaction as the originals, that is elastic and inelastic scattering,
capture and fission. Because the low energy parameterized part of the models is independent of G4NDL, results will
not be as precise as they would be if the relevant data existed.

Inelastic

For inelastic scattering, the currently supported final states are (nA:math:(rightarrow)) nvys (discrete and continuum),
np, nd, nt, n®He, na, nd2«, nt2a, n2p, n2«q, npa, n3q, 2n, 2np, 2nd, 2na, 2n2q, nX, 3n, 3np, 3na, 4n, p, pd, pa, 2p
d, da, d2¢, dt, t, 2a, 3He, a, 2, and 3a.
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The photon distributions are again described as in the case of radiative capture.

The possibility to describe the angular and energy distributions of the final state particles as in the case of fission is
maintained, except that normally only the arbitrary tabulation of secondary energies is applicable.

In addition, we support the possibility to describe the energy angular correlations explicitly, in analogy with the
ENDF/B-VI data formats. In this case, the production cross-section for reaction product n can be written as

on(E,E' cos(0)) = o(E)Y,(E)p(E,E', cos(d)).

Here Y,,(E) is the product multiplicity, o(E) is the inelastic cross-section, and p(E, E’, cos(6)) is the distribution
probability. Azimuthal symmetry is assumed.

The representations for the distribution probability supported are isotropic emission, discrete two-body kinematics,
N-body phase-space distribution, continuum energy-angle distributions, and continuum angle-energy distributions in
the laboratory system.

The description of isotropic emission and discrete two-body kinematics is possible without further information. In the
case of N-body phase-space distribution, tabulated values for the number of particles being treated by the law, and the
total mass of these particles are used. For the continuum energy-angle distributions, several options for representing
the angular dependence are available. Apart from the already introduced methods of expansion in terms of legendre
polynomials, and tabulation (here in both the incoming neutron energy, and the secondary energy), the Kalbach-Mann
systematic is available. In the case of the continuum angle-energy distributions in the laboratory system, only the
tabulated form in incoming neutron energy, product energy, and product angle is implemented.

First comparisons for product yields, energy and angular distributions have been performed for a set of incoming
neutron energies, but full test coverage is still to be achieved. In all cases currently investigated, the agreement
between evaluated data and Monte Carlo is very good.

Introduction

The neutron transport class library described here simulates the interactions of neutrons with kinetic energies from
thermal energies up to O(20 MeV). The upper limit is set by the comprehensive evaluated neutron scattering data
libraries that the simulation is based on. The result is a set of secondary particles that can be passed on to the tracking
sub-system for further geometric tracking within Geant4.

The interactions of neutrons at low energies are split into four parts in analogy to the other hadronic processes in
Geant4. We consider radiative capture, elastic scattering, fission, and inelastic scattering as separate models. These
models comply with the interface for use with the Geant4 hadronic processes which enables their transparent use
within the Geant4 tool-kit together with all other Geant4 compliant hadronic shower models.

Summary

By the way of abstraction and code reuse we minimised the amount of code to be written and maintained. The concept
of container-sampling lead to abstraction and encapsulation of data representation and the corresponding random
number generators. The Object Oriented design allows for easy extension of the cross-section base of the system, and
the ENDF-B VI data evaluations have already been supplemented with evaluated data on nuclear excitation levels, thus
improving the energy spectra of de-excitation photons. Other established data evaluations have been investigated, and
extensions based on the JENDL:cite:JENDL, CENDL.:cite:CENDL, and Brond:cite:Brond data libraries are foreseen
for next year.

Followings are important remark of the NeutornHP package. Correlation between final state particles is not included
in tabulated data. The method described here does not included necessary correlation or phase space constrains needed
to conserver momentum and energy. Such conservation is not guarantee either in single event or averaged over many
events.
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5.5 LPBias

5.5.1 Leading Particle Bias
Overview

G4Mars5GeV is an inclusive event generator for hadron(photon) interactions with nuclei, and translated from the
MARS code system(MARS13(98)). To construct a cascade tree, only a fixed number of particles are generated at each
vertex. A corresponding statistical weight is assigned to each secondary particle according to its type and phase-space.
Rarely-produced particles or interesting phase-space region can be enhanced. [2mm] N.B. This inclusive simulation
is implemented in Geant4 partially for the moment, not completed yet. [3mm] MARS Code System MARS is a set
of Monte Carlo programs for inclusive simulation of particle interactions, and high multiplicity or rare events can
be simulated fast with its sophisticated biasing techniques. For the details on the MARS code system, see [Mok95][
MARSWWW].

Method

In G4Mars5GeV, three secondary hadrons are generated in the final state of an hadron(photon)-nucleus inelastic in-
teraction, and a statistical weight is assigned to each particle according to its type, energy and emission angle. In this
code, energies, momenta and weights of the secondaries are sampled, and the primary particle is simply terminated at
the vertex. The allowed projectile kinetic energy is £y < 5 GeV, and following particles can be simulated;

p’ n? ’/T+, 7'('7’ K+’ Kﬁ’ 77 p'

Prior to a particle generation, a Coulomb barrier is considered for projectile charged hadrons(p, 7, K™ and p) with
kinetic energy of less than 200 MeV. The coulomb potential Voy1mp 1S given by

Veolumb = 1.11 x 1072 x Z/AY?®  (GeV),

where Z and A are atomic and mass number, respectivelly. [2mm]

Inclusive hadron production

The following three steps are carried out in a sequence to produce secondary particles:
* nucleon production,
* charged pion/kaon production and
* neutral pion production.

These processes are performed independently, i.e. the energy and momentum conservation law is broken at each event,
however, fulfilled on the average over a number of events simulated. [Smm] nucleon production [Imm] Projectiles
K* and p are replaced with 7%+ and p, individually to generate the secondary nucleon. Either of neutron or proton
is selected randomly as the secondary except for the case of gamma projectiling. The gamma is handled as a pion.
[Smm] charged pion/kaon production [1mm] If the incident nucleon does not have enough energy to produce the
pion(> 280 MeV), charged and neutral pions are not produced. A charged pion is selected with the equal probability,
and a bias is eliminated with the appropriate weight which is assigned taking into account the difference between 7+
and 7~ both for production probability and for inclusive spectra. It is replaced with a charged kaon a certain fraction
of the time, that depends on the projectile energy if Fy > 2.1 GeV. The ratio of kaon replacement is given by

log(Eo/2)

Rkaon =13x {Cmin + (C - Cmin)m

} (2.1 < Ey < 5.2 GeV),
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where C\p;y, is 0.03(0.08) for nucleon(others) projectiling, and Produced particle Projectile particle

C_{ 0.071 (x*) }X ;g E}T(Z))
T 0.083 (7)) 1:0 ( others )

A similar strangeness replacement is not considered for nucleon production. [3mm)]

Sampling of energy and emission angle of the secondary

The energy and emission angle of the secondary particle depends on projectile energy. There are formulae depending
on whether or not the interaction particle(IP) is identical to the secondary(JP). [2mm] For IP # JP, the secondary
energy I’ is simply given by

EIII X ‘
E2 = Eth X ( - ) (MQV) ’
Ewn

where Epax = maz (Egp,0.5MeV), Ey, = 1 MeV, and € is a uniform random between 0 and 1. [2mm] For IP = JP,

Eig +e (Emax — Eth) FEoy < 100 Ey, MeV
Ey =< Ey x e (F+99) (MeV) Ey > 100 Ey, and € < 7 (5.5)
Eo x (B(e —1) + 14 99€)/100 Ey > 100 Ey, and € > 7

Here, 8 = log(Ey/100 Ety) and nn = $/(99 + ). If resulting E» is less than 0.5 MeV, nothing is generated. [Smm]
Angular distribution [1mm] The angular distribution is mainly determined by the energy ratio of the secondary to
the projectile(i.e. the emission angle and probability of the occurrence increase as the energy ratio decreases). The
emission angle of the secondary particle with respect to the incident direction is given by

6=—log(l—e(l—e"7))/T, (5.6)

where 7 = FEy/5(Eo + 1/2).

Sampling statistical weight

The kinematics of the secondary particle are determined randomly using the above formulae((5.5),(5.6)). A statistical
weight is calculated and assigned to each generated particle to reproduce a true inclusive spectrum in the event. The
weight is given by

D2N =V10(JP) x DW (E) x DA(9) x V1 (FE,0,JP),
where o V10 is the statistical weight for the production rate based on neutral pion production(V 10 = 1).

V10 — 2.0(2.5) nucleon production (the case of gamma projectile)
] 21 charged pion/kaon production

e DW and DA are dominantly determined by the secondary energy and emission angle, individually. [2mm] e V1 is
a true double-differential production cross-section (divided by the total inelastic cross-section) [Mok95], calculated in
G4Mars5GeV::D2N2 according to the projectile type and energy, target atomic mass, and simulated secondary energy,
emission angle and particle type.
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5.6 Radioactive Decay

5.6.1 Radioactive Decay

The Radioactive Decay Module

G4RadioactiveDecay and associated classes are used to simulate the decay, either in-flight or at rest, of radioactive
nuclei by «, 31, and 3~ emission and by electron capture (EC). The simulation model depends on data taken from
the Evaluated Nuclear Structure Data File (ENSDF) [7ul96] which provides information on:

¢ nuclear half-lives,

* nuclear level structure for the parent or daughter nuclide,
* decay branching ratios, and

* the energy of the decay process.

If the daughter of a nuclear decay is an excited isomer, its prompt nuclear de-excitation is treated using the
G4PhotoEvaporation class (see Section Photon evaporation).

Alpha Decay

The final state of alpha decay consists of an « and a recoil nucleus with (Z — 2, A — 4). The two particles are emitted
back-to-back in the center of mass with the energy of the « taken from the ENSDF data entry for the decaying isotope.

Beta Decay

Beta decay is modeled by the emission of a 3~ or 8T, an anti-neutrino or neutrino, and a recoil nucleus of either
Z + 1 or Z — 1. The energy of the [ is obtained by sampling either from histogrammed data or from the theoretical
three-body phase space spectral shapes. The latter include allowed, first, second and third unique forbidden, and first
non-unique forbidden transitions.

The shape of the energy spectrum of the emitted lepton is given by
ﬂ—(E E.)E.p.F(Z,E.)S(Z, Ey, E,)
dEdpe - 0 e eDe s He s 40, Le
where, in units of electron mass, Ej is the endpoint energy of the decay taken from the ENSDF data, E, and p,, are the
emitted electron energy and momentum, Z is the atomic number, F’ is the Fermi function and S is the shape factor.

The Fermi function F' accounts for the effect of the Coulomb barrier on the probability of 5% emission. Its relativistic
form is

2'\/—26:i:7\'o¢ZE'g/pe |F(ry + Z.O‘ZEe/pe)‘Q
I'(2y+1)2

F(Z, Ee) = 2(1+7)(2p.R)

where R is the nuclear radius, v = /1 — (aZ)?2, and « is the fine structure constant. The squared modulus of T is
computed using approximation B of Wilkinson [Wil70].

The factor S determines whether or not additional corrections are applied to the decay spectrum. When S = 1
the decay spectrum takes on the so-called allowed shape which is just the phase space shape modified by the Fermi
function. For this type of transition the emitted lepton carries no angular momentum and the nuclear spin and parity do
not change. When the emitted lepton carries angular momentum and nuclear size effects are not negligible, the factor
S is no longer unity and the transitions are called “forbidden”. Corrections are then made to the spectrum shape which
take into account the energy dependence of the nuclear matrix element. The form of S used in the spectrum sampling
is that of Konopinski [Kon66].
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Electron Capture

Electron capture from the atomic K, L and M shells is simulated by producing a recoil nucleus of (Z — 1, A) and an
electron-neutrino back-to-back in the center of mass. Since this leaves a vacancy in the electron orbitals, the atomic
relaxation model (ARM) is triggered in order to produce the resulting x-rays and Auger electrons. More information
on the ARM can be found in the Electromagnetic section of this manual.

In the electron capture decay mode, internal conversion is also enabled so that atomic electrons may be ejected when
interacting with the nucleus.

Recoil Nucleus Correction

Due to the level of imprecision of the rest-mass energy of the nuclei generated by G4lonTable::GetNucleusMass, the
mass of the parent nucleus is modified to a minor extent just before performing the two- or three-body decay so that
the () for the transition process equals that identified in the ENSDF data.

Biasing Methods

By default, sampling of the times of radioactive decay and branching ratios is done according to standard, analogue
Monte Carlo modeling. The user may switch on one or more of the following variance reduction schemes, which can
provide significant improvement in the modelling efficiency:

1. The decays can be biased to occur more frequently at certain times, for example, corresponding to times when
measurements are taken in a real experiment. The statistical weights of the daughter nuclides are reduced according
to the probability of survival to the time of the event, ¢, which is determined from the decay rate. The decay rate of the
n*" nuclide in a decay chain is given by the recursive formulae:

n—1

Rn(t) = Z An:if(ta Ti) + An:nf(ta Tn)

i=1

where:
Ti .
Api = An:i Vi<n 5.7
Ti — Tn
n—1 -
A = — n o
n:mn Z 7_2 _ Tn A’I’L.l y’ﬂ
=1
ot
Fltom) = " / Plt)es . 5.8)
T

— inf

The values 7; are the mean life-times for the nuclei, y; is the yield of the i*" nucleus, and F(#) is a function identifying
the time profile of the source. The above expression for decay rate is simplified, since it assumes that the i*" nucleus
undergoes 100% of the decays to the (i + 1)* nucleus. Similar expressions which allow for branching and merging
of different decay chains can be found in Ref. [Tru96].

A consequence of the form of equations (5.7) and (5.8) is that the user may provide a source time profile so that each
decay produced as a result of a simulated source particle incident at time ¢ = 0 is convolved over the source time
profile to derive the actual decay rate for that source function.

This form of variance reduction is only appropriate if the radionuclei can be considered to be at rest with respect to
the geometry when decay occurs.
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2. For a given decay mode (o, 7 + EC, or 37) the branching ratios to the daughter nuclide can be sampled with
equal probability, so that some low probability branches which may have a disproportionately greater effect on the
measurement are sampled with increased probability.

3. Each parent nuclide can be split into a user-defined number of nuclides (of proportionally lower statistical weight)
prior to treating decay in order to increase the sampling of the effects of the daughter products.

5.7 Stopping

5.7.1 Complementary parameterised and theoretical treatment

Absorption of negative pions and kaons at rest from a nucleus is described in literature [GES7], [CHS81], [AS86],
[Wey90] as consisting of two main components:

* aprimary absorption process, involving the interaction of the incident stopped hadron with one or more nucleons
of the target nucleus;

* the deexcitation of the remnant nucleus, left in an excitated state as a result of the occurrence of the primary
absorption process.

This interpretation is supported by several experiments [HIE+78], [MVA+82], [SCMZ79], [ODD+80], [PEH+79],
[HIP+83], [IZE+83], that have measured various features characterizing these processes. In many cases the exper-
imental measurements are capable to distinguish the final products originating from the primary absorption process
and those resulting from the nuclear deexcitation component.

A set of stopped particle absorption processes is implemented in GEANT4, based on this two-component model (PiMi-
nusAbsorptionAtRest and KaonMinusAbsorptionAtRest classes, for 7~ and K~ respectively. Both implementations
adopt the same approach: the primary absorption component of the process is parameterised, based on available ex-
perimental data; the nuclear deexcitation component is handled through the theoretical models described elsewhere in
this Manual.

5.7.2 Pion absorption at rest

The absorption of stopped negative pions in nuclei is interpreted /GES7 ], [CHS81], [ASS86], [Wey90] as starting with the
absorption of the pion by two or more correlated nucleons; the total energy of the pion is transferred to the absorbing
nucleons, which then may leave the nucleus directly, or undergo final-state interactions with the residual nucleus. The
remaining nucleus de-excites by evaporation of low energetic particles.

G4PiMinusAbsorptionAtRest generates the primary absorption component of the process through the parameterisation
of existing experimental data; the primary absorption component is handled by class G4PiMinusStopAbsorption. In
the current implementation only absorption on a nucleon pair is considered, while contributions from absorption on
nucleon clusters are neglected; this approximation is supported by experimental results [GES7], [Mac83] showing
that it is the dominating contribution.

Several features of stopped pion absorption are known from experimental measurements on various materials
[HIE+78], [MVA+82], [SCMZ79], [ODD+80], [PEH+79], [HIP+83], [IZE+83], [eal82]:

* the average number of nucleons emitted, as resulting from the primary absorption process;
* the ratio of nn vs np as nucleon pairs involved in the absorption process;
* the energy spectrum of the resulting nucleons emitted and their opening angle distribution.

The corresponding final state products and related distributions are generated according to a parameterisation of the
available experimental measurements listed above. The dependence on the material is handled by a strategy pattern:
the features pertaining to material for which experimental data are available are treated in G4PiMinusStopX classes
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(where X represents an element), inheriting from G4StopMaterial base class. In case of absorption on an element for
which experimental data are not available, the experimental distributions for the elements closest in Z are used.

The excitation energy of the residual nucleus is calculated by difference between the initial energy and the energy of
the final state products of the primary absorption process.

Another strategy handles the nucleus deexcitation; the current default implementation consists in handling the deexci-
tatoin component of the process through the evaporation model described elsewhere in this Manual.

5.7.3 Interactions of Stopping Particles

5.8 Theory-Driven

5.8.1 Abla

ABLA V3 evaporation/fission model

The ABLA V3 evaporation model takes excited nucleus parameters, excitation energy, mass number, charge number
and nucleus spin, as input. It calculates the probabilities for emitting proton, neutron or alpha particle and also
probability for fission to occur. The summary of Geant4 ABLA V3 implementation is represented in Table 5.1.

The probabilities for emission of particle type j are calculated using formula:

I';(N,Z,E)
WAN.Z. E) = —J2 x> 7~/
i(N, 2, E) S Te(N, Z,E)’

where I'; is emission width for particle j, IV is neutron number, Z charge number and E excitation energy. Possible
emitted particles are protons, neutrons and alphas. Emission widths are calculated using the following formula:

1 4dm; R?
Ni=—- 9" 72, (E_ 8. — B,
J QWPc(E) h2 ]pJ( J J)’

where p.(E) and p; (E — S; — By) are the level densities of the compound nucleus and the exit channel, respectively.
B is the height of the Coulomb barrier, S; the separation energy, [? is the radius and 7; the temperature of the remnant
nucleus after emission and m; the mass of the emitted particle.

The fission width is calculated from:

1

I = mTfPf(E — By), (5.9)

where py(FE) is the level density of transition states in the fissioning nucleus, By the height of the fission barrier and
T the temperature of the nucleus.
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Table 5.1: ABLA V3 (located in the Geant4 directory
source/processes/hadronic/models/abla) feature summary.

Requirements
External data file G4ABLA3.0 available at Geant4 site
Environment variable | G4AABLADATA
for external data
Usage
Physics list No default physics list,
see Section [sec:how-use-abla].
Interfaces
G4 Ablalnterface
Supported input Excited nuclei
Output particles proton, neutron
«@
fission products
residual nuclei
Features evaporation of proton, neutron and «
fission
References Key reference: [Junghans98a], see also [Benlliure98a]

Level densities

Nuclear level densities are calculated using the following formula:
a=0.073A[MeV ™ +0.095B,A%/3[MeV 2],

where A the nucleus mass number and B, dimensionless surface area of the nucleus.
Fission

Fission barrier, used to calculate fission width (5.9), is calculated using a semi-empirical model fitting to data obtained
from nuclear physics experiments.

External data file required

ABLA V3 needs specific data files. These files contain ABLA V3 shell corrections and nuclear masses. To enable this
data set, the environment variable G4ABLADATA needs to be set, and the relevant data should be installed on your
machine. You can download them from the Geant4 web site or you can have CMake download them for you during
installation. For Geant4 10.0 we use the G4ABLA3 . 0 data files.

How to use ABLA V3

None of the stock physics lists use the ABLA V3 model by default. It should also be understood that ABLA V3 is a
nuclear de-excitation model and must be used as a secondary reaction stage; the first, dynamical reaction stage must
be simulated using some other model, typically an intranuclear-cascade (INC) model. The coupling of the ABLA V3
to the INCL++ model (Chapter [cha:inclxx]) has been somewhat tested and seems to work, but no extensive bench-
marking has been realized at the time of writing. Coupling to the Binary-Cascade model (Chapter [BinaryCascade])
should in principle be possible, but has never been tested. The technique to realize the coupling is described in the
Application Developer Guide.

236 Chapter 5. Hadronic



Physics Reference Manual, Release 10.4

Finally, please note that the ABLA V3 model is in alpha status. The code may crash and be affected by bugs.

5.8.2 AbrasionAblation

Abrasion-ablation Model

Introduction

The abrasion model is a simplified macroscopic model for nuclear-nuclear interactions based largely on geometric ar-
guments rather than detailed consideration of nucleon-nucleon collisions. As such the speed of the simulation is found
to be faster than models such as G4BinaryCascade, but at the cost of accuracy. The version of the model implemented
is interpreted from the so-called abrasion-ablation model described by Wilson et al [aaWilson],:cite:aaTownsend to-
gether with an algorithm from Cucinotta to approximate the secondary nucleon energy spectrum [aaCucinotta]. By
default, instead of performing an ablation process to simulate the de-excitation of the nuclear pre-fragments, the
Geant4 implementation of the abrasion model makes use of existing and more detailed nuclear de-excitation models
within Geant4 (G4Evaporation, G4FermiBreakup, G4StatMF) to perform this function (see section [deexcitation]).
However, in some cases cross sections for the production of fragments with large AA from the pre-abrasion nucleus
are more accurately determined using a Geant4 implementation of the ablation model (see section [ablation]).

The abrasion interaction is the initial fast process in which the overlap region between the projectile and target nuclei is
sheered-off (see Fig. 5.16) The spectator nucleons in the projectile are assumed to undergo little change in momentum,
and likewise for the spectators in the target nucleus. Some of the nucleons in the overlap region do suffer a change in
momentum, and are assumed to be part of the original nucleus which then undergoes de-excitation.

Less central impacts give rise to an overlap region in which the nucleons can suffer significant momentum change, and
zones in the projectile and target outside of the overlap where the nucleons are considered as spectators to the initial
energetic interaction.

The initial description of the interaction must, however, take into consideration changes in the direction of the projectile
and target nuclei due to Coulomb effects, which can then modify the distance of closest approach compared with the
initial impact parameter. Such effects can be important for low-energy collisions.

Initial nuclear dynamics and impact parameter
For low-energy collisions, we must consider the deflection of the nuclei as a result of the Coulomb force (see Fig.
5.17). Since the dynamics are non-relativistic, the motion is governed by the conservation of energy equation:

l2 ZPZT62
2ur? r

1 .
Eiot = 5/““2 +

where:

E,, =total energy in the centre of mass frame;

r, = distance between nuclei, and rate of change of distance;

! = angular momentum;

p = reduced mass of system i.e. myms/(my + ma);

e = electric charge (units dependent upon the units for E,,; and 7);

Zp, Zr = charge numbers for the projectile and target nuclei.

The angular momentum is based on the impact parameter between the nuclei when their separation is large, i.e.

12

= im = l2 = 2Etot//5b2

Etot
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At the point of closest approach, =0, therefore:

Eyoib? ZpZre?

Eyop = =tof— =21
2

r? = p? 4 Zelre

Etot r

Rearranging this equation results in the expression:
b2 =r(r—rm)

where:

Zp ZT€2
Etot

Tm =

In the implementation of the abrasion process in Geant4, the square of the far-field impact parameter, b, is sampled
uniformly subject to the distance of closest approach, r, being no greater than rp + r (the sum of the projectile and
target nuclear radii).

Abrasion process

In the abrasion process, as implemented by Wilson ef al [aaWilson] it is assumed that the nuclear density for the
projectile is constant up to the radius of the projectile (rp) and zero outside. This is also assumed to be the case for
the target nucleus. The amount of nuclear material abraded from the projectile is given by the expression:

Agpr = FAp [1 — exp (—C)’\T)]

where F is the fraction of the projectile in the interaction zone, A is the nuclear mean-free-path, assumed to be:

16.6
A= 770.26

E is the energy of the projectile in MeV/nucleon and C'p is the chord-length at the position in the target nucleus for
which the interaction probability is maximum. For cases where the radius of the target nucleus is greater than that of
the projectile (i.e. 77 > rp):

2/rE —z2 x>0
Cr = i
T {2 ra—r2 12 <0

where:

2 2 2
rp+rt—rp

2r

In the event that 7p > r7 then Crp is:

2 _ .2 .
Cp = 2y/rp —a* x>0
2ro <0

where:
2 2 2
r _
- Tt —71p
2r

The projectile and target nuclear radii are given by the expression:

rp = 1.29,/Thys p — 0.842

rp ~ 1.29 TIQ%MS’T —0.842
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The excitation energy of the nuclear fragment formed by the spectators in the projectile is assumed to be determined
by the excess surface area, given by:

2
AS =dmr% [1+P—(1—F)73

where the functions P and F’ are given in section [PandF]. Wilson et al equate this surface area to the excitation to:
Egs =0.95AS8

if the collision is peripheral and there is no significant distortion of the nucleus, or

Es=095{1+5F +QF3} AS
0 : Ap > 16
Q= 1500 tAp < 12
1500 — 320 (Ap —12) :12< Ap <16

if the impact separation is such that 7 << rp+rp. Eg is in MeV provided AS is in fm?.

For the abraded region, Wilson et al assume that fragments with a nucleon number of five are unbounded, 90%
of fragments with a nucleon number of eight are unbound, and 50% of fragments with a nucleon number of nine
are unbound. This was not implemented within the Geant4 version of the abrasion model, and disintegration of
the pre-fragment was only simulated by the subsequent de-excitation physics models in the G4DeexcitationHandler
(evaporation, efc. or G4WilsonAblationModel) since the yields of lighter fragments were already underestimated
compared with experiment.

In addition to energy as a result of the distortion of the fragment, some energy is assumed to be gained from transfer
of kinetic energy across the boundaries of the nuclei. This is approximated to the average energy transferred to a
nucleon per unit intersection pathlength (assumed to be 13 MeV/fm) and the longest chord-length, Cj, and for half of
the nucleon-nucleon collisions it is assumed that the excitation energy is:

pe 1B [1+ 958G 2G> 15fm
X 13- C, : Oy < 1.5fm

where:

o 2123+ 2rrp — 12 — 12 T > rp
: 2rp r<rp

2
Ot = 2\/7’%. — —(T%D + 712 _ T%)

4r2
For the remaining events, the projectile energy is assumed to be unchanged. Wilson et al assume that the energy
required to remove a nucleon is 10MeV, therefore the number of nucleons removed from the projectile by ablation is:

FEs+ FE
Aabl = % + ASPC

where Ay, is the number of loosely-bound spectators in the interaction region, given by:

Agpe = ApF exp (—C)(\T>

Wilson ef al appear to assume that for half of the events the excitation energy is transferred into one of the nuclei
(projectile or target), otherwise the energy is transferred in to the other (target or projectile respectively).

The abrasion process is assumed to occur without preference for the nucleon type, i.e. the probability of a proton being
abraded from the projectile is proportional to the fraction of protons in the original projectile, therefore:

Zp

Ap

In order to calculate the charge distribution of the final fragment, Wilson et al assume that the products of the in-

teraction lie near to nuclear stability and therefore can be sampled according to the Rudstam equation (see section
[ablation]). The other obvious condition is that the total charge must remain unchanged.

AZabr = Aabr
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Abraded nucleon spectrum

Cucinotta has examined different formulae to represent the secondary protons spectrum from heavy ion collisions
[aaCucinotta]. One of the models (which has been implemented to define the final state of the abrasion process)
represents the momentum distribution of the secondaries as:

3 2
. _r P
v ; Cooxp ( 217?) R (vp)

where:

¥(p) = number of secondary protons with momentum p per unit of momentum phase space
[c:math:(*3)/MeV:math:("3)];

p = magnitude of the proton momentum in the rest frame of the nucleus from which the particle is projected [MeV/c];

C1,C2,C3=1.0,0.03, and 0.0002;

pLp2. 53 =\ 2pr. \[Spr. 500 [MeVLe]

pr = Momentum of nucleons in the nuclei at the Fermi surface [MeV/c]

do=0.1
% =90 [MeV/c];

G4WilsonAbrasionModel approximates the momentum distribution for the neutrons to that of the protons, and as
mentioned above, the nucleon type sampled is proportional to the fraction of protons or neutrons in the original
nucleus.

The angular distribution of the abraded nucleons is assumed to be isotropic in the frame of reference of the nucleus,
and therefore those particles from the projectile are Lorentz-boosted according to the initial projectile momentum.

De-excitation of the projectile and target nuclear pre-fragments by standard Geant4 de-excitation
physics

Unless specified otherwise, G4WilsonAbrasionModel will instantiate the following de-excitation models to treat sub-
sequent particle emission of the excited nuclear pre-fragments (from both the projectile and the target):

1 G4Evaporation, which will perform nuclear evaporation of (a-particles, *He, *H, 2H, protons and neutrons, in
competition with photo-evaporation and nuclear fission (if the nucleus has sufficiently high A).

2 G4FermiBreakUp, for nuclei with A < 12 and Z < 6.
3 G4StatMF, for multi-fragmentation of the nucleus (minimum energy for this process set to 5 MeV).

As an alternative to using this de-excitation scheme, the user may provide to the G4WilsonAbrasionModel a pointer
to her own de-excitation handler, or invoke instantiation of the ablation model (G4WilsonAblationModel).

De-excitation of the projectile and target nuclear pre-fragments by nuclear ablation

A nuclear ablation model, based largely on the description provided by Wilson et al [aaWilson], has been developed to
provide a better approximation for the final nuclear fragment from an abrasion interaction. The algorithm implemented
in G4WilsonAblationModel uses the same approach for selecting the final-state nucleus as NUCFRG2 and determining
the particles evaporated from the pre-fragment in order to achieve that state. However, use is also made of classes in
Geant4’s evaporation physics to determine the energies of the nuclear fragments produced.
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The number of nucleons ablated from the nuclear pre-fragment (whether as nucleons or light nuclear fragments) is
determined based on the average binding energy, assumed by Wilson et al to be 10 MeV, i.e.:

Ey . Ey
Ay = Int (tgitsy) + Apr > Int (5557
@ PF : otherwise

Obviously, the nucleon number of the final fragment, Ap, is then determined by the number of remaining nucleons.
The proton number of the final nuclear fragment (Z ) is sampled stochastically using the Rudstam equation:

3
o(AF, ZF) o< exp <—R|ZF — SAp — TA%| /2>

Here R=11.8/AF%45, §=0.486, and T=3.8 - 10~*. Once Zr and Af have been calculated, the species of the ablated
(evaporated) particles are determined again using Wilson’s algorithm. The number of «a-particles is determined first,
on the basis that these have the greatest binding energy:

N — Int(%) :Int(%) <Int(AZb’)
a = Int (%) :Int (%) > Int(AZbl)

Calculation of the other ablated nuclear/nucleon species is determined in a similar fashion in order of decreasing
binding energy per nucleon of the ablated fragment, and subject to conservation of charge and nucleon number.

Once the ablated particle species are determined, use is made of the Geant4 evaporation classes to sample the
order in which the particles are ejected (from G4AlphaEvaporationProbability, G4He3EvaporationProbability,
G4TritonEvaporationProbability, =~ G4DeuteronEvaporationProbability, =~ G4ProtonEvaporationProbability  and
G4NeutronEvaporationProbability) and the energies and momenta of the evaporated particle and the resid-
val nucleus at each two-body decay (using G4AlphaEvaporationChannel, G4He3EvaporationChannel,
G4TritonEvaporationChannel, G4DeuteronEvaporationChannel, G4ProtonEvaporationChannel and
G4NeutronEvaporationChannel). If at any stage the probability for evaporation of any of the particles selected
by the ablation process is zero, the evaporation is forced, but no significant momentum is imparted to the parti-
cle/nucleus. Note, however, that any particles ejected from the projectile will be Lorentz boosted depending upon the
initial energy per nucleon of the projectile.

Definition of the functions P and F used in the abrasion model

In the first instance, the form of the functions P and F used in the abrasion model are dependent upon the relative
radii of the projectile and target and the distance of closest approach of the nuclear centres. Four radius condtions are
treated.

pevimg(5-2) (5F) o oo (5-2) 1] (457)

v v
2 3
1-— 1—
F= 0.75\/ﬁ <ﬁ) —0.125 [3,//;1/— 1} < 6)
14 14
where:
rp
V= —
rp+rr
o T
o rp+rr
= -
P=-1
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P_O.125\/;W(;2) (15>2

w5 ) - [ | O
F = 0.75/w (1;5)2

—0.125 3\f[1(1”2)3/2} 1= -p’ (1_ﬁ>3
p

13

)
|

)
F= {1 - (1 —u2)3/2] 1- (f)2

5.8.3 The Geant4 Binary Cascade

Modeling overview

The Geant4 Binary Cascade is an intranuclear cascade propagating primary and secondary particles in a nucleus
[FIW04]. Interactions are between a primary or secondary particle and an individual nucleon of the nucleus, leading
to the name Binary Cascade [ov-BC2][ov-BC3][ov-BC4][ov-BC5][ov-BC6]. Cross section data are used to select
collisions. Where available, experimental cross sections are used by the simulation. Propagating of particles is the
nuclear field is done by numerically solving the equation of motion. The cascade terminates when the average and
maximum energy of secondaries is below threshold. The remaining fragment is treated by precompound and de-
excitation models documented in the corresponding chapters.

The transport algorithm

For the primary particle an impact parameter is chosen random in a disk outside the nucleus perpendicular to a vector
passing through the center of the nucleus coordinate system an being parallel to the momentum direction. Using a
straight line trajectory, the distance of closest approach d"*" to each target nucleon i and the corresponding time-of-
flight t¢ is calculated. In this calculation the momentum of the target nucleons is ignored, i.e. the target nucleons do not
move. The interaction cross section o; with target nucleons is calculated using total inclusive cross-sections described
below. For calculation of the cross-section the momenta of the nucleons are taken into account. The primary particle
may interact with those target nucleons where the distance of closest approach d"" is smaller than d*" < 7.
These candidate interactions are called collisions, and these collisions are stored ordered by time-of-flight ¢¢. In the
case no collision is found, a new impact parameter is chosen.

The primary particle is tracked the time-step given by the time to the first collision. As long a particle is outside the
nucleus, that is a radius of the outermost nucleon plus 3 fm, particles travel along straight line trajectories. Particles
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Fig. 5.16: In the abrasion process, a fraction of the nucleons in the projectile and target nucleons interact to form a
fireball region with a velocity between that of the projectile and the target. The remaining spectator nucleons in the
projectile and target are not initially affected (although they do suffer change as a result of longer-term de-excitation).
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nj

Fig. 5.17: Tlustration clarifying impact parameter in the far-field (b) and actual impact parameter (7).

entering the nucleus have their energy corrected for Coulomb effects. Inside the nucleus particles are propagated in the
scalar nuclear field. The equation of motion in the field is solved for a given time-step using a Runge-Kutta integration
method.

At the end of the step, the primary and the nucleon interact suing the scattering term. The resulting secondaries are
checked for the Fermi exclusion principle. If any of the two particles has a momentum below Fermi momentum, the
interaction is suppressed, and the original primary is tracked to the next collision. In case interaction is allowed, the
secondaries are treated like the primary, that is, all possible collisions are calculated like above, with the addition that
these new primary particles may be short-lived and may decay. A decay is treated like others collisions, the collision
time being the time until the decay of the particle. All secondaries are tracked until they leave the nucleus, or the until
the cascade stops.

The description of the target nucleus and fermi motion

The nucleus is constructed from A nucleons and Z protons with nucleon coordinates r; and momenta p;, with i =
1,2,..., A. We use a common initialization Monte Carlo procedure, which is realized in the most of the high energy
nuclear interaction models:

* Nucleon radii r; are selected randomly in the nucleus rest frame according to nucleon density p(r;). For heavy
nuclei with A > 16 [GLMP91] nucleon density is

p(ri) = L
1+expl(r; — R)/a]
where
3 a’m?
~——(1 -1
Po 47TR3 ( + R2 )
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Here R = 79A'Y3 fm and 79 = 1.16(1 — 1.16A=2/3) fm and a ~ 0.545 fm. For light nuclei with A < 17
nucleon density is given by a harmonic oscillator shell model [Elton61], e.g.

p(ri) = (nR?) =/ exp (=1} /R?),

where R? = 2/3 < 72 >= 0.8133A2/% fm:math:(2). To take into account nucleon repulsive core it is assumed
that internucleon distance d > 0.8 fm;

* The nucleus is assumed to be isotropic, i.e. we place each nucleon using a random direction and the previously
determined radius r;.

* The initial momenta of the nucleons p; are randomly choosen between 0 and p?**(r), where the maximal
momenta of nucleons (in the local Thomas-Fermi approximation [DF74]) depends from the proton or neutron
density p according to

PR (r) = he(3n2p(r)

* To obtain momentum components, it is assumed that nucleons are distributed isotropic in momentum space; i.e.
the momentum direction is chosen at random.

* The nucleus must be centered in momentum space around 0, i. e. the nucleus must be at rest, i. e. ZZ pi = 0; To
. . . i=A—1
achieve this, we choose one nucleon to compensate the sum the remaining nucleon momenta p,est = » ;_;

If this sum is larger than maximum momentum p®*(r), we change the direction of the momentum of a few
nucleons. If this does not lead to a possible momentum value, than we repeat the procedure with a different
nucleon having a larger maximum momentum p®*(r). In the rare case this fails as well, we choose new

momenta for all nucleons.

This procedure gives special for hydrogen 'H, where the proton has momentum p = 0, and for deuterium 2H,
where the momenta of proton and neutron are equal, and in opposite direction.

* We compute energy per nucleon e = E/A = my + B(A, Z)/A, where my is nucleon mass and the nucleus
binding energy B(A, Z) is given by the tabulation of [nucleus_binding]: and find the effective mass of each

nucleon m!/ = \/(E/A)Z = p?.
Optical and phenomenological potentials

The effect of collective nuclear elastic interaction upon primary and secondary particles is approximated by a nuclear
potential.

For projectile protons and neutrons this scalar potential is given by the local Fermi momentum pg(r)

V() = 2E0)

2m

where m is the mass of the neutron m,, or the mass of proton m,.

For pions the potential is given by the lowest order optical potential [stricker79]

_ —2m(hc)?A

My

m
v 14+ =25

(r) (1+ 2 )bop(r)

where A is the nuclear mass number, m,, M are the pion and nucleon mass, 7, is the reduced pion mass m, =
(mamp)/(mz+mn), with my is the mass of the nucleus, and p(r) is the nucleon density distribution. The parameter
by is the effective s—wave scattering length and is obtained from analysis to pion atomic data to be about —0.042 fm.
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Pauli blocking simulation

The cross sections used in this model are cross sections for free particles. In the nucleus these cross sections are
reduced to effective cross sections by Pauli-blocking due to Fermi statistics.

For nucleons created by a collision, ie. an inelastic scattering or from decay, we check that all secondary nucleons
occupy a state allowed by Fermi statistics. We assume that the nucleus in its ground state and all states below Fermi
energy are occupied. All secondary nucleons therefore must have a momentum p; above local Fermi momentum

pr(r), ie.
pi > Ppe(r).

If any of the nucleons of the collision has a momentum below the local Fermi momentum, then the collision is Pauli
blocked. The reaction products are discarded, and the original particles continue the cascade.

The scattering term

The basis of the description of the reactive part of the scattering amplitude are two particle binary collisions (hence
binary cascade), resonance production, and decay. Based on the cross-section described later in this paper, collisions
will occur when the transverse distance d; of any projectile target pair becomes smaller than the black disk radium
corresponding to the total cross-section o

(oF

= > 2

™
In case of a collision, all particles will be propagated to the estimated time of the collision, i.e. the time of closest
approach, and the collision final state is produced.

Total inclusive cross-sections

Experimental data are used in the calculation of the total, inelastic and elastic cross-section wherever available.

hadron-nucleon scattering

For the case of proton-proton(pp) and proton-neutron(pn) collisions, as well as 7= and 7~ nucleon collisions, experi-
mental data are readily available as collected by the Particle Data Group (PDG) for both elastic and inelastic collisions.
We use a tabulation based on a sub-set of these data for /.S below 3 GeV. For higher energies, parametrizations from
the CERN-HERA collection are included.

Channel cross-sections

A large fraction of the cross-section in individual channels involving meson nucleon scattering can be modeled as
resonance excitation in the s-channel. This kind of interactions show a resonance structure in the energy dependency
of the cross-section, and can be modeled using the Breit-Wigner function

- 2J +1 ™ I STpS
ores(V3) = ; (251 4+ 1)(2S2 + 1) k? (/s — Mg)> +T/4’

Where S1 and S2 are the spins of the two fusing particles, .J is the spin of the resonance, \ﬂs) the energy in the center
of mass system, k the momentum of the fusing particles in the center of mass system, 'S and I') F'S the partial width
of the resonance for the initial and final state respectively. My is the nominal mass of the resonance.
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The initial states included in the model are pion and kaon nucleon scattering. The product resonances taken into
account are the Delta resonances with masses 1232, 1600, 1620, 1700, 1900, 1905, 1910, 1920, 1930, and 1950 MeV,
the excited nucleons with masses of 1440, 1520, 1535, 1650, 1675, 1680, 1700, 1710, 1720, 1900, 1990, 2090, 2190,
2220, and 2250 MeV, the Lambda, and its excited states at 1520, 1600, 1670, 1690, 1800, 1810, 1820, 1830, 1890,
2100, and 2110 MeV, and the Sigma and its excited states at 1660, 1670, 1750, 1775, 1915, 1940, and 2030 MeV.

Mass dependent resonance width and partial width

During the cascading, the resonances produced are assigned reall masses, with values distributed according to the
production cross-section described above. The concrete (rather than nominal) masses of these resonances may be
small compared to the PDG value, and this implies that some channels may not be open for decay. In general
it means, that the partial and total width will depend on the concrete mass of the resonance. We are using the
UrQMD:cite:UrQMD1.BC[SoH92] approach for calculating these actual widths,

Lro12(Mg) Mg p(M)ZHY
p(Mp)PHD M 1+ r(p(M)/p(Mg))*"

Here My is the nominal mass of the resonance, M the actual mass, p is the momentum in the center of mass system
of the particles, L the angular momentum of the final state, and r=0.2.

Froi2(M)=(1+r)

Resonance production cross-section in the t-channel

In resonance production in the t-channel, single and double resonance excitation in nucleon-nucleon collisions are
taken into account. The resonance production cross-sections are as much as possible based on parametrizations of
experimental data:cite:res.BC for proton proton scattering. The basic formula used is motivated from the form of the
exclusive production cross-section of the Aj239 in proton proton collisions:

NN (mw)

04B = 2a4BBAB (

Vs —/50)* + Bip Vs
The parameters of the description for the various channels are given in Table 5.2. For all other channels, the

parametrizations were derived from these by adjusting the threshold behavior.

Table 5.2: Values of the parameters of the cross-section formula for the
individual channels.

Reaction « 8 ~
PP — PA1230 25 mbarn 04GeV | 3
pPp — A1232A1232 1.5 mbarn 1 GeV 1
PP — PP 0.55 mbarn | 1 GeV 1
pp — pA 0.4 mbarn 1 GeV 1
PP — A1232A 0.35 mbarn | 1 GeV 1
pp — Aq23aN* 0.55 mbarn | 1 GeV 1

The reminder of the cross-section are derived from these, applying detailed balance. Iso-spin invariance is assumed.
The formalism used to apply detailed balance is

<jcmcjdmd H JM>2
<jamajbmb ” JM>2

(25, +1)(2S, + 1)
(25, + 1)(254 + 1)

o(ed — ab) =
JM

<p3b>0’ a C
<p§d> (ab = ed)
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Nucleon Nucleon elastic collisions

Angular distributions for elastic scattering of nucleons are taken as closely as possible from experimental data, i.e.
from the result of phase-shift analysis. They are derived from differential cross sections obtained from the SAID
database, R. Arndt, 1998.

Final states are derived by sampling from tables of the cumulative distribution function of the centre-of-mass scattering
angle, tabulated for a discrete set of lab kinetic energies from 10 MeV to 1200 MeV. The CDF’s are tabulated at 1
degree intervals and sampling is done using bi-linear interpolation in energy and CDF values. Coulomb effects are
taken into consideration for pp scattering.

Generation of transverse momentum

Angular distributions for final states other than nucleon elastic scattering are calculated analytically, derived from the
collision term of the in-medium relativistic Boltzmann-Uehling-Uhlenbeck equation, absed on the nucleon nucleon
elastic scattering cross-sections:

ONN—NN(S,t) = ﬁ (D(s,t) + E(s,t) + (invertedt,u))

Here s, t, u are the Mandelstamm variables, D(s, t) is the direct term, and E (s, t) is the exchange term, with

VA (t — 4m*2)? N (g% n) (287 + 2st + 12 — 8m*?s + 8m™*?)

D(S,t) — (g?\-/N

2(t —mg)? (t —m2)?
24(gFn ) A% ngn)? (28 +t — 4m*)m*2
(t = m3)? (t=m2)(t-m2)
and
(G n) (tt+s) +4m*2(s — 1)) (g% n) (s — 2m*2)(s — 6m*2))
E(s,t) = _
8(t —m )(u—mQ) 2(t —m2)(u — m2)
(gNN)4( -8 — t) 4y 3(gj‘\’NgJT{[N)2m*2(4m*2 —_s— t)(4m*2 _ t)+
(t—mgr)(u— myi?) (t —m2)(u—m2)
3(g% N9 ) t(t + 5)m*? N (9% NG5 n )22 — 4m*2s — 10m*2t 4 24m**
2(t —m3)(u —m3) 4(t —m2)(u—m2)
(g?VNg]u\)/N)2(t + 8)2 — 2m*25 + 2m*2t i S(Q%Ng]ﬂ\}N)Q(t + s — 4m*2)(t +s— 2m*2) N
At —m2)(u—m2) = m2)(u—m2)

(g ngnn)Pm 2 (t* — 2m**t)
(t —m2)(u—m2)

Here, in this first release, the in-medium mass was set to the free mass, and the nucleon nucleon coupling constants
used were 1.434 for the 7, 7.54 for the w, and 6.9 for the o. This formula was used for elementary hadron-nucleon
differential cross-sections by scaling teh center of mass energy squared accordingly.

Finite size effects were taken into account at the meson nucleon vertex, using a phenomenological form factor (cut-off)
at each vertex.

Decay of strong resonances

In the simulation of decay of strong resonances, we use the nominal decay branching ratios from the particle data
book. The stochastic mass of a individual resonance created is sampled at creation time from the Breit-Wigner form,
under the mass constraints posed by center of mass energy of the scattering, and the mass in the lightest decay channel.
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The decay width from the particle data book are then adjusted according to equation [width], to take the stochastic
mass value into account.

All decay channels with nominal branching ratios greater than 1% are simulated.

The escaping particle and coherent effects

When a nucleon other than the incident particle leaves the nucleus, the ground state of the nucleus changes. The energy
of the outgoing particle cannot be such that the total mass of the new nucleus would be below its ground state mass.
To avoid this, we reduce the energy of an outgoing nucleons by the mass-difference of old and new nucleus.

Furthermore, the momentum of the final exited nucleus derived from energy momentum balance may be such that its
mass is below its ground state mass. In this case, we arbitrarily scale the momenta of all outgoing particles by a factor
derived from the mass of the nucleus and the mass of the system of outgoing particles.

Light ion reactions

In simulating light ion reactions, the initial state of the cascade is prepared in the form of two nuclei, as described in
the above section on the nuclear model.

The lighter of the collision partners is selected to be the projectile. The nucleons in the projectile are then entered,
with position and momenta, into the initial state of the cascade. Note that before the first scattering of an individual
nucleon, a projectile nucleon’s Fermi-momentum is not taken into account in the tracking inside the target nucleus.
The nucleon distribution inside the projectile nucleus is taken to be a representative distribution of its nucleons in
configuration space, rather than an initial state in the sense of QMD. The Fermi momentum and the local field are
taken into account in the calculation of the collision probabilities and final states of the binary collisions.

Transition to pre-compound modeling

Eventually, the cascade assumptions will break down at low energies, and the state of affairs has to be treated by
means of evaporation and pre-equilibrium decay. This transition is not at present studied in depth, and an interesting
approach which uses the tracking time, as in the Liege cascade code, remains to be studied in our context.

For this first release, the following algorithm is used to determine when cascading is stopped, and pre-equilibrium de-
cay is called: As long as there are still particles above the kinetic energy threshold (75 MeV), cascading will continue.
Otherwise, when the mean kinetic energy of the participants has dropped below a second threshold (15 MeV), the
cascading is stopped.

The residual participants, and the nucleus in its current state are then used to define the initial state, i.e. excitation
energy, number of excitons, number of holes, and momentum of the exciton system, for pre-equilibrium decay.

In the case of light ion reactions, the projectile excitation is determined from the binary collision participants (P) using
the statistical approach towards excitation energy calculation in an adiabatic abrasion process, as described in [GSI1]:

Eez = Z(Ej‘jermz - EP)
P

Given this excitation energy, the projectile fragment is then treated by the evaporation models described previously.

Calculation of excitation energies and residuals

At the end of the cascade, we form a fragment for further treatment in precompound and nuclear de-excitation models
([deexcitation]).
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These models need information about the nuclear fragment created by the cascade. The fragment is characterized by
the number of nucleons in the fragment, the charge of the fragment, the number of holes, the number of all excitons,
and the number of charged excitons, and the four momentum of the fragment.

The number of holes is given by the difference of the number of nucleons in the original nucleus and the number of
non-excited nucleons left in the fragment. An exciton is a nucleon captured in the fragment at the end of the cascade.

The momentum of the fragment calculated by the difference between the momentum of the primary and the outgoing
secondary particles must be split in two components. The first is the momentum acquired by coherent elastic effects,
and the second is the momentum of the excitons in the nucleus rest frame. Only the later part is passed to the de-
excitation models. Secondaries arising from de-excitation models, including the final nucleus, are transformed back
the frame of the moving fragment.

Comparison with experiments

We add here a set of preliminary results produced with this code, focusing on neutron and pion production. Given that
we are still in the process of writing up the paper, we apologize for the at release time still less then publication quality
plots.

Neutrons
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Fig. 5.18: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 113 MeV.

alt Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident en-
ergy was 113 MeV.

5.8.4 CrossSection
Cross section models.
Glauber model at high energies.

We can use Glauber approach [Glauber55] to calculate the total, elastic and differential elastic hadron-nucleus and
nucleus- nucleus cross sections at high (more than hundreds of MeV) energies.
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Fig. 5.19: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 256 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident en-
ergy was 256 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.20: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 597 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident en-
ergy was 597 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.21: Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident
energy was 800 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident en-
ergy was 800 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.22: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 113 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was
113 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.23: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 256 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was
256 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.24: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 597 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was
597 MeV. The points are data, the histogram is Binary Cascade prediction.

5.8. Theory-Driven 253



Physics Reference Manual, Release 10.4

— .
> E
g o 800 MeV p + Fe = - 30 deg
o tun:
< =X - 60 deg
) A
3 0 F i, * - 150 deg
£ E .
SN— =
N B -
.Q B -,
=
Q 1 B .
9 E
@ 3
- E
i) - N
S L .
S
S0l
0°
1 10 100
Ekin (MeV)

Fig. 5.25: Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy
was 800 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was
800 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.26: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy
was 113 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was
113 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.27: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy
was 256 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was

256 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.28: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy
was 597 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was

597 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.29: Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy
was 800 MeV. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was
800 MeV. The points are data, the histogram is Binary Cascade prediction.
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Fig. 5.30: Double differential cross-section for pions produced at 45° in proton scattering off various materials. Proton
incident energy was 597 MeV in each case. The points are data, the histogram is Binary Cascade prediction.

alt Double differential cross-section for pions produced at 45° in proton scattering off various materials. Proton
incident energy was 597 MeV in each case. The points are data, the histogram is Binary Cascade prediction.
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The hadron—nucleus and nucleus—nucleus total and elastic cross sections.

The knowledge of the nuclear elastic scattering amplitude F'(g, s), where s is the total hadron-nucleon or nucleon-
nucleon c.m. energy squared and ¢ is the momentum transfer vector, gives us a possibility to calculate the total cross
section (the optical theorem)

4
Tror(s) = %ImF(O, s),

where k is a hadron or nucleon projectile momentum in the target nucleus rest frame. Using this amplitude we are also
able to calculate the differential elastic cross section
doei(s)
dQ)

=|F(q,s)]”

or

doe(s) 0 IR
- T\F
dt kQ | (q? S)|

and total elastic cross section
T = 2
oa(s) = [ dAUF(Gs)I" = 15 | dalF(d;s)I"
The elastic scattering amplitude can be expressed through the profile function
I'(B,s)=1-S(B,s)
asthe following
. ik 93 3
F(q,s) = o d°Bexp [iqT'(B, s)],
™
where S (E ,§) is the S-matrix and B is the impact parameter vector perpendicular to the incident momentum k.
The total and elastic cross sections can be obtained from the profile function F(é ,8):
Orot(s) =2 / d* BReD'(B, s)
and

oals) = /d2§|r(§,s)|2.

Thus to calculate the total, elastic and differential cross sections we need to know S-matrix .S (E ,8).

The hadron-nucleus and nucleus—nucleus S-matrix.

Let us consider the nucleus-nucleus scattering at given impact parameter B and at given squared total c.m. nu-
cleon—nucleon energy s.

In Glauber approach [Glauber55] an elastic nucleus—nucleus interaction is a result of the interactions between nucleons
from the projectile and target nuclei. Thus, the S-scattering matrix S4Z (B, s) for nucleus A on nucleus B collision
in the impact parameter representation can be expressed as follows:

A B
SAB(B,s) =< [[ [t - i (B + b = b7, 5)] > (5.10)
i=1j=1
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where < ... > means integration over the sets {b:*} and {EJB } with weight functions T4 ({6*}) and T5({63}). These
functions

rux@ﬁ>:/?«¥ﬁ%Mm

A, B

can be obtained from the nucleon densities p((b; ~, z;). The nucleon profile function is

D | FA _ 7’B\2
(B+bi—bj)

PB4+ - 55,5 = 20

 AnBi(s) 2Bi5(s)
The last equation can be obtained in the case of nucleon-nucleon amplitude parametrization:
ikdij (S)

fij(q,s) = 1 P [—%513'(5)(12]-

The equation (5.10) is a result of the assumptions that the A B-scattering phase is sum of the nucleon—nucleon scatter-
ing phases and no correlations between nucleons inside a nucleus are taken into account.

The hadron-nucleus S-matrix is calculated in similar way using Eq. (5.10) for i = 1 and b; = 0. In this case we need
to use the corresponding parameter o, (s) and S5y (s) in nucleon profile function.

As we will show below the hadron-nucleon and nucleon—nucleon elastic scattering amplitudes at high energies can be
expressed through the reggeon-nucleon vertex parameters and the parameters of the reggeon trajectory:cite:B776.

High energy MC cross section algorithm.

To obtain total (see Eq. (??)) and elastic (see Eq. (??)) hadron-nucleus or nucleus-nucleus cross section at given initial
energy we have to integrate the nucleon profile function I'(B,s) = 1 — S(B,s). This is done by the Monte Carlo
averaging procedure [Shabelski90], [ZSU84] to obtain the S-matrix values using Eq. (??). These values depend on
the squared total c.m. energy of the colliding (4, j) pair s;; = (p; + p;)?, where p; and p; are the particle 4-momenta,
respectively. Performing the Monte Carlo averaging one has to pick up projectile and target nucleons randomly
according to the weight functions 7'([b']) and T ([bP]). respectively. The last functions represent probability densities
to find sets of the nucleon impact parameters [5;4], where i = 1,2, ..., A and [l_)'f}, where j = 1,2, ..., B. Then by
integration over B we find the total and elastic cross sections. To obtain the elastic differential cross section from the
Egs. (??) and (??) we have at first to perform the back Fourier transform of the nucleon profile function (see Eq.
9

(22).

Total Reaction Cross Section in Nucleus-nucleus Reactions

The transportation of heavy ions in matter is a subject of much interest in several fields of science. An important input
for simulations of this process is the total reaction cross section, which is defined as the total (o) minus the elastic
(0¢1) cross section for nucleus-nucleus reactions:

OR — 07 — O¢]-

The total reaction cross section has been studied both theoretically and experimentally and several empirical param-
eterizations of it have been developed. In Geant4 the total reaction cross sections are calculated using four such
parameterizations: the Sihver:cite:Sihver93, Kox:cite:Kox87, Shen:cite:Shen89 and Tripathi:cite: Tripathi97 formulae.
Each of these is discussed in order below.

Sihver Formula

Of the four parameterizations, the Sihver formula has the simplest form:

or = mri[AY3 + AV — bo[A;Y 4+ A7V
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where A, and A, are the mass numbers of the projectile and target nuclei, and
bo = 1.581 — 0.876(A, /% 4+ A, '/?),

ro = 1.36.fm.

It consists of a nuclear geometrical term (A,l;/ 4 Atl / 3) and an overlap or transparency parameter (bg) for nucleons
in the nucleus. The cross section is independent of energy and can be used for incident energies greater than 100
MeV/nucleon.

Kox and Shen Formulae

Both the Kox and Shen formulae are based on the strong absorption model. They express the total reaction cross
section in terms of the interaction radius R, the nucleus-nucleus interaction barrier B, and the center-of-mass energy
of the colliding system Fcpy:

B
Ecum

or =TR[]l —

]
Kox formula: Here B is the Coulomb barrier (B,) of the projectile-target system and is given by

Zt Zp€2

Bc = T 172 172
re(Ay? + A%

where ro = 1.3 fm, e is the electron charge and Z;, Z,, are the atomic numbers of the target and projectile nuclei. R is
the interaction radius R;,; which in the Kox formula is divided into volume and surface terms:

Rint = Rvol + Rsurf-

R,0 and R,y correspond to the energy-independent and energy-dependent components of the reactions, respec-
tively. Collisions which have relatively small impact parameters are independent of both energy and mass number.
These core collisions are parameterized by R,,;. Therefore R,,,; can depend only on the volume of the projectile and
target nuclei:

1/3 1/3
Ryor = ro(Ay% + AL,
The second term of the interaction radius is a nuclear surface contribution and is parameterized by

A}/3A;/3

Lt T+ D.
A3 4 AP

Rsurf =To [CL

The first term in brackets is the mass asymmetry which is related to the volume overlap of the projectile and target.
The second term c is an energy-dependent parameter which takes into account increasing surface transparency as the
projectile energy increases. D is the neutron-excess which becomes important in collisions of heavy or neutron-rich
targets. It is given by

5(A— )7,
b= AA,

The surface component ([, ¢) of the interaction radius is actually not part of the simple framework of the strong
absorption model, but a better reproduction of experimental results is possible when it is used.

The parameters 7, a and c are obtained using a x? minimizing procedure with the experimental data. In this procedure
the parameters ro and a were fixed while ¢ was allowed to vary only with the beam energy per nucleon. The best 2
fit is provided by ro = 1.1 fm and a = 1.85 with the corresponding values of ¢ listed in Table III and shown in Fig. 12
of Ref. [nnc.Kox87] as a function of beam energy per nucleon. This reference presents the values of ¢ only in chart
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and figure form, which is not suitable for Monte Carlo calculations. Therefore a simple analytical function is used to
calculate c in Geant4. The function is:

1
C:_fg—s—Z.Oforle.E)
T
1
c= (_1725 +2.0) x (%)3 for x < 1.5,
x:lOg(KE)7

where K E is the projectile kinetic energy in units of MeV/nucleon in the laboratory system. Shen formula: as
mentioned earlier, this formula is also based on the strong absorption model, therefore it has a structure similar to the
Kox formula:

B

CM

or = 10mR*[1 — -

However, different parameterized forms for R and B are applied. The interaction radius R is given by

At1/3A11)/3

R=ro[A + AL + L85
t P

— C'(KE)]

5(Ar — Zy) ~1/3 AP AP

Z
ta——"P 4 BE
A A, oM Ai/S N A}lj/z

where «, 8 and r( are
a=1fm

B=0.176MeV/3. fm
ro=1.1fm

In Ref. [nnc.Shen89] as well, no functional form for C’(K E) is given. Hence the same simple analytical function is
used by Geant4 to derive c values.

The second term B is called the nuclear-nuclear interaction barrier in the Shen formula and is given by

_ 14427, | RiR,

B
'S Rt +Rp

(MeV)

where r, b, R; and R, are given by
r=R,+ R, +32fm
b=1MeV - fm™!

Ry = 1.12A% —0.944;% (i = t,p)

The difference between the Kox and Shen formulae appears at energies below 30 MeV/nucleon. In this region the
Shen formula shows better agreement with the experimental data in most cases.
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Tripathi formula

Because the Tripathi formula is also based on the strong absorption model its form is similar to the Kox and Shen
formulae:

B
or =3 (AY? + AP 4 6p)2[1 — B (5.11)
M
where rg = 1.1 fm. In the Tripathi formula B and R are given by
1.447, 7,
B=—"—_"7
R
1.2(A)% + A4
R:Tp+Tt+ (pl/d ¢ )
Ecm

where 7; is the equivalent sphere radius and is related to the 7, ; radius by

ri = 1.297ms,: (i = p,t).
0 represents the energy-dependent term of the reaction cross section which is due mainly to transparency and Pauli
blocking effects. It is given by

0 = 1.855 + (0.165/EL2) — Crp + [0.91(A; — 270) Zp/(ApAr)],

where S is the mass asymmetry term given by

A;}/3At1/3

S=—— .
A3 4 AL

This is related to the volume overlap of the colliding system. The last term accounts for the isotope dependence of
the reaction cross section and corresponds to the D term in the Kox formula and the second term of R in the Shen
formula.

The term C'k g corresponds to ¢ in Kox and C’(K E) in Shen and is given by
Ck = Dpaui[l — exp(—=KE/40)] — 0.292 exp(—K E/792) x cos(0.229K E%-4%3).

Here Dpg,; is related to the density dependence of the colliding system, scaled with respect to the density of the
12C4+12C colliding system:
+
Dpouii = 1_75M_
PAc t PAc

The nuclear density is calculated in the hard sphere model. Dp,;; simulates the modifications of the reaction cross
sections caused by Pauli blocking and is being introduced to the Tripathi formula for the first time. The modification of
the reaction cross section due to Pauli blocking plays an important role at energies above 100 MeV/nucleon. Different
forms of Dpg,y;; are used in the Tripathi formula for alpha-nucleus and lithium-nucleus collisions. For alpha-nucleus
collisions,

Dpauii = 2.77 — (8.0 x 1073 4;) + (1.8 x 107°47)
—0.8/{1 + exp[(250 — KF)/75]}

For lithium-nucleus collisions,
DP(Luli - DPauli/3-

Note that the Tripathi formula is not fully implemented in Geant4 and can only be used for projectile energies less
than 1 GeV/nucleon.
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Representative Cross Sections

Representative cross section results from the Sihver, Kox, Shen and Tripathi formulae in Geant4 are displayed in Table
I and compared to the experimental measurements of Ref. [nnc.Kox87].

Tripathi Formula for “light” Systems

For nuclear-nuclear interactions in which the projectile and/or target are light, Tripathi er al [RefTripathiLight]
propose an alternative algorithm for determining the interaction cross section (implemented in the new class
G4TripathiLightCrossSection). For such systems, Eq.(5.11) becomes:

Uszrg[All/g—l—Ai/s—I—éE]Q(l—RC VX om

CM

R¢ is a Coulomb multiplier, which is added since for light systems Eq.(5.11) overestimates the interaction distance,
causing B (in Eq.(5.11)) to be underestimated. Values for R are given in TableTable 5.4.

E
Xm=1-—Xiexp <_X1SL>

where:
X1 =283— (3.1x107%) Ap + (1.7 x 107%) A%,

except for neutron interactions with “He, for which X is better approximated to 5.2, and the function Sy, is given by:

Sp=12+16 {1 — exp <1E5)]

For light nuclear-nuclear collisions, a slightly more general expression for C' is used:

E E ’
Cp=D {1 — exp (—Tlﬂ —0.292exp (—792> - cos (0.229E°4%%)

D and T are dependent on the interaction, and are defined in tableTable 5.5.
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Table 5.3: Representative total reaction cross sections

Proj. | Target | Elab Exp. Results | Sihver Kox Shen Tripathi
[MeV/n] [mb]
12c 2c 30 1316+40 — 1295.04 | 1316.07 | 1269.24
83 965430 — 957.183 | 969.107 | 989.96
200 864+45 868.571 | 885.502 | 893.854 | 864.56
300 858460 868.571 | 871.088 | 878.293 | 857.414
870! 1939450 868.571 | 852.649 | 857.683 | 939.41
2100T 1 888+49 868.571 | 846.337 | 850.186 | 936.205
2TAl 30 1748485 — 1801.4 1777.75 | 1701.03
83 1397440 — 1407.64 | 1386.82 | 1405.61
200 1270+£70 1224.95 | 1323.46 | 1301.54 | 1264.26
300 1220+85 1224.95 | 1306.54 | 1283.95 | 1257.62
89y 30 27244300 — 2898.61 | 2725.23 | 2567.68
83 21244140 — 2478.61 | 2344.26 | 2346.54
200 18854120 2156.47 | 2391.26 | 2263.77 | 2206.01
300 1885+150 2156.47 | 2374.17 | 2247.55 | 2207.01
160 [ 27Al 30 1724480 — 1965.85 | 1935.2 1872.23
89y 30 27074330 — 3148.27 | 2957.06 | 2802.48
2ONe | 27Al 30 2113£100 — 2097.86 | 2059.4 | 2016.32
100 1446+120 1473.87 | 1684.01 | 1658.31 | 1667.17
300 1328+120 1473.87 | 1611.88 | 1586.17 | 1559.16
108A¢ | 300 2407420072 | 2730.69 | 3095.18 | 2939.86 | 2893.12

1. Data measured by Jaros et al. [nnc.Jaros78]

2. Natural silver was used in this measurement.

Table 5.4: Coulomb multiplier for light systems [RefTripathiLight].

System Rc
p+d 13.5
p+3He |21
p + *He 27
p+Li 2.2
d+d 13.5
d+ THe 13.5
d+C 6.0
"He+Ta | 0.6
“He + Au | 0.6
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Table 5.5: Parameters D and T1 for light systems [RefTripathiLight].

System T1 [MeV D
y (MeV G [MeV]
(*He + X only)

p+X 23 1.85 + W (Not applicable)

n+X 18 1.85 4+ — 26 (Not applicable)
1+exp( 500 )

d+X 23 1.65 + LB — (Not applicable)
1+cxp( 200 )

3He + X 40 1.55 (Not applicable)

‘He + “He 40 2.77 — 8.0 x 1073Ar | 300

+1.8 X 107° A%,
_ 0.8
1+exp(7250c’E)

‘He + Be 25 (as for *He + *He) 300
‘He + N 40 (as for *He + *He) 500
He + Al 25 (as for *He + THe) 300
‘He + Fe 40 (as for *He + *He) 300
“He + X (general) 40 (as for *He + “He) 75

5.8.5 Evaporation

Sampling procedure

The evaporation model algorithm consists from repeating steps on decay channels. The stack of excited nuclear
fragments is created and initial excited fragent is stored there. For the each fragment from the stack decay chain is
sampled via loop of actions:

1.

N oA »N

switch to the next excited fragment in the stack;

check if Fermi break-up model [FBU] is applicable and apply this model if it is the case;
sort out decay products between store of excited fragments and the list of final products;
if Fermi break up is not applicable compute probabilities of all evaporation channels;
randomly select of a break-up channel and sample final state for the selected channel;
sort out decay products between store of excited fragments and the list of final products;

check if the residual fragment is stable, stop the loop if it is the case and store residual fragment to the list of
final products;

if the fragment is not stable check if Fermi break-up is applicable, if yes then store this residual into the stack of
excited fragments, else repeat from (4).

Evaporation Model

Nuclear fission

The fission decay channel (only for nuclei with A > 65) is taken into account as a competitor for fragment and photon
evaporation channels.
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The fission total probability

The fission probability (per unit time) Wy;, in the Bohr and Wheeler theory of fission [BW39] is proportional to the
level density py;s(T") ( approximation Eq. (??) is used) at the saddle point, i.e.

E*—Byi, N
Wris = QﬂﬁpfiS(E*) 0 " ppis(E* = Byis — T)dT =

_ 14+(Cy=Dexp(Cy)
dmag;s exp (2VaE*)’

where By, is the fission barrier height. The value of Cy = 2+/as;s(E* — By;s) and a, ay;s are the level density
parameters of the compound and of the fission saddle point nuclei, respectively.

The value of the level density parameter is large at the saddle point, when excitation energy is given by initial excitation
energy minus the fission barrier height, than in the ground state, i. €. af;s > a. af;s = 1.08a for Z < 85, ay;s = 1.04a
for Z > 89 and ay = a[1.04 4 0.01(89. — Z)] for 85 < Z < 89 is used.

The fission barrier

The fission barrier is determined as difference between the saddle-point and ground state masses.

We use simple semiphenomenological approach was suggested by Barashenkov and Gereghi [Barash73]. In their
approach fission barrier By;s(A, Z) is approximated by

Byis = By + Mg+ Ay
The fission barrier height B}, (z) varies with the fissility parameter x = Z2? /A. B, (z) is given by
B (x) = 12.5 +4.7(33.5 — 2)°7™®
for z < 33.5 and
BY,(x) = 12,5 — 2.7(x — 33.5)%/3

forz > 33.5. The Ay = AM(N)+AM(Z), where AM(N) and AM (Z) are shell corrections for Cameron’s liquid
drop mass formula [Cameron_1957][Cameron_1958] and the pairing energy corrections: A, = 1 for odd-odd nuclei,
A, = 0 for odd-even nuclei, A, = 0.5 for even-odd nuclei and A, = —0.5 for even-even nuclei.

Introduction

At the end of the pre-equilibrium stage, or a thermalizing process, the residual nucleus is supposed to be left in an
equilibrium state, in which the excitation energy E* is shared by a large number of nucleons. Such an equilibrated
compound nucleus is characterized by its mass, charge and excitation energy with no further memory of the steps
which led to its formation. If the excitation energy is higher than the separation energy, it can still eject nucleons and
fragments (d, t, *He, «, others). These constitute the low energy and most abundant part of the emitted particles in the
rest system of the residual nucleus. The emission of particles by an excited compound nucleus has been successfully
described by comparing the nucleus with the evaporation of molecules from a fluid /Fre36]. The first statistical theory
of compound nuclear decay is due to Weisskopf and Ewing [WE40].

Evaporation model

The Weisskopf treatment is an application of the detailed balance principle that relates the probabilities to go from a
state ¢ to another d and viceversa through the density of states in the two systems:

P;,ap(i) = Paip(d)
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where P,;_,; is the probability per unit of time of a nucleus d captures a particle 7 and form a compound nucleus ¢
which is proportional to the compound nucleus cross section oj,,. Thus, the probability that a parent nucleus ¢ with
an excitation energy E* emits a particle j in its ground state with kinetic energy ¢ is

pd(Emax - 5)
pi(E*)

where p;(E*) is the level density of the evaporating nucleus, pq(Ema.x — €) that of the daugther (residual) nucleus
after emission of a fragment j and E,x is the maximum energy that can be carried by the ejectile. With the spin s;
and the mass m; of the emitted particle, g; is expressed as g; = (2s; + 1)m;/m2h?.

Pj(e)de = ¢;0inv (€) ede (5.12)

This formula must be implemented with a suitable form for the level density and inverse reaction cross section. We
have followed, like many other implementations, the original work of Dostrovsky et al. [evap.Dostrovsky59] (which
represents the first Monte Carlo code for the evaporation process) with slight modifications. The advantage of the
Dostrovsky model is that it leds to a simple expression for equation (5.12) that can be analytically integrated and used
for Monte Carlo sampling.

Cross sections for inverse reactions

The cross section for inverse reaction is expressed by means of empirical equation [evap.Dostrovsky59]
-~ B
Oinv(e) =oga | 14+ = (5.13)
€

where o, = TR? is the geometric cross section.

In the case of neutrons, & = 0.76 + 2.2473 and 8 = (2.12A~3 — 0.050)/a MeV. This equation gives a good
agreement to those calculated from continuum theory [evap.Blatt52] for intermediate nuclei down to € ~ 0.05 MeV.
For lower energies o,y (€) tends toward infinity, but this causes no difficulty because only the product diny.,(€)e
enters in equation (5.12). It should be noted, that the inverse cross section needed in (5.12) is that between a neutron
of kinetic energy € and a nucleus in an excited state.

For charged particles (p, d, t, 3He and o), o = 1+ cj) and 8 = —Vj, where c; is a set of parameters calculated by
Shapiro [evap.Shapiro53] in order to provide a good fit to the continuum theory [evap.Blatt52] cross sections and V
is the Coulomb barrier.

Coulomb barriers

Coulomb repulsion, as calculated from elementary electrostatics are not directly applicable to the computation of reac-
tion barriers but must be corrected in several ways. The first correction is for the quantum mechanical phenomenoon
of barrier penetration. The proper quantum mechanical expressions for barrier penetration are far too complex to
be used if one wishes to retain equation (5.12) in an integrable form. This can be approximately taken into account
by multiplying the electrostatic Coulomb barrier by a coefficient %; designed to reproduce the barrier penetration
approximately whose values are tabulated [evap.Shapiro53].

ZjZd€2

C

Vi=k;
The second correction is for the separation of the centers of the nuclei at contact, R.. We have computed this separation
as R, = R; + Rq where R; g = T’CA;/ d3 and 7. is given [evap.Iljinov94] by

14 0.006103Z, Zq
14 0.009443Z, Zq

re =2.173
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Level densities

The simplest and most widely used level density based on the Fermi gas model are those of Weisskopf
[evap.Weisskopf37] for a completely degenerate Fermi gas. We use this approach with the corrections for nucleon
pairing proposed by Hurwitz and Bethe [evap.Hurwitz51] which takes into account the displacements of the ground
state:

p(E) = Cexp (QJm) (5.14)

where C'is considered as constant and does not need to be specified since only ratios of level densities enter in equation
(5.12). 9 is the pairing energy correction of the daughter nucleus evaluated by Cook ef al. [evap.Cook67] and Gilbert
and Cameron [evap.Gilbert65] for those values not evaluated by Cook et al.. The level density parameter is calculated
according to:

a(E,A,Z) = a(A) {1 + %[1 - eXP(—WE)]}

and the parameters calculated by Iljinov ef al. [IMB+92] and shell corrections of Truran, Cameron and Hilf
[evap.Truran70].

Maximum energy available for evaporation

The maximum energy avilable for the evaporation process (i.e. the maximum kinetic energy of the outgoing fragment)
is usually computed like E* — § — @Q; where is the separation energy of the fragment j: Q; = M; — My — M; and
M;, Mg and M are the nclear masses of the compound, residual and evporated nuclei respectively. However, that
expression does not consider the recoil energy of the residual nucleus. In order to take into account the recoil energy
we use the expression

(M; + E* = 6)* + M7 — M
gmax — - M;
J 2(M; + E* —6) J

Total decay width

The total decay width for evaporation of a fragment j can be obtained by integrating equation (5.12) over kinetic
energy

max
€j

Fj :h/ P(Ej)d&‘j
Vi

This integration can be performed analiticaly if we use equation (5.14) for level densities and equation (5.13) for
inverse reaction cross section. Thus, the total width is given by

o, R2
_ gimiRg o

r; Tomm 2% [{(ﬁad—3>+ad(5?“ax—Vj)}exp{— ai(E*—éi)}—l—
d

{(QBad —3)\/aa(EP™ = Vj) + 2aq4(e}™ — V])}x
exp {2 [ aa(ef™ = Vj) — ai (E* — 52‘)} }]

where ag = a(Ag, Zg,€5*) and a; = a(A;, Z;, E7).
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GEM model

As an alternative model we have implemented the generalized evaporation model (GEM) by Furihata
[evap.FurihataO0]. This model considers emission of fragments heavier than « particles and uses a more accurate
level density function for total decay width instead of the approximation used by Dostrovsky. We use the same set of
parameters but for heavy ejectiles the parameters determined by Matsuse et al. [evap.Matsuse82] are used.

Based on the Fermi gas model, the level density function is expressed as

i Jm
p(E):{ %W for E>E,

(5.15)
%e(E—Eo)/T for E < Ey

where E, = U, + 0 and U, = 150/My + 2.5 (M, is the mass of the daughter nucleus). Nuclear temperature 7 is

givenas 1/T = y/a/U, — 1.5U,, and Ej is defined as Ey = E, — T'(logT —loga/4 — (5/4) log Uy + 2v/aUy).

By substituting equation (5.15) into equation (5.12) and integrating over kinetic energy can be obtained the following
expression

o {Li(t,t) + (B+V)Ip(t)} for sjma" —V; < Ex
T, = % w4 AL (E 1) + Iy(s, 50)e5+
P(E") (B+V)(Io(ts) + Ia(s,5,)e*)} for ™ — V; > By

J

Io(t), I (t,t2), Io(s, s5.), and I3(s, s, ) are expressed as:

Io(t) = e Fo/T (et — 1)
Lt t,) = e B /TT{(t —t, + 1)ets —t —1}
Ir(s,8:) = 2\/5{53/2 +1.557%/2 4 3.7557 /2~

(5732 +1.55,°% + 3.753;7/2)}

1
13(5753:) = ﬁ

325.1255 /% — {(82 — 52)5,%/% 4 (1.5s% + 0.552)s; /2 +

lzslﬂ +4s73/2 £ 13.5575/2 4+ 60.0s7/2+

(3.755% +0.2552 )57 /2 4 (12.875s% 4 0.625s2)s; ¥/ 2+
(59.06255% 4 0.937552 )5, 1/ 2+

(324.85% + 3.2855)3;13/%}

where t = (] = V) /T, t, = B /T, s = 2\/a(53“a" —V; —96;) and s; = 2y/a(E, —9).

Besides light fragments, 60 nuclides up to 2®Mg are considered, not only in their ground states but also in their exited
states, are considered. The excited state is assumed to survive if its lifetime 7} /2 is longer than the decay time, i. e.,
T1/2/In2 > h/I';, where I'} is the emission width of the resonance calculated in the same manner as for ground state
particle emission. The total emission width of an ejectile j is summed over its ground state and all its excited states
which satisfy the above condition.

Simulation of fragment evaporation.

The evaporation of neutron, proton, deutron, thritium and alpha fragments are taken into account.
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Evaporation threshold.

One should take into account the energy condition for fragment emission, i. e. the nucleus excitation energy should
be higher than the reaction threshold:

T = E* — Q, — V, > 0. (5.16)

Here T™** is the maximal kinetic energy carried by emitted fragment b, Q, = M (A, Z) — M(Ay, Zy) — M, is the
fragment b binding energy. V} is the Coulomb potential energy, i. e. the Coulomb barrier for fragment b. M (A, Z)
is the mass of the initial nucleus, M (Ay, Z¢) is the mass of the nucleus after emission of fragment b and M, is the
fragment b mass. It should be noted that expression (5.16) is only valid, when the recoil kinetic energy equals zero. In
our code we apply the condition:

T, = B — My — Vi, > 0,
where

(M(A,Z) + E*)* + My — M*(Ay, Zy)
2(M(A, Z) + B7)

max __
Eb —_

Coulomb barrier calculation.

The Coulomb barrier:

where Cp, = 1.44 MeVfm, Z;, and Ry, are charge and radius of nucleus after fragment emission, Z; and R are charge
and radius of fragment. The radii of nuclei are approximated by R = rc A'/3, where [IKP94]

1+ 0.006103ZZ fm

—921
re BT 0.009443Z,Z;

The fragment evaporation probability.

Evaporation process has been predicted by the statistical Weisskopf-Ewing model [WE40.evap]. Probability to evap-
orate particle b in the energy interval (Ty, T, + dT}) per unit of time is given

(2sp + 1)my p(E* — Qp — Tp)
m2h? p(E*)

Wi (1) = o3 (Th) Ty, (5.17)

where o, (T}) is the inverse (absorption of particle b) reaction cross section, s;, and m;, are particle spin and mass, p is
level densities of nucleus.

The inverse reaction cross section.

To calculate inverse reaction cross section it is assumed to have the form [Dostr59]
op(Ty) = (1 + Cy)(1 — kp V3 /Tp) T R? (5.18)

for charged charged fragments with A < 4 interaction, where the k; is the barrier penetration coefficient (its tabulated
values are used), and

o(Ty) = (1 + B/Ty) 7 R? (5.19)

for neutrons. Here R = 7A'/3 denotes the absorption radius, where ro = 1.5 fm, a = 0.76 + 2.24~'/3 and
B = (2.12472/3 —0.05)/(0.76 4+ 2.2A4~1/3).
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The level density.

The level density is approximated by Fermi-gas approach [IKP94] for the nuclear level density:
p(E*) = Cexp (2VaE*), (5.20)

where C' is a constant, which does not depend from nucleus properties and excitation energy E* and a is the level
density parameter.

The total evaporation probability.

The total probability W}, or total partial width I', = AW, to evaporate particle b can be obtained from Eq. (5.17) by
integration over T}:

E*—Qy
W, = / W, (T})dT,. (521)
Vi

Here the summation is carried out over all excited states of the fragment.
Integration in Eq. (5.21) for probability to emit fragment b can be performed analiticaly, if we will use Eq. (5.18) for
level density and the Eqgs. (5.18) - (5.19) for inverse cross section. The probability to emit a charged particle:
Wi = 1Ay B exp|-2VaE") 2 fay T (2 exp(2 /ey Ty™) + 1] -
=3/ apTP* exp(24/ap T"™) — 3[1 — exp(2/ap Tp**¥)]/2},

where 1" is defined by the equation (5.16). The following notations were introduced: A, = A — A4, B =
mnra/(2mh?), v, = (25 + 1)my/my. AA, is the number of nucleons in b particle. my, my and s, are mass
of particle b, mass of nucleon and spin of particle b respectively. The a; is level density parameter for nucleus after
emission of fragment b. Similarly for the neutron evaporation probability we obtain the following equation:

(5.22)

W, = 1 AV B2

(5.23)
exp[—2VaE* + 21/a, T2*]|[4a,, T + (2a,3 — 3)(2exp(2+/a, T* — 1)].

Using probabilities Eq. (5.22) and Eq. (5.23) we are able to choose randomly the type of emitted fragment.

Kinetic energy of emitted fragment.

The equation (5.17) can be used to sample kinetic energies of evaporated fragments. For example, keeping terms in
Eq. (5.17), which depend from 7} and using the approximations for inverse cross section is given by Eq. (5.18) and
for level densities are given by Eq. (5.20), we obtain for charged fragments

W(z) = Cx exp(Q\/m = CoTyexp(2VaE™),

where C and C5 do not depend from T3, x = T — V,. To generate values of = we can use the next procedure,
changing the expression for W (z) to have W (2™8%) = 1 (2™ = [(a} + T} + 1/4)'/2 — 1/2]/a;). Choose two
random numbers &; and & (distributed with equal probabilities between 0 and 1) and find kinetic energy of particle b
as T, = T™™*¢&; + Vj, at condition & < W (& T*). If this condition is not fulfilled we should choose another pair
of random numbers.

Angular distribution of evaporated fragments.

We consider the angular distribution for emitted fragments as isotropical since we have no information about spin and
polarization of nuclei.
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Parameters of residual nucleus.

After fragment emission we update parameter of decaying nucleus:
Ap =A— Ay Zy = Z — Zy; Py = Po — po;
E} = ,/E? — P]? — M(Ay, Zy).

Here py is the evaporated fragment four momentum.

Photon evaporation

Photon evaporation main be simulated as a continium gamma transition using dipole approximation and via discrete
gamma transition using evaluated database on nuclear gamma transitions.

Computation of probability

As the first approximation we assume that dipole F1-transitions is the main source of y—quanta from highly—excited
nuclei [IMB+92]. The probability to evaporate +y in the energy interval (e, €, + de.,) per unit of time is given

__1 PE" =€) »
Wale) = S )y

(5.24)

where o, (e, ) is the inverse (absorption of ) reaction cross section, p is a nucleus level density is defined by Eq. (??).
The photoabsorption reaction cross section is given by the expression

er?yF%
€2 — E¢pp)? + T3’

oy(€y) = (

where g = 2.5A mb, T'r = 0.3Egpp and Egpp = 40.3A71/> MeV are empirical parameters of the giant dipole
resonance [IMB+92]. The total radiation probability is

1 ¥ PE" —€y) 5
ny = WA UW(GV)WG’YdGV'

The integration is performed numericaly. The energy of y-quantum is sampled according to the Eq.(5.24) distribution.

Discrete photon evaporation

The last step of evaporation cascade consists of evaporation of photons with discrete energies. The competition
between photons and fragments as well as giant resonance photons is neglected at this step. We consider the discrete
El, M1 and E2 photon transitions from tabulated isotopes. There are a large number of isotopes [eva] with the
experimentally measured exited level energies, spins, parities and relative transitions probabilities. This information
is uploaded for each excited state in run time when corresponding excited state first created.

The list of isotopes included in the photon evaporation data base has been extended from A <= 240 to A <= 250.
The highest atomic number included is Z = 98 (this ensures that Americium sources can now be simulated).

Internal conversion electron emission

An important conpetitive channel to photon emission is internal conversion. To take this into account, the photon
evaporation data-base was entended to include internal conversion coeffficients.

The above constitute the first six columns of data in the photon evaporation files. The new version of the data base
adds eleven new columns corresponding to:
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e 7. ratio of internal conversion to gamma-ray emmission probability

¢ (8-17) internal conversion coefficients for shells K, L1, .2, .3, M1, M2, M3, M4, M5 and N+ respectively.
These coefficients are normalised to 1.0

The calculation of the Internal Conversion Coefficients (ICCs) is done by a cubic spline interpolation of tabulalted
data for the corresponding transition energy. These ICC tables, which we shall label Band [BTL76][BT78], Rosel
[RFAP78] and Hager-Seltzer [HS68], are widely used and were provided in electronic format by staff at LBNL. The
reliability of these tabulated data has been reviewed in Ref. /[RD00]. From tests carried out on these data we find
that the ICCs calculated from all three tables are comparable within a 10% uncertainty, which is better than what
experimetal measurements are reported to be able to achieve.

The range in atomic number covered by these tables is Band: 1 <= Z <= 80; Rosel: 30 <= Z <= 104 and
Hager-Seltzer: 3,6, 10,14 <= Z <= 103. For simplicity and taking into account the completeness of the tables, we
have used the Band table for Z <= 80 and Rosel for 81 <= Z <= 98.

The Band table provides a higher resolution of the ICC curves used in the interpolation and covers ten multipolarities
for all elements up to Z = 80, but it only includes ICCs for shells up to M5. In order to calculate the ICC of the N+
shell, the ICCs of all available M shells are added together and the total divided by 3. This is the scheme adopted in
the LBNL ICC calculation code when using the Band table. The Rosel table includes ICCs for all shells in every atom
and for Z > 80 the N+ shell ICC is calculated by adding together the ICCs of all shells above M5. In this table only
eight multipolarities have ICCs calculated for.

For the production of an internal conversion electron, the energy of the transition must be at least the binding energy
of the shell the electron is being released from. The binding energy corresponding to the various shells in all isotopes
used in the ICC calculation has been taken from the Geant4 file G4 AtomicShells.hh.

The ENSDF data provides information on the multipolarity of the transition. The ICCs included in the photon evap-
oration data base refer to the multipolarity indicated in the ENSDF file for that transition. Only one type of mixed
mulltipolarity is considered (M1+E2) and whenever the mixing ratio is provided in the ENSDF file, it is used to
calculate the ICCs corresponding to the mixed multipolarity according to the formula:

e fractionin M1 = 1/(1 + §?)
e fraction in £2 = 62/(1 + 6?)

where § is the mixing ratio.

5.8.6 Fermi Breakup

Fermi break-up simulation for light nuclei

For light nuclei the values of excitation energy per nucleon are often comparable with nucleon binding energy. Thus
a light excited nucleus breaks into two or more fragments with branching given by available phase space. To de-
scribe a process of nuclear disassembling the so-called Fermi break-up model is formulated [Fermi50], [Kretz61],
[EG67][Epherre_1969], [Bond95]. This statistical approach was first used by Fermi [Fermi50] to describe the multi-
ple production in high energy nucleon collision. The GEANT4 Fermi break-up model is capable to predict final states
as result of an excited nucleus with Z < 9 and A < 17 statistical break-up.

Allowed channels

The channel will be allowed for decay, if the total kinetic energy E};, of all fragments of the given channel at the
moment of break-up is positive. This energy can be calculated according to equation:

n

Ekin =U+ M(A7 Z) - ECoulomb - Z(mb + 6b)7 (525)
b=1
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U is primary fragment excitation, m; and €, are masses and excitation energies of fragments, respectively, Ecouiomb
is the Coulomb barrier for a given channel. It is approximated by

3 2 \% Z? " 72
E oulomb — T — ]- Y75 71/3 - ENEY
couons = 5o (Ut )G = 2 )

where 1/ is the volume of the system corresponding to the normal nuclear matter density
Vo = 4nR3/3 = 413 A/3,

where g = 1.3 fm is used. Free parameter of the model is the ratio of the effective volume V' to the normal volume,
currently

Break-up probability

The total probability for nucleus to break-up into n componets (nucleons, deutrons, tritons, alphas etc) in the final
state is given by

W(E,n) = (V/Q)"™" pu(E),

where p,,(E) is the density of a number of final states, 2 = (27h)3 is the normalization volume. The density p,, (F)
can be defined as a product of three factors:

pn(E) = Mn(E)SnGn

The first one is the phase space factor defined as

n n

+oo +o0 n
M, — / / 53 p)d(E =3 \fo2 +m) [ . (5.26)
—oo o0 p=1 b=1

b=1
where py, is fragment b momentum. The second one is the spin factor

n

Sy = H(25b + 1)7

b=1

which gives the number of states with different spin orientations. The last one is the permutation factor

ko
G, =11—

1
J

which takes into account identity of components in final state. n; is a number of components of j- type particles and
. k
k is defined by n = 35| ny).

In non-relativistic case (Eq. (5.28) the integration in Eq. (5.26) can be evaluated analiticaly (see e. g. [BBB58]).
The probability for a nucleus with energy E disassembling into n fragments with masses my, where b = 1,2,3,...,n
equals

Vo 1 . 0 (2m)3=D/2 o
W (Ekin,n) = SnGn(=) 1( H mb)J/zI&?’(L_l)ﬂ) zm/Q 5/27 (5.27)
b=1

Q ZZ:l my

where I'(z) is the gamma function.
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Fragment characteristics

We take into account the formation of fragments in their ground and low-lying excited states, which are stable for nu-
cleon emission. However, several unstable fragments with large lifetimes: 5He,5Li, 8 Be, °B etc are also considered.
Fragment characteristics Ay, Zp, sp and €, are taken from [AS81a][AS82a][AS83a][AS83b][AS84a][AS84b][AS85al.
Recently nuclear level energies were changed to be identical with nuclear levels in the gamma evaporation database
(see Section Photon evaporation).

Sampling procedure

The nucleus break-up is described by the Monte Carlo (MC) procedure. We randomly (according to probability Eq.
(5.27) and condition Eq. (5.25) select decay channel. Then for given channel we calculate kinematical quantities of
each fragment according to n-body phase space distribution:

n

+oo +o0 n 2 n
M, = / / 5> " pr)s> QP—T;‘% — Ein) [[ @*ps- (5.28)
- -0 b=1 b=1

b=1

The Kopylov’s sampling procedure [Kopylov70][Kopylov73][Kopylov85] is applied. The angular distributions for
emitted fragments are considered to be isotropical.

Fermi break-up model.
5.8.7 Fission model

Fission model.
Reaction initial state.

The GEANTH4 fission model is capable to predict final excited fragments as result of an excited nucleus symmetric or
asymmetric fission. The fission process (only for nuclei with atomic number A > 65) is considered as a competitor for
evaporation process, when nucleus transits from an excited state to the ground state. Here we describe the final state
generation. The calculation of the relative probability of fission with respect to the evaporation channels are described
in the chapter concerning evaporation.

The initial information for calculation of fission decay consists from the atomic mass number A, charge Z of excited
nucleus, its four momentum F, and excitation energy U.

Fission process simulation.

Atomic number distribution of fission products.

As follows from experimental data [VH73] mass distribution of fission products consists of the symmetric and the
asymmetric components:

F(Af) = Foym(Af) + wFusym(Ay),

where w(U, A, Z) defines relative contribution of each component and it depends from excitation energy U and A, Z

of fissioning nucleus. It was found in [ABIM93] that experimental data can be approximated with a good accuracy, if
one take

Ap — Agym)?

Fuym(Ay) = exp | A~ Aeum)”

sym

]
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and
_ 2 _ -~ 2
Fusym(Ay) = exp [—%] +exp [—%H
— 2 _ N 2
+Casym{exp [_%] + exp [_Af(;#}},

where Agym = A/2, A1 and A, are the mean values and 02;,,, 0% and o3 are dispersion of the Gaussians respectively.

From an analysis of experimental data [ABIM93] the parameter Csyy ~ 0.5 was defined and the next values for
dispersions:

02,m = exp (0.00553U + 2.1386),
where U in MeV,
200 =09 = 5.6 MeV
for A < 235 and
201 = 02 = 5.6 + 0.096(A — 235) MeV
for A > 235 were found.
The weight w(U, A, Z) was approximated as follows

_ Wq — Fasym (Asym) )
1- Wanym((Al + AQ)/Q)

The values of w,, for nuclei with 96 > Z > 90 were approximated by

w

wa(U) = exp (0.538U — 9.9564)
for U < 16.25 MeV,
we(U) = exp (0.09197U — 2.7003)
for U > 16.25 MeV and
wa(U) = exp (0.09197U — 1.08808)
for z = 89. For nuclei with Z < 88 the authors of [ABIM93] constracted the following approximation:
we(U) = exp[0.3(227 — a)] exp {0.09197[U — (Byis — 7.5)] — 1.08808},

where for A > 227 and U < By;, — 7.5 the corresponding factors occuring in exponential functions vanish.

Charge distribution of fission products.

At given mass of fragment Ay the experimental data [VH73] on the charge Z; distribution of fragments are well
approximated by Gaussian with dispertion o2 = 0.36 and the average < Z; > is described by expression:

A
< Zp >= IfZJrAZ,

when parameter AZ = —0.45 for Ay > 134, :math:)‘(Delta Z = - 0.45(A_f -A/2)/(134 - A/2)* for A — 134 < Ay <
134 and :math:)‘(Delta Z = 0.45° for A < A — 134.

After sampling of fragment atomic masses numbers and fragment charges, we have to check that fragment ground
state masses do not exceed initial energy and calculate the maximal fragment kinetic energy

T < U+ M(Aa Z) - Ml(Afla Zfl) - MQ(Aan ZfQ)a

where U and M (A, Z) are the excitation energy and mass of initial nucleus, :math:)‘(M_I1(A_{f1}, Z_{f1})‘, and
My (A 2.2 fg) are masses of the first and second fragment, respectively.
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Kinetic energy distribution of fission products.

We use the empiricaly defined [VKW85] dependence of the average kinetic energy < T};, > (in MeV) of fission
fragments on the mass and the charge of a fissioning nucleus:

< Thin >=0.117822 /A3 £ 5.8,

This energy is distributed differently in cases of symmetric and asymmetric modes of fission. It follows from the
analysis of data [ABIMO93] that in the asymmetric mode, the average kinetic energy of fragments is higher than that
in the symmetric one by approximately 12.5 MeV. To approximate the average numbers of kinetic energies < 7,7

and < T;°Y™ > for the symmetric and asymmetric modes of fission the authors of [ABIM93] suggested empirical

expressions:

<TH™ >s=< Trin > —12.5Wasim,

kin
< TV >=< Thin > +12.5Wipm,

where

Weim = w/FSim(A)dA//F(A)dA
and

Wain = [ Fusin(A)d4/ [ F(4)d4,

respectively. In the symmetric fission the experimental data for the ratio of the average kinetic energy of fission
fragments < T, (A f) > to this maximum energy < 7;7%* > as a function of the mass of a larger fragment A, 4,
can be approximated by expressions

< Trin(Ap) > ) < TP >=1—k[(Af — Amaz) /A
for Agim < Ay < Appge + 10 and

< Thin(Ayp) > | < TPe" >=1— k(10/A)* — 2(10/A)k(Af — Apmaz — 10)/A
for Ay > Apar+10, where Ayqp = Agim and k = 5.32 and A4, = 134 and k = 23.5 for symmetric and asymmet-
ric fission respectively. For both modes of fission the distribution over the kinetic energy of fragments 7};,, is choosen
Gaussian with their own average values < T, (Af) >=< T2 (Af) > or < Tgin(Ay) >=< Tp:?"(Ay) > and
dispersions o7, equal 8% MeV or 102 MeV? for symmetrical and asymmetrical modes, respectively.

Calculation of the excitation energy of fission products.

The total excitation energy of fragments Uy,,4 can be defined according to equation:
Ufrag =U + M(A, Z) — My(Ap1, Zs1) — Ma(Aya, Zp2) — Thin,

where U and M (A, Z) are the excitation energy and mass of initial nucleus, Tk;, is the fragments kinetic energy,
:math:)‘(M_1(A_{f1}, Z_{f1})‘, and M3( A2, Zs2) are masses of the first and second fragment, respectively.

The value of excitation energy of fragment U determines the fragment temperature (I' = /Uy /ay, where a; ~ Ay
is the parameter of fragment level density). Assuming that after disintegration fragments have the same temperature
as initial nucleus than the total excitation energy will be distributed between fragments in proportion to their mass
numbers one obtains

Ay
Uf = Uf”"a!]j'
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Excited fragment momenta.
Assuming that fragment kinetic energy :math:)‘(T_f= PA2_f/Q(M(A_{f},Z_{f}+U_f)* we are able to calculate the
absolute value of fragment c.m. momentum

_ (Mi(Ap1, Zpy + U ) (Ma(Ay2, Zy2 + Uya) y
T M\(Ap1, Zp1) + Upy + Mo(Aga, Zpa) + Upy ™™

and its components, assuming fragment isotropical distribution.

5.8.8 Fritiof (FTF) Model
Fritiof (FTF) Model

The Fritiof model, or FTF for short, is used in Geant4 for simulation of the following interactions: hadron-nucleus at
Plab > 3-4 GeV/c, nucleus-nucleus at Plab > 2—-3 GeV/c/nucleon, antibaryon-nucleus at all energies, and antinucleus-
nucleus. Because the model does not include multi-jet production in hadron-nucleon interactions, the upper limit of
its validity range is estimated to be 1000 GeV/c per hadron or nucleon.

The model assumes that one or two unstable objects (quark-gluon strings) are produced in elementary interactions. If
only one object is created, the process is called diffraction dissociation. It is assumed also that the objects can interact
with other nucleons in hadron-nucleus and nucleus-nucleus collisions, and can produce other objects. The number of
produced objects in these non-diffractive interactions is proportional to the number of participating nucleons. Thus,
multiplicities in the hadron-nucleus and nucleus-nucleus interactions are larger than those in elementary ones.

The modeling of hadron-nucleon interactions in the FTF model includes simulations of elastic scattering, binary
reactions like NN — NA, 7N — 7w/, single diffractive and non-diffractive events, and annihilation in antibaryon-
nucleon interactions. It is assumed that the unstable objects created in hadron-nucleus and nucleus-nucleus collisions
can have analogous reactions.

Parameterizations of the CHIPS Geant4 model are used for calculations of elastic and inelastic hadron-nucleon cross
sections. Data-driven parameterizations of the binary reaction cross sections and the diffraction dissociation cross
sections in the elementary interactions are implemented in the FTF model. It is assumed in the model that the unstable
object cross sections are equal to the cross sections of stable objects having the same quark content.

The LUND string fragmentation model is used for the simulation of unstable object decays. The formation time of
hadrons is considered also. Parameters of the fragmentation model were tuned to experimental data. A restriction of
the available phase space is taken into account in low mass string fragmentation.

A simplified Glauber model is used for sampling the multiplicity of intra-nuclear collisions. Gribov inelastic screening
is not considered. For medium and heavy nuclei a Saxon-Woods parameterization of the one-particle nuclear density is
used, while for light nuclei a harmonic oscillator shape is used. Center-of-mass correlations and short range nucleon-
nucleon correlations are taken into account.

The reggeon theory inspired model (RTIM) of nuclear destruction is applied for a description of secondary particle
intra-nuclear cascading. A new algorithm to simulate “Fermi motion” in nuclear reactions is used.

Excitation energies of residual nuclei are estimated in the wounded nucleon approximation. This allows for a direct
coupling of the FTF model to the Precompound model of Geant4 and hence with the GEM nuclear fragmentation
model. The determination of the particle formation time allows one to couple the FTF model with the Binary cascade
model of Geant4.

Main assumptions of the FTF model

The Fritiof model:cite:Fritiof1, Fritiof2 assumes that all hadron-hadron interactions are binary reactions, hy + ho —
b + hf, where 1) and hf, are excited states of the hadrons with discrete or continuous mass spectra (see Fig. 5.31). If
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one of the final hadrons is in its ground state (h; +ho — hy+h}) the reaction is called “single diffraction dissociation”,
and if neither hadron is in its ground state it is called a “non-diffractive” interaction. (Notice that, in spite of its name,
this definition of “non-diffractive” interaction includes the double diffraction dissociation as well.)

Fig. 5.31: Non-diffractive and diffractive interactions considered in the Fritiof model. :alt: Non-diffractive and diffrac-
tive interactions considered in the Fritiof model.

The excited hadrons are considered as QCD-strings, and the corresponding LUND-string fragmentation model is
applied in order to simulate their decays.

The key ingredient of the Fritiof model is the sampling of the string masses. In general, the set of final state of
interactions can be represented by Fig. 5.32, where samples of possible string masses are shown. There is a point
corresponding to elastic scattering, a group of points which represents final states of binary hadron-hadron interactions,
lines corresponding to the diffractive interactions, and various intermediate regions. The region populated with the
red points is responsible for the non-diffractive interactions. In the model, the mass sampling threshold is set equal to
the ground state hadron masses, but in principle the threshold can be lower than these masses. The string masses are
sampled in the triangular region restricted by the diagonal line corresponding to the kinematical limit M1+ My = E.,,5
where M; and My are the masses of the k) and h/, hadrons, and also of the threshold lines. If a point is below the
string mass threshold, it is shifted to the nearest diffraction line.

String mass threshold o M1+M2 <= Ecms
Target diffraction
4 Binary channels
- = . . o

= NN,NN ...
21N ( )
3 %
E —

3 B g) M‘1+M2_Ecms

M g
2 b Projectile diffraction

2+ 2 "
£ pt > tring mass threshold
o ® ae
£

1+ @ e z \.\

/ String mass sampling threshold
0 | | | |
0 1 2 3 4
Elastic scattering 1

Fig. 5.32: Diagram of the final states of hadron-hadron interactions.

Unlike the original Fritiof model, the final state diagram of the current model is complicated, which leads to a mass
sampling algorithm that is not simple. This will be considered below. The original model had no points corresponding
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to elastic scattering or to the binary final states. As it was known at the time, the mass of an object produced by
diffraction dissociation, M, for example from the reaction p + p — p + X, is distributed as dM,, /M, dMgf /M%,
so it was natural to assume that the object mass distributions in all inelastic interactions obeyed the same law. This can
be re-written using the light-cone momentum variables, P or P,

P*=E+4p, P =E-p,

where E is an energy of a particle, and p, is its longitudinal momentum along the collision axis. At large energy and
positive p,, P~ ~ (M? + P2)/2p,. At negative p,, Pt ~ (M? + P2)/2|p.|. Usually, the transferred transverse
momentum, Pr, is small and can be neglected. Thus, it was assumed that P~ and P™ of a projectile, or target
associated hadron, respectively, are distributed as

dP~/P~, dP*/P*
A gaussian distribution was used to sample Pr.

In the case of hadron-nucleus or nucleus-nucleus interactions it was assumed that the created objects can interact
further with other nuclear nucleons and create new objects. Assuming equal masses of the objects, the multiplicity of
particles produced in these interactions will be proportional to the number of participating nuclear nucleons, or to the
multiplicity of intra-nuclear collisions. Due to this, the multiplicity of particles produced in hadron-nucleus or nucleus-
nucleus interactions is larger than that in hadron-hadron ones. The probabilities of multiple intra-nuclear collisions
were sampled with the help of a simplified Glauber model. Cascading of secondary particles was not considered.

Because the Fermi motion of nuclear nucleons was simulated in a simple manner, the original Fritiof model could not
work at P, < 10-20 GeV/e.

It was assumed in the model that the created objects are quark-gluon strings with constituent quarks at their ends orig-
inating from the primary colliding hadrons. Thus, the LUND-string fragmentation model was applied for a simulation
of the object decays. It was assumed also that the strings with sufficiently large masses have “kinks” — additional
radiated gluons. This was very important for a correct reproduction of particle multiplicities in the interactions.

All of the above assumptions were reconsidered in the implementation of the Geant4 Fritiof model, and new features
were added. These will be presented below.

General properties of hadron—-nucleon interactions

Before going into details of the FTF model implementation it would be better to consider briefly the general properties
of hadron-nucleon interactions in order to understand what needs to be simulated. These properties include total and
elastic cross sections, and cross sections of various other reactions. There is so much data on inclusive spectra that
not all of it can be addressed in this work. It is hoped that the remaining data will be the subject of a future paper.
Inclusive data present kinematical properties of produced particles. Their description requires additional methods and
parameters, which will be considered later.

m~ p— interactions

Total, elastic and reaction cross sections of 7~ p-interactions are presented in Fig. 5.33. As seen, there are peaks in
the total cross section connected with A-isobar production (A(1232), A(1600), A(1700) and so on) in the s-channel,
7~ 4+ p — A The main channel of a A-isobar decay is A° — 7~ + p. These resonances are reflected in the
elastic cross section. The other important decay channel is A° — 70 4+ n, which is the main inelastic reaction
channel at Pj,;, < 700 MeV/c. At higher energy two-meson production channels start to dominate, and at P, > 3
GeV/c there is practically no structure in the cross sections. Cross sections of final states with defined charged particle
multiplicity, so-called prong cross sections according to the old terminology, are presented in the last figure. As seen,
real multi-particle production processes (n > 4) dominate at P4, > 5-7 GeV/c.

In the constituent quark model of hadrons, the creation of s-channel A-isobars is explained by quark—antiquark anni-
hilation (see Fig. 5.34a). The production of two mesons may result from quark exchange (see Fig. 5.34b, Fig. 5.34c).
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Fig. 5.33: General properties of 7~ p-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDGX], other data from [PimPreact].

A quark—diquark (¢—qq) system created in the process can be in a resonance state (Fig. 5.34b), or in a state with a
continuous mass spectrum (Fig. 5.34c). In the latter case, multi-meson production is possible. Amplitudes of these
two channels are connected by crossing symmetry to annihilation in the ¢-channel, and with non-vacuum exchanges in
the elastic scattering according to the reggeon phenomenology. According to that phenomenology, pomeron exchange
must dominate in elastic scattering at high energies. In a simple approach, this corresponds to two-gluon exchange
between colliding hadrons. It reflects also one or many non-perturbative gluon exchanges in the inelastic reaction. Due
to these exchanges, a state with subdivided colors is created (see Fig. 5.34d). The state can decay into two colorless
objects. The quark content of the objects coincides with the quark content of the primary hadrons, according to the
FTF model, or it is a mixture of the primary hadron’s quarks, according to the Quark-Gluon-String model (QGSM).
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Fig. 5.34: Quark flow diagrams of N -interactions.

The original Fritiof model contains only the pomeron exchange process shown in Fig. 5.34d. It would be useful to
extend the model by adding the exchange processes shown in Fig. 5.34b and Fig. 5.34c¢, and the annihilation process
of Fig. 5.34a . This could probably be done by introducing a restricted set of mesonic and baryonic resonances and a
corresponding set of parameters. This procedure was employed in the binary cascade model of Geant4 (BIC) [FIW04]
and in the Ultra-Relativistic-Quantum-Molecular-Dynamic model (UrQMD) [UrQMD]. However, it is complicated to
use this solution for a simulation of hadron-nucleus and nucleus-nucleus interactions. The problem is that one has to
consider resonance propagation in the nuclear medium and take into account their possible decays which enormously
increases computing time. Thus, in the current version of the FTF model only quark exchange processes have been
added to account for meson and baryon interactions with nucleons, without considering resonance propagation and
decay. This is a reasonable hypothesis at sufficiently high energies.
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Fig. 5.35: General properties of n¥p-interactions. Points are experimental data: data on total and elastic cross
sections from PDG data-base [PDGX], other data from [PimPreact].

Total, elastic and reaction cross sections of 7T p-interactions are presented in Fig. 5.35. As seen, there are fewer peaks
in the total cross section than in 7~ p-collisions. The creation of AT+ -isobars in the s-channel (7+ +p — ATT)is
mainly seen in the elastic cross section because the main channel of At -isobar decay is A™" — 7+ +p. This process
is due to quark—antiquark annihilation. At Py, > 400 MeV/c two-meson production channels appear. They can be
connected with quark exchange and with the formation of A™* and A™ isobars at the proton site. The corresponding
cross sections of the reactions — 7+ +p = 1 + AT = 70 L xt 4 pat 4+ p 5 At AT = 7t 470 4 p,
7t +p — 7t + AT — 7t + 77 + n have structures at Py, ~ 1.5 and 2.8 GeV/c. At higher energies there is no
structure. The cross sections of other reactions are rather smooth.

pp — interactions

Total, elastic and reaction cross sections of pp-interactions are presented in Fig. 5.36. The total cross section is
seen to decrease with energy below the meson production threshold (P, < 800 MeV/c). Above the threshold
the cross section starts to increase and becomes nearly constant. The main reaction channel below 6-8 GeV/c is
p+p — p+n+ xt. Because there cannot be quark—antiquark annihilation in the interaction, the reaction must
be connected to quark exchange. Intermediate states canbe p +p — p+ AT and p + p — n + AT". In the first
case, quarks of the same flavor in the projectile and the target are exchanged. In the second case quarks with different
flavors take part in the exchange. Because the cross section of the p + p — p +n + 7" reaction is larger than the that
of p+p — p+ p+ 70, one has to assume that the exchange of quarks with the same flavors is suppressed.

All the reactions shown can also be caused by diffraction dissociation. Although there can be a contribution of the
p+p — A%+ A+ reaction into the cross section of the channel p+p — (p+ 7~ )+ (p+71) at Py, ~2-3 GeV/c,
one can assume that diffraction plays an essential role in these interactions, because there are no defined structures in
the cross sections.

Summing up the consideration of the interactions, one can conclude that the probability of quark exchanges can depend
on quark flavors, and that pp-collisions could be a source of information about diffraction.
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Fig. 5.36: General properties of pp-interactions. Points are experimental data: data on total and elastic cross sections
from PDG data-base [PDGX], other data from [PimPreact].

K*p—and K~ p - interactions

For completeness, the properties of K Tp- and K ~p-interactions are presented. Total and elastic cross sections are
shown in Fig. 5.37. As the s-antiquark in the K +-mesons cannot annihilate in the & ¥ p-interactions, the structure of
the corresponding cross sections is rather simple, and is very like the structure of pp cross sections. The u-antiquark
in the K ~-mesons can annihilate, and the structure of the cross sections is more complicated. Due to these features,
inelastic reactions are very different even though all of them can be connected with various quark flow diagrams like
that shown in Fig. 5.34
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Fig. 5.37: Total and elastic cross sections of K p-interactions. Points are experimental data from PDG data-base .

The reactions K~ +p — X~ + 7+ and K~ +p — X%+ 7Y can be explained by the annihilation of the u-antiquark of
the K~ and the formation of s-channel resonances. The other reactions— K~ +p — ST +7~and K~ +p — A+7°,
are connected with quark exchange. As seen, the energy dependence of the cross sections of the two types of processes
are different. The K~ + p — n + KO reaction must be caused by annihilation, but the dependence of its cross section
on energy is closer to that of the quark exchange processes. The cross section of the reaction has a resonance structure
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only at P, <2 GeV/c. Above that energy there is no structure. Because the cross section of the reaction is sufficiently
small at high energies, one can omit its correct description.
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Fig. 5.38: Reaction cross sections of Kp-interactions. Points are experimental data .

K +p—n+K +7tand K~ +p — p+ K°+ 7~ reactions are mainly caused by the diffraction dissociation of
a projectile or a target hadron. The energy dependence of their cross sections are different from those of annihilation
and quark exchange.

The same regularities can be seen in K *p reactions. The energy dependence of the cross sections of the K + p —
p+ KO +7t, Kt +p—>p+ Kt 4+ 7%and K+ +p — n+ K+ + 7 reactions are quite different from those of
K= +p.

In summary, there are three types of energy dependence in the reaction cross sections. The rapidly decreasing one is
due to annihilation. The cross sections of the quark exchange processes decrease more slowly. Finally, the diffraction
cross sections grow with energy and reach near-constant values.

pp — interactions

Proton—antiproton interactions provide the beautiful possibility of studying annihilation processes in detail. The gen-
eral properties of the interactions are presented in Fig. 5.39. Almost no structure is seen in the cross sections and their
energy dependence is very different from the previously described reactions.

Cross sections of the reactions—p+p — 7+ + 7~ and p+p — KT + K, decrease faster than other cross sections
as a functions of energy. p+p — 7t + 7~ + 7% and p + p — 271 + 27~ cross sections decrease less rapidly,
nearly in the same manner as cross sections of the reactions — p +p — n + 7 and p + p — A + A. The cross
sections of the reaction — p + p — 27+ + 27~ + 70, is a slowly decreasing function. The cross section of the process
—-p+p — 3nt + 37~ + 7 varies only a little over the studied energy range. Cross sections of other reactions
@+p—p+7a°+p p+p— p+at + 7~ + pand so on) show behaviour typical of diffraction cross sections.

The main channel of pp interactions at Py, < 4 GeV/cis p+ p — 27+ + 2n~ + 7%, At higher energies, there is
a mixture of various channels. Such variety in the processes is indicative of complicated quark interactions. Possible
quark flow diagrams are shown in Fig. 5.40.

As usual, quarks and antiquarks are shown by solid lines. Dashed lines present so-called string junctions. It is assumed
that the gluon field in baryons has a non-trivial topology. This heterogeneity is called a “string junction”. Quark-gluon
strings produced in the reaction are shown by wavy lines.
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Fig. 5.39: General properties of pp-interactions. Points are experimental data: data on total and elastic cross sections

from PDG data-base [PDGX], other data from [PimPreact].
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Fig. 5.40: Quark flow diagrams of pp-interactions.
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The diagram of Fig. 5.40a represents a process with a string junction annihilation and the creation of three strings.
Diagram Fig. 5.40b describes quark-antiquark annihilation and string creation between the diquark and anti-diquark.
Quark-antiquark and string junction annihilation is shown in Fig. 5.40c. Finally, one string is created in the process of
Fig. 5.40e. Hadrons appear at the fragmentation of the strings in the same way that they appear in e e~ -annihilation.
One can assume that excited strings with complicated gluonic field configurations are created in processes Fig. 5.40d
and Fig. 5.40f. If the collision energy is sufficiently small glueballs can be formed in the process Fig. 5.40f. Mesons
with constituent gluons or with hidden baryon number can be created in process Fig. 5.40d. Of course the standard
FTF processes shown in the bottom of the figure are also allowed.

In the simplest approach it is assumed that the energy dependence of the cross sections of these processes vary inversely
with a power of s as depicted in Fig. 5.40. Here s is center-of-mass energy squared. This is suggested by the reggeon
phenomenology (at the leading order). Calculating the cross sections of binary reactions (in the reggeon framework,
including higher-order terms) is a rather complicated procedure (see [Kaidalov_Bin]) because there can be interactions
in the initial and final states. Similar complications appear also in the computation of cross sections of other reactions
[Uzhinsky_GaloyanPbarP].

Cross sections of hadron-nucleon processes
Total, elastic and inelastic hadron—nucleon cross sections

Parameterizations of the cross sections implemented in the CHIPS model of Geant4 (authors: M.V. Kossov and P.V.
Degtyarenko) are used in the FTF model. The general form of the parameterization is:

0 =0LE t+ 04s

where o g is a low energy parameterization depending on the types of colliding particles, and o 4, is the asymptotic
part of cross sections. The COMPLETE Collaboration proposed a hypothesis [COMPLETE] that o 45 of total cross
sections at very high energies does not depend on the types of colliding particles:

Uiﬁ = Zhlhz + B (ZOQ(S/SO))Q

B =0.3152,59 = 34.0 [(GeV/c))] (COMPLETE, 2002)

B =0.308 ,59 = 28.9 [(GeV/c)!] (PDG, 2006)

B =0.304,50 =331 [(GeV/c)?] (M.Ishida, K.Igi, 2009)
while the pre-asymptotic part does depend on colliding particles (h1, hs).

The CHIPS model o 4, for total and elastic cross sections has the same form:

OAs = {A [ln(-Plab) - B]2 + C + D/‘Pltt)zl? + E/-Plab + F/]Dl%zb} /
(1+G/P3y + H/ Py + 1/ Py) - [mb]

where Py is in [GeV/c], and the parameters A, B, etc. are given in the tables Table 5.6 and Table 5.7.

Table 5.6: CHIPS model parameters for total cross sections

mMha |A |B |[C | D |E|F |G 1
m—p | 03352231200 |0 0 0 |04
mp | 03[35]223[50 |0 |0 0 0 | 1.0
P 03353820 00 0 0 | 054
np 03353820 0 [527]0 0 | 272
K¥p [03[35]195]0 00 046 |0 | 1.6
Kp |03]35]195]0 0|0 0210 | 052
P 03353820 0|0 0 0 |0
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Table 5.7: CHIPS model parameters for elastic cross sections

hihe | A B C D E F G Jii T
p 0.0557 | 3.5 24 6.0 0 0 0 0 3.0
™ p 0.0557 | 3.5 24 7.0 0 0 0 0 0.7
P 0.0557 | 3.5 6.72 0 30.0 0 0 0.49 0
np 0.0557 | 3.5 6.72 0 326 0 0 0 1.0
KTp 0.0557 | 3.5 2.23 0 0 0 0.7 0 0.1
Kp 0.0557 | 3.5 2.23 0 0 0 0.7 0 0.075

The low energy parts of the cross sections are very different for various projectiles, and they are not presented here.
These can be found in the corresponding classes of Geant4.

It is obvious that ¢ = gtot — g€t

A comparison of the parameterizations with experimental data was presented in the previous figures.

Cross sections of quark exchange processes
Cross sections of quark exchange processes are parameterized as:
Oge = Oip Ae™ B Viab (5.29)

where ¥, is a projectile rapidity in a target rest frame. A and B are parameters given in QEpar. The parameters
were determined from a description of reaction channel cross sections.

Cross sections of antiproton processes

The annihilation cross section is parameterized as:
Oann = Oq + B Xb + C Xc + D Xd (530)

where: X; are the contributions of the diagrams of Fig. 5.40; all cross sections are given in [mbl;

Oq = 25 \/E//\l/g(s,mf,,m?v)

As, mg, m?v) = 24+ m;l, + mjlv - 25771127 - 2$m?\, - 2m§m?\,

X, = 3.13 + 140 (s — 8)*°, 5 < s,

X, = 6.8//s, s > s

Sth = (mp +my + 2mg + 6)2

X, = 2 \/§ . (mp + mN)2
AV2(s,m2, m%;) s

Xy = 23.3/s

lclclclclclclclclelclclclcl &p & pn & ap & an& Ap & An & S p & S n& S0p&En&E T p&Etn
B&5&4&4&5&3&3&2&4&3&3&4&2
C&5&4&4&5&3&3&2&4&3&3&4&2
D&6&4&4&6&3&3&2&2&2&24&2&0
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llclclclclclclelelcelelelelelcelclclclc &ZE p &= n &= &E0 &0 p &0 n
B&1&2&2&1&0&0
C&1&2&2&1&0&0
D&0&0&0&0&0&O0

The coefficients B, C' and D are pure combinatorial coefficients calculated on the assumption that the same conditions
apply to all quarks and antiquarks. For example, in pp interactions there are five possibilities to annihilate a quark and
an antiquark, and six possibilities to annihilate two quarks and two antiquarks. Thus, B = C' =5 and D = 6.

Note that final state particles in the process of Fig. 5.40b can coincide with initial state particles. Thus the true elastic
cross section is not given by the experimental cross section.

At Pgp < 40 MeV/c antiproton-nucleon cross sections are:
oot =1512.9, o =473.2, 0, =625.1, 0, =0, o, =49.99, o4 = 6.61

All cross sections are given in [mb]. o, = 0 for pp-interactions because the process pp — 7in is impossible at these
energies (P, < 40 MeV/c).

Cross sections of diffractive and non-diffractive processes

As mentioned above, three processes are considered in the FTF model at high energies: projectile diffraction (pd),
target diffraction (td) and non-diffractive interactions (nd). They are parameterized as:
in 1.0 d in 1.0

(ng:d;?):(; + 0o ~ (mb)ogpzog,zfi + 0o ~ (mb)

Jﬁz =62 — e , aff; =2 + 22/s (mb)

af(dp =4.7, aﬁgp =15 (mb)

(5.31)

For the determination of these cross sections, inclusive spectra of particles in hadronic interactions were used. In Fig.
5.41 an inclusive spectrum of protons in the reaction p + p — p + X is shown in comparison with model predictions.

Br— UrGMD
v emsmimsans | P4 PP4X 24 GeVic 25 [ Exp. data, ——Std. FTF
o TS R PTRS: | K. Goulianes and J. Mentanha, o =12-3c /s
_w ' Phys. Rev. D59 (1999) L] In
. ] R—— Fritiof s20f = PP data

o PbarP data
® LHC data T
M’fs < 0.05, M > 1.5 GeV

(- RN
*
10 [
5
ol 1 1 1 .\‘l 0 |h I
0.0 0.5 10 15 20 10° 10° 10° 10° 10*
- Vs (GeV)

Fig. 5.41: Left: inclusive spectrum of proton in pp-interactions at Piqp, = 24 GeV/c. Points are experimental data
[Blobel], lines are model calculations. Right: single diffraction dissociation cross section in pp-interactions. Points
are data gathered by K. Goulianos and J. Montanha [Goulianos]. Lines are FTF model calculations.

As it can be seen, all the models have difficulties in describing the data. In the FTF model this was overcome by tuning
the single diffraction dissociation cross section. Tuning was possible by the fact that the height of the proton peak at
large rapidities depends on this cross section (see left Fig. 5.41).
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The 2052 (the factor of 2 is due to the fact that agg = a;‘;) predicted by the expression (blue solid curve) is shown at
the right of Fig. 5.41 in a comparison with experimental data gathered by K. Goulianos and J. Montanha [Goulianos].
The values are larger than experimental data. Though taking into account the restriction that the mass of a produced
system, X, cannot be very small or very large (M?/s < 0.05 and M > 1.5 GeV) brings the predictions closer to the
data. So, the accounting of this restriction is very important for a correct reproduction of the data.

A more complicated situation arises with mp- and K p-interactions. The set of experimental data on diffraction cross
sections is very restricted. Thus, a refined tuning was used. The FTF processes discussed above contribute in various
regions of particle spectra. The target diffraction dissociation, m + p — 7 + X, gives its main contribution at large
values of zp = 2p,/+/s for m-mesons. The projectile diffraction dissociation contribution (m + p — X + p) has a
maximum at xp ~ —1. Thus, using various experimental data and varying the cross sections of the processes, the
points presented in the lower left corner of Fig. 5.42 were obtained. They were parameterized by the expressions in
(5.31). A correct reproduction of particle spectra in the central region, xr ~ 0, was very important for these. As a
result, we have a good description of m-meson spectra in the interactions at various energies.

In Kp-interactions the projectile diffraction cross sections were determined by tuning on proton spectra from the
reactions K + p — p + X (see Fig. 5.43). There are no data on leading K -meson spectra in the reactions K + p —
K + X. Thus, 7~ -meson spectra in the central region were tuned. At a given value of a projectile diffraction cross
section, the central spectrum depends on a target diffraction. This was used to determine the target diffraction cross
sections. The estimated cross sections are shown in the lower left corner of Fig. 5.43. As a result, a satisfactory
description of meson spectra was obtained.
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Fig. 5.42: Upper figures: inclusive spectra of protons and m+-mesons in mp-interactions. Points are experimental
data [Bosetti]. Lines represent the contributions of the various FTF processes calculated by assuming that the proba-
bility of each process is 100 %. Bottom left figure: diffraction dissociation cross sections obtained by tuning (points),
and their description (lines) by the expression for 7 in (5.31). Bottom right figure: rapidity spectrum of m+-mesons in
wtp-interactions at piq, =100 GeV/c. Points are experimental data [Whitmore].
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Fig. 5.43: Upper figures: inclusive spectra of protons and w~-mesons in :math: (Kp)‘-interactions. Points are ex-
perimental data [Ajinenko]. Lines are FTF calculations. Bottom left figure: diffraction dissociation cross sections
obtained by tuning (points), and their description (lines) by the expression for Kp in (5.31). Bottom right figure:
xp spectrum of positive charged particles in Kp-interactions at piqp, =250 GeV/c. Points are experimental data
[Whitmore], lines are model calculations.

Simulation of hadron-nucleon interactions
Simulation of meson—nucleon and nucleon—nucleon interactions

Colliding hadrons may either be on or off the mass shell when they are bound in nuclei. When they are off-shell the
total mass of the hadrons is checked. If the sum of the masses is above the center-of-mass energy of the collision, the
simulated event is rejected. If below, the event is accepted. It is assumed that due to the interaction the hadrons go
on-shell, and the center-of-mass energy of the collision is not changed.

The simulation of an inelastic hadron-nucleon interaction starts with a choice: should a quark exchange or a
diffractive/non-diffractive excitation be simulated? The probability of a quark exchange is given by Wy = 04¢ /0.
The combined probability of diffractive dissociation and non-diffractive excitation is then 1 — Wy,. 04 depends on
the energies and flavors of the colliding hadron (see Eq.(5.29)).

If a quark exchange is sampled, the quark contents of the projectile and target are determined. After that the possibility
of a quark exchange is checked. A meson consists of a quark and an antiquark. Thus there is no alternative but to
choose a quark. Let it be g5s. A baryon has three quarks, ¢, g2 and ¢3. The quark from the meson can be exchanged, in
principle, with any of the baryon quarks, but the above description of the experimental data indicates that an exchange
of quarks with the same flavor must be suppressed. So, only the exchange of quarks with different flavors is allowed.
After the exchange (qyr <> ¢;), the new contents of the meson and the baryon are determined. The new meson may
be either pseudo-scalar or pseudo-vector with a 50% probability. The new baryon may be in its ground state, or in an
excited state. The probability of an excited baryon state is assumed (as common also in other codes) to be 0.5 for both
7 N-interactions and K N-interactions. Only A(1232)’s are considered as excited states. If all quarks of a baryon have
the same flavor, the A(1232) is always created (A(1232)"" or A(1232)~ 7).

The same procedure is followed for a projectile baryon, but in this case any quark of the projectile or target may
participate in an exchange if they have different flavors. Only the ground state of the new baryon is considered.

In order to generate a transverse momentum between the two final-state hadrons, these final-state hadrons undergo to
either an additional elastic scattering with probability W,; = 2.256 ¢~0-6 ¥1ab (the parameters have been fitted from
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experimental data), or a diffractive/non-diffractive excitation with probability 1 — W,;, where y,4; is the rapidity of
the projectile in the target rest frame.

The above procedure is sufficient for a description of hadron-nucleon reaction cross sections at p;.p < 3 —5 GeV/c.
At higher energies, diffractive dissociations and non-diffractive excitations must be simulated.

As mentioned above, there can be a projectile diffraction, or a target diffraction, or a non-diffractive interaction.
Probabilities of the corresponding processes at high energies are: o??/5'", o'? /", and (0" — oP? — ot?) /o™, The
processes are sampled randomly.

Having sampled a projectile diffraction or a target diffraction, the corresponding light-cone momentum (P~ or P*) is
chosen according to the distribution: dP~ /P~ or dP* /PT. Boundaries for a sampling have to be determined before.

Let us consider the kinematics of projectile diffraction, P + T — P’ + T, for the definition of these boundaries. It is
obvious that a mass of the diffractive produced system, m p/, must satisfy the conditions:

mp <mpr < /s —myp

where m p is the minimal mass of the system, s is the center-of-mass energy squared, mr is the mass of the target. If
there is not a transverse momentum transfer, and m p: reaches the lower boundary then

P =/mb+p2—p., p.=A2(s,m3,m%)/2/s

(See (5.31) for the definition of A().)

When m p reaches the upper boundary, the longitudinal momenta of the particles are zeros. Thus,
Poww = \/g —mr

Having sampled P, then mp: and P can be found with the help of the energy-momentum conservation law written
is the center-of-mass system:

Ep +Epr=+/s | Pp+Pp=\/s P =m2/P;
P.p+P.r=0 | PL+Pf=ys | % T

The transferred transverse momentum is sampled according to the distribution:

1
AW = m e_Pi/<Pi>d2PJ_, < PJQ_ >=10.3 (GGV/C)2
1

To account for it, it is enough to replace the masses with the transverse masses, m, = /m? + PJQ_.

The light-cone momenta transferred to the projectile are:
Q" =Pro—Pr, Q =Pro—Pp
where P}' o and P, are the light-cone momenta of the target in the initial state.

In the case of non-diffractive excitation (P + T — P’ 4+ T"), Pp, is sampled first of all as it was described above
at mp = mr nq, Where mp 4 is the minimal mass of a target-originated particle produced in the non-diffractive
excitation. After that, P;I/ is independently sampled at mp = mp 4. The minimal light-cone momenta, Pp, and
P;:,, are calculated at mp = mp,q and my = m7,q. At the last step it is checked that mp: > mp 4 and
mrq > mr nq. In the current version of the FTF model the same values for minimal masses are used in the diffractive
and non-diffractive excitation.
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Simulation of antibaryon—nucleon interactions

At the beginning of the simulation of an annihilation interaction, the cross sections of the processes (see Fig. 5.40) are
calculated (see (5.30)). After that a sampling of the processes takes place.

In the cases of the processes Fig. 5.40b and Fig. 5.40e quarks for the annihilation are chosen randomly. In each of the
processes only one string is created. Its mass is equal to the center-of-mass energy of the interaction. After that the
string is fragmented. It is required that in the fragmentation of the process Fig. 5.40b there must not be a baryon and
an antibaryon in the final state.

At sufficiently high energies the standard FTF processes can be simulated as it was described above.

In the process Fig. 5.40c only 2 strings will be created. If their masses are given, the kinematical properties of the
strings can be determined with the help of the energy-momentum conservation law. The masses must be related to the
momenta of the quarks and antiquarks.

We assume that in the process all quarks and antiquarks are in the same conditions, thus, their transverse momenta
are sampled independently according to the gaussian distribution with < P? >= 0.04 (GeV/c)?. To guarantee
tI_{at the sum of the transverse momenta is zero, the transverse momentum of each particle is re-defined as follows:
PLi%PLif %Z?:lplj'

To find the longitudinal momenta of quarks we use the light-cone momenta: total light-cone momenta of projectile-
originated antiquarks and target-originated quarks,

+ _ p+ + - _ p-— -
P = Pi?l + P@z’ P = Pth + qu
Letusintroducealsothelight — conemomentum fractions :

+ _ p+ + + 1 _ .t
qu_qu/P’ xqz_l Lq

v, =P, /P, z,=1-x,

g2 q1

Using these variables, the energy-momentum conservation law in the center-of-mass system can be written as:

Pt « P~ 153
S tapr t e Ve
pt P~
Pr_o P78 _,
2 2 Pt 2 2 P~
2 2
o= J:?l + mll?i
Tq 1 - Tq,
2 2
p="tay Me
Tq, 11—z

A solution of the equations at /a + /3 < /sis:

s+a—ﬂ+)\1/2(s,a,5)
2/s

s—a+ﬂ+/\1/2(s,a,ﬂ)
2/s

(See eq_lambda for the definition of :math:(lambda())‘.)

Pt =

P~ =

If /oo ++/B > /5, the transverse momenta and xs are re-sampled until the inequality is broken.

Because quarks are in the same conditions, the distribution on x can have the form z* (1 — z)®. A recommended
value of a can be zero or —0.5. We chose a = —0.5. We assumed also that the quark masses are zero. Probably, other
values could be used, but we have not yet found experimental data sensitive to these parameters.

292 Chapter 5. Hadronic



Physics Reference Manual, Release 10.4

For the simulation of the process Fig. 5.40a we follow the same approach, and introduce light-cone momentum frac-

tions — 7, 21y, 3 and x,, x,, 2. The distribution on s is chosen according to the form:

q1’
a a a —
dW o< zg @y, ©5.0(1 — 1, — g, — gy )dTq, dry, drg,, a= —0.5

It is obvious that in this case:

2 3 2

_2 :mJ—‘71 _2 :mJ-qz
a - + b /B - —
=1 L@ i=1 %

Flowchart of the FTF model

The simulation of hadron-nucleus or nucleus-nucleus interaction events starts with an initialization (done “on-the-fly”
just before simulating the interaction, not at the beginning of the program) of the model variables: calculations of cross
sections, setting up slopes, masses and so on. The next step is the determination of intra-nuclear collision multiplicity
with the help of Glauber model. If the energy of collisions is sufficiently high, the simulation of secondary particle
cascading within the reggeon theory inspired model (RTIM [RTIM]) is carried out. After that all involved nuclear
nucleons are put on the mass-shell. If the energy is not high enough these steps are skipped. The reason for this will
be explained later.

The main job of the FTF algorithm is done in the loop over intra-nuclear collisions. At that moment, the time ordering
of the collisions has been determined. For each collision, it is sampled what has to be simulated — elastic scattering,
inelastic interaction or annihilation for projectile antibaryons. For each branch, an adjustment of the participating
nuclear nucleon is performed at low energy, and the corresponding process is simulated. In the case of the sampling
of the inelastic interaction at high energy there is an alternative — to reject the interaction or to process it.

At the end of the loop, the properties of nuclear residuals (mass number, charge, excitation energy and 4-momentum)
are transferred to a calling program. The program initiates the fragmentation of created strings and decays the excited
residuals.

Simulations of elastic scattering, inelastic interactions and annihilation were considered above. Other steps of the FTF
model will be presented below.

Simulation of nuclear interactions
Sampling of intra-nuclear collisions
Classical cascade-type sampling

As it is known, the intra-nuclear cascade models like the ones implemented in Geant4 — the Bertini model, the Binary
cascade model, the Liege (INCLXX) model — work well for projectile energies below 5 — 10 GeV. The first step in
these models is the sampling of the impact parameter, b. The next step is the sampling of a point where the projectile
will interact with nuclear matter (see Fig. 5.45a).

The following consideration is used here: the probability that the projectile reaches a point z going from minus infinity
to the point z is

P _ e_a_tot fjoo pA(E,Z/) dz’
where ot is the total cross section of the projectile-nucleon interaction, p 4 is the density of the nucleus considered
as a continuous medium.

The probability that the projectile will have an interaction in the range z — z + dz is equal to o*°p A(l;, z) dz. Thus,
the total probability is:

— —

P(b,z) = " pa(b,z) e Sl palb) d g,
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Fig. 5.44: Flowchart of the FTF model.

Fig. 5.45: Cascade-type sampling.
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=, +oo - tot oo o ’

P(b) = / P, 2)dz=1—e 7 [Zara®z)d:
— 00

Having sampled the interaction point, the choice between an elastic scattering and an inelastic interaction is then

implemented.

In the case of the inelastic interaction, a multi-particle production process is simulated. After this, for each produced
particle new interaction points are sampled, and so on.

In the case of the elastic scattering, the scattering is simulated, and then new interaction points for the recoil nucleon
and the projectile are sampled.

The prescription is changed a little bit by replacing the continuous medium with a collection of A nucleons located in
the points {5;, z;}, i = 1-A where {3} are coordinates of the nucleons in the impact parameter plane. The projectile
can interact with the nearest nuclear nucleon, whose 3; satisfies the condition: |b — §;| < /ot /7 (see Fig. 5.45b).

In the first versions of the cascade models, only nucleons and pions were considered. When it was recognized that most
of inelastic reactions at intermediate energies are going through resonance productions, various baryonic and mesonic
resonances were included, and the algorithm changed (see Fig. 5.45c¢). As energy grows, more and more heavy
resonances are produced. Because the properties of resonance-nucleon collisions were not known, the interpretation
of the Glauber approximation was very useful.

Short review of Glauber approximation

The Glauber approach [Glauber] was proposed in the framework of the potential theory, before the creation of the
intra-nuclear cascade models. Its main assumption is that at sufficiently high energies many partial waves contribute
to a particle elastic scattering amplitude, f(§). Thus, a summation on angular momenta can be replaced by an integral:

P T (B do
@ =5 [T L] @, Z—1r@P

1
2miP

2(b) = ‘/f@ﬂqu

where P is the projectile momentum, g is the transferred transverse momentum, b is the impact parameter, y is the
phase shift, and -y is the scattering amplitude in the impact parameter representation.

Due to the additivity of potentials, it was natural to assume that the overall phase shift for the projectile scattered on
A centers located in the points {3;, z;}, i = 1-A is the sum of the corresponding shifts on each center:

A
Xna =y x(b—35)
=1

Ma®) =1 [1 =~ 5)] (5.32)

=1

Because the positions of nucleons in nuclei are not fixed, the Eq. (5.32) has to be averaged, and the hadron-nucleus
scattering amplitude takes the form:

. A
ha _ AP 2p —igh P * 3
FpA, = %/d be i {1 - lj[l (1=~ 5)}} %({m})q/f({m})[[ld r
where ¥ and ¥ ¢ are wave functions of the nucleus in initial and final states, respectively.

In the case of elastic scattering, ¥y = ¥, we have:

FliA = ;f/d% =it {1 - H {1 - /»y(E— §i)pA(§i7z')d2sidz’} } ~ (5.33)
us .

i=1
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~ %/d%e‘“ﬁ {1— {1—2/7(5—5')&(5)0125}14}

~ E/d% e {1~ e (A=A )
27
~ P B2p e— i {1 _ efo;‘;}\t,(lfia)TA(l;)ﬂ}
2
Some assumgtions and simplifications have been used in the above derivations. First of all, it was assumed that

|Wo|? ~ [I;—, p(Si,2;) where p is the one-particle nuclear density. Because the nucleon coordinates must obey

the obvious condition: Z;‘Zl 7 = 0, it would be better to use |¥o|? ~ 6(2;4:1 ;) Hle p(8;,z;). Considering

this d-function corresponds to take into account the center-of-mass correlation. The second assumption is that A is

sufficiently large, thus (1 — )4, = e~ (optical limit). A thickness function of the nucleus was introduced:

+oo
T(b) = A/ p(b, 2) dz

— 00

It was assumed also that the range of the v-function is much less than the range of the nuclear density: | 'y(l_; —

-,

5)Ta(3)d?s ~ ot (1—ia)Ta(b)/2, where 019 is the hadron-nucleon total cross section, and o = Re f(0)/Im f(0)
is the ratio of real and imaginary parts of hadron-nucleon elastic scattering amplitude at zero momentum transfer.

There were many applications of the Glauber approach for calculations of elastic scattering cross sections, cross
sections of nuclear excitations, coherent particle production and so on. We consider here only its application to
inelastic reactions.

If the energy resolution of a scattered projectile is not too high, many nuclear excited states can contribute to the
scattering amplitude: F"4 = 3 f Féﬁ‘ - To find the corresponding cross section, it is usually assumed that a set of

final-state wave functions satisfy the completeness relation: 3 W, ({7 }) ¥} ({7}}) = Hle o7 — 7).

In the Glauber approach, it is possible to show that the cross section of elastic and quasi-elastic scatterings has the
following expression:

oA = / 22 {1 _ 9Re e (i) TAB)/2 | e—a};’xm@)}
Subtracting from it the cross section of the elastic scattering, we have:

ohA _ / 22 {efaisvm(l?) _efoiséTA(E)} _ / B2b e TR Ta (D) {eazzvm(z?) _ 1}

qel.
& el N1n
_ 27—t Ta(b) [ornTa(b)]
= / d?b e=onnTa ;771!

The last expression shows that the quasi-elastic cross section is a sum of cross sections with various multiplicities of
elastic scatterings. It coincides with the prescription of the cascade model if only elastic scatterings of the projectile
are considered.

The cross section of multi-particle production processes in the Glauber approach has the form:

U:Lnjgp = O-tho?4 - a-glj.Aquel. = /de {1 — 6_05175\7TA(5)}
2 in T (b) Zoo [U;LT}VTA(E)]TL
— -0 A
B /d bem — n!

This expression coincides with the analogous cascade expression in the case of a projectile particle that can be distin-
guished from the produced particles. Of course, it cannot be so in the case of projectile pions.

In the FTF model of Geant4 it is assumed that projectile- and target-originated strings are distinguished. Thus, the
cascade-type algorithm of the sampling of the multiplicities and types of interactions in nuclei is used.
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A generalization of the Glauber approach for the case of nucleus-nucleus interactions was proposed by V. Franco
[Franco]. In this approach, the cross section of multi-particle production processes is given by the expression:

A B
aﬁfpz /d2b 1—HH{1—9(5+T3‘—§;’)}
A B
W3 ({raD)PIVE ({ts})I? lH dgri] Hdgti

where g(b) = v(b)+~*(b) — |7(b)|2, A and B are mass numbers of colliding nuclei, {7} } is a set of impact coordinates

of projectile nucleons (t= (7, 2)).

Considering g(g) as a probability that two nucleons separated by the impact parameter b will have an inelas-
tic interaction, a simple interpretation of the Eq. (5.34) can be given. The expression in the curly brackets
of Eq. (5.34) is the probability that there will be at least one or more inelastic nucleon-nucleon interactions.
:math:) ‘(\Psi_0A(\r_A\DI*2\ \Psi_0B(\{t_B\}I*2\ \left[\prod_{i=1}*A d”3r_i\right]\ \left[\prod_{j=1}"B
d”3t_i\right]¢ is the probability to find nucleons with coordinates :math:‘\(\{r_A\}\)* and :math:\(\{t_B\}))‘.
This interpretation allows a simple implementation in a program code, as described in many pa-
pers :cite:‘GlauberMC¢, sometimes with the simplifying assumption that :math:‘\(g(\vec b)=\theta(lvec bl-
sqrt{sigma™{in}_{NN}/pi}))‘. This is the so-called Glauber Monte Carlo approach.

Because there is no expression in the Glauber theory that combines elastic and inelastic nucleon-nucleon collisions
in nucleus-nucleus interactions, the same cascade-type sampling is used in the FTF model also in the case of these
interactions.

Correction of the number of interactions

The Glauber cross section of multi-particle production processes in hadron-nucleus interactions (Eq. (5.34)) was
obtained in the reggeon phenomenology approach [Shabel], applying the asymptotical Abramovski-Gribov-Kancheli
cutting rules [AGK] to the elastic scattering amplitude (Eq. (5.33)). Thus, the summation in Eq. (5.34) is going
from one to infinity. But a large number of intra-nuclear collisions cannot be reached in interactions with extra-heavy
nuclei (like neutron star), or at low energy. To restrict the number of collisions it is needed to introduce finite-energy
corrections to the cutting rules. Because there is no well-defined prescriptions for accounting these corrections, let us
take a phenomenological approach, starting with the cascade model.

As it was said above, a simple cascade model considers only pions and nucleons. Due to this it cannot work when
resonance production is a dominating process in hadronic interactions. But if energy is sufficiently low the resonances
can decay before a next possible collision, and the model can be valid. Let p be the momentum of a produced resonance
(A). The average life-time of the resonance in its rest frame is 1/T". In the laboratory frame the time is Ea /T" ma.
During the time, the resonance will fly a distance | = v Ex /T ma = p/T’ ma. If the distance is less than the average
distance between nucleons in nuclei (d ~ 2 fm), the model can be applied. From this condition, we have:

p<dTma~15 (GeV/e)

Direct A-resonance production takes place in 7wV interactions at low energies. Thus the model cannot work quite well
for momentum of pions above 2 GeV/c. In nucleon-nucleon interactions, due to the momentum transfer to a target
nucleon, the boundary can be higher.

Returning back to the FTF model, let us assume that the projectile-originated strings have average life-time 1/T", and
an average mass m*. The strings can interact on average with [/d = p/T" m*/d = p/po nucleons. Here py is a new
parameter. According to our estimations pg has value of about 3—5 GeV/c. Thus, we can assume that at a given energy
there is a maximum number of intra-nuclear collisions in the FTF model, given by: vyq. = p/po-

5.8. Theory-Driven 297



Physics Reference Manual, Release 10.4

Let us introduce this number in the Glauber expression for the cross section of multi-particle production processes.
1 2\
bty = /fb%<1[gmnw)}
1 o\ A/ Vmaz | Ve
o fo- (o b))
Vimaz | . o\ A/ Vmax Y
= [ > e ll - (1 LT )) ]

(1= Foinma®)

As seen from the expression above, the number of the intra-nuclear collisions is restricted to V4,

The formula looks rather complicated, but a Monte Carlo algorithm for the rejection of the interaction number is quite
simple. For example, an algorithm implementing it could look like this: at the beginning, a projectile has the “power”,
P,, to interact inelastically with v,,,,, nucleons (P, = Vpq.; you can think about it as a likelihood, or unnormalized
probability), thus the probability of an interaction with the first nucleon, Py, /Vpqz, is equal to 1. The power decreases
after the first interaction. Thus, the probability of an inelastic interaction with a second nucleon is equal to Py, /Vinaz
where P, = V4, — 1. If the second interaction happens, the power is decreased once more; else it is left at the same
level. This is applied for each possible interaction.

The same algorithm is applied in the case of nucleus-nucleus interactions, but the power P, is ascribed to each of the
projectile or target nucleons.

Reggeon cascading

As known, the Glauber approximation used in the Fritiof model and in other string models does not provide enough
amount of intra-nuclear collisions for a correct description of nuclear destruction. Additional cascading in nuclei
is needed. The usage of a standard cascade for secondary particle interactions leads to a too large multiplicity of
produced particles. Usually, it is assumed that the inclusion of secondary particle’s formation time can help to solve
this problem. Hadrons are not point-like particles: they have finite space sizes. Thus, the production of a hadron
cannot be considered as a process taking place in a point, but rather in a space region. To implement this idea in
Monte Carlo generators, it is assumed that particles do not appear in the nominal space-time point of production,
but after some time interval called the formation time, and at some distance called the formation length. Because
these time and length depend on the reference frame, it is assumed that for them standard relativistic formulae can
be applied: tr = 70E/m, Ilp = Top/m, where E, p and m are, respectively, energy, momentum and mass of the
particle in the final state; 7y is a parameter. The problem is now: how can one determine the “nominal” point of the
production? There is no a well established and accepted solution to this problem. Moreover, reggeon theory experts
criticized for long time the concept of the formation time and the “standard” model of particle cascading in nuclei —
the approaches do not consider the space-time structure of strong interactions. It was also assumed that the cascading
could be correctly treated in the reggeon theory by considering the of so-called enhanced diagrams.

Reggeon phenomenology of nuclear interactions

According to the phenomenology, an elastic hadron-hadron scattering amplitude is the sum of contributions connected
with various exchanges in the ¢-channel. Each contribution has the following form in the impact parameter represen-
tation:

2
e ARZ+alRe)

AR 5’ — 2 Aﬁg
NN( €) TIRYRE (R?VN—’—O/Rg)
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Here |5| is the impact parameter, & = In(s), s is the squared center-of-mass energy, ng is the signature factor:
nr = 1+ cot(n(1+ Ag)/2) for a pole with positive signature, and ngp = —1 + ¢ cot(n(1 + Ag)/2) for a pole with
negative signature. 1+ Ap is the intercept of the reggeon trajectory, o/, is its slope, and the vertex of reggeon-nucleon
interaction is parameterized as g(t) = gr exp(R3, 5t/2), t is the transferred 4-momentum.

R R R R

A
A

a b Cc

Fig. 5.46: Nonenhanced diagrams of :math: ‘(NN)‘-scattering.

Taking into account the contributions of other diagrams, shown in NonEnhD, one can find the /N V-scattering ampli-
tude:

- R
NN (5, €) = 1 — e A8

The calculation of amplitudes and cross sections for cascade interactions requires to consider the so-called enhanced
diagrams, like those shown in EnhD.

a b c
Fig. 5.47: Simplest enhanced diagrams of :math: ‘(NN)‘-scattering.

The contribution of the diagram in EnhDa to the elastic scattering amplitude is given by the expression:
£—e
GE(. =G [ de’ [ VARG~ F.¢ - AR, ) AR F.€)

where A,y is the amplitude of meson-nucleon scattering due to one-reggeon exchange, G is the three reggeon’s
coupling constant, € is the cutoff parameter (¢ ~ 1). Here we use the model of multi-reggeon vertices proposed in
[KPTM], where it was assumed that reggeons are coupled to one another via a created virtual meson (pion) pair.

The simplest enhanced diagrams for hadron-nucleus scattering were evaluated in [qe4-r13][qe4-r14]. An effective
computational procedure was proposed in papers [qe4-r15][qe4-r16], but it was not applied to the analysis of experi-
mental data. The structure of the enhanced diagrams and their analytical properties were studied in [BKKSmor].

In the reggeon approach the interaction of secondary particles with a nucleus is described by cuttings of enhanced
diagrams. Here the Abramovski-Gribov-Kancheli (AGK) cutting rules [AGK] are frequently applied. The corrections
to them were discussed in [BKKSmor] for the problem of particle cascading into the nucleus. It was shown there that
inelastic rescatterings occur for any secondary particle, both slow and fast, and the contributions of enhanced diagrams
lead to the enrichment of the spectrum by slow particles in the target fragmentation region.

As in [KPTM] we shall assume that the reggeon interaction vertices are small. Therefore of the full set of enhanced
diagrams the only important ones will be those containing vertices where one of the reggeons split into several, which
then interact with different nucleons of the nucleus (Fig. 5.48 a). In studying interactions with nuclei, however,
it is convenient, in the spirit of the Glauber approach, to deal not with individual reggeons, but with sets of them
interacting with a given nucleon of the nucleus (Fig. 5.48b). Unfortunately, the reggeon method of calculating the sum
of the contributions of enhanced diagrams in the case of 2 A- and A A-interactions is not developed for practical tasks.
Hence we propose a simple model of estimating reggeon cascading in hA- and A A-interactions.
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Fig. 5.48: Possible enhanced diagrams of :math: ‘(hA) ‘-interactions.

Let us consider the contribution of the first diagram of Fig. 5.48a:
Y = G/dg’de’FN,r(l;— V.6~ &) x Fan(bl — 51,6 ) Fan (b — 52, 8)

where b is the impact parameter of a projectile hadron, s7 and 55 are impact coordinates of two nuclear nucleons, Vs
the position of the reggeon interaction vertex in the impact parameter plane, £’ is its rapidity.

Using a gaussian parameterization for Fy (Frn = exp(—|b|2/ R2 ) and neglecting its dependence on energy, we
have

2 —
Y ~ G(& — 2¢) RgN exp(—(b— (51 + 5'2)/2)2/3R727N) x exp(—(81 — §2)2/2R,2,N)

where R, is the pion-nucleon interaction radius. According to this expression, the contribution reaches a maximum

when the nucleon coordinates, §; and 35, coincide, and decreases very fast with increasing distance between the
nucleons.

Cutting the diagram, one can obtain that the probability, ¢, to involve 2 neighboring nucleons is

| 51— 5 |?

B(| 51— 55 |) ~ exp(— 2,

Schematically, the hadron-nucleus interaction process in the impact parameter plane can be represented as in Fig. 5.49,
where the position of the projectile hadron is marked by an open circle, the positions of nuclear nucleons by closed
circles, reggeon exchanges by dashed lines and the small points are the coordinates of the reggeon interaction vertices.

Fig. 5.49: Reggeon “cascade” in hA-scattering.
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Let us consider the problem by using the quark-gluon approach. There were some successful attempts to describe
the hadron-nucleon elastic scattering at low and intermediate energies (below 1 — 2 GeV) within this approach (see
[Barnes]). In particular, in the paper [Barnes] the theoretical calculations of the amplitudes of nm-, K K- and N N-
scatterings were found in agreement with experimental data, assuming that in the elastic hadron scattering one-gluon
exchange with following quark interchange between hadrons takes place (see QGexca). At high energies, two-gluon
exchange approximation (QGexcb) works quite well (see [Low]). What kind of exchanges can dominate in hadron-
nucleus and nucleus-nucleus interactions?

|Diagrams of quark-gluon exchanges and corresponding reggeon diagrams for hadron-nucleus interactions.| |Dia-
grams of quark-gluon exchanges and corresponding reggeon diagrams for hadron-nucleus interactions.|

The simplest possible diagrams of processes with three nucleons are given in QGexcHA. A calculation of their am-
plitudes according to [Barnes] is a serious mathematical problem. It can be simplified if one takes into account an
analogy between quark-gluon diagrams and reggeon diagrams: the quark diagram of QGexca corresponds to a one-
nonvacuum reggeon exchange; the diagram of QGexcb describes the pomeron exchange in the ¢-channel; the diagram
of QGexcHAa is in correspondence with the enhanced reggeon diagram of the pomeron splitting into two non-vacuum
reggeons. The three pomeron diagram (QGexcHAd) represents a more complicated process. It is rather difficult to
find a correspondence between reggeon diagrams and the diagrams of QGexcHAb, QGexcHA c.

It seems obvious that the processes like one in QGexcHAd cannot dominate in the elastic hadron-nucleus scattering
because they are accompanied by a production of high-mass diffractive particles in the intermediate state. Thus, their
contributions are damped by a nuclear form-factor. For the same reason, the contributions of processes like the ones
in QGexcHAa, QGexcHAb can be small too. If this is not the case, then one can expect large corrections to Glauber
cross sections. The practice shows that the corrections to hadron-nucleus cross sections must be lower than 5 — 7 %.

The diagram QGexcHAc can give a correction to the Glauber one-scattering amplitude. Analogous corrections exist
for the other terms of Glauber series. They can re-normalize the nuclear vertex constants. According to [Barnes] the
contribution has the form:

Y, o exp [~ (b — 1) /R exp [—(51 — 5)/R?]

where ?), is the radius of high-energy nucleon-nucleon interactions, and IZ. is another low-energy radius. Let us note
that Y, does not depend, as other reggeon diagram contributions, on the longitudinal coordinates of nucleons and the
multiplicity of produced particles. This is the main difference between “reggeon cascading” and usual cascading.

As well known, the intra-nuclear cascade models assume that in a hadron-nucleus collision secondary particles are
produced in the first inelastic interaction of the projectile with a nuclear nucleon. The produced particles can interact
with other target nucleons. The distribution of the distance [ between the first interaction and the second one has the
form:

W (l)dl Lexp(f

l
<l> )

n
<l>
where < | >= 1/opy, o is the hadron-nucleon cross section, n is the multiplicity of the produced particles, and
pa ~ 0.15 (fm)~3 is the nuclear density. At the same time, the amplitudes or cross sections of processes like
QGexcHA have no dependence on [ or n. Thus, one can expect that the “cascade” in the quark-gluon approach will be
more restricted than in the cascade models. The difference between these approaches can lead to different predictions
for hadron interactions with heavy nuclei due to the large multiplicity of the produced particles.

Because it is complicated to calculate the contributions of various diagrams, and to take into account all possibilities,
let us formulate a simpler phenomenological model that keeps the main features of the above approaches.

The model formulation

1. As it was said above, the “reggeon” cascade is developed in the impact parameter plane, and has features
typical for branching processes. Thus, for its description it is needed to determine the probability to involve a
nuclear nucleon into the “cascade”. It is obvious that the probability depends on the difference of the impact
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coordinates of the new and previous involved nucleons. Looking at the contribution of the diagram QGexcHAc,
the functional form of the probability is chosen as:

P(|35; — 5j]) = Cua eapl—(5; — 5)*/R7] (5.34)

th

where 5; and 5 are the projections of the radii of the it" and j** nucleons on the impact parameter plane.

2. The “cascade” is initiated by the primary involved nucleons. These nucleons are determined with the help of the
Glauber approach.

3. All involved nucleons are ejected from the nucleus.

The “cascade” looks like that: a projectile particle interacts with some intra-nuclear nucleons. These nucleons are
called “wounded” or “participating” nucleons. These nucleons initiate the “cascade”. A wounded nucleon can involve
a “spectator” nucleon into the “cascade” with the probability (5.34). A spectator nucleon can involve another nucleon,
which in turn can involve a third one and so on. This algorithm is implemented in the FTF model.

We have tuned C,,4 using the HARP-CDP data on proton production in the p + Cu interactions [HARP_CDP].
According to our estimations,

Cnd — 64 (y—2.1)/[1 + 64 (1/—2.1)]7 RQ 1.5 (fm)2

c =

where y is the projectile rapidity. The value of the exponent, 2.1, corresponds to Pqp ~ 4 GeV/c.

“Fermi motion” of nuclear nucleons

In the “standard” approach, a nucleus is considered as a potential well where nucleons are freely moving. A particle
falling on the nucleus changes its momentum on the border of the well. Here a question appears: to whom the recoil
momentum must be ascribed? If the particle is absorbed by the nucleus, probably, one has to imagine in the final
state the potential well with its nucleons moving with a momentum of the particle. If some nucleons are ejected from
the nucleus, what conditions have to satisfy the nucleon momenta, and how will the “residual” well be moving to
satisfy the energy-momentum conservation law? In the case of a 3-dimensional potential well, how will be changed
the momentum components of a particle on the well surface? Will only the component transverse to the surface, or the
one parallel to the surface, or both be changed? The list of questions can be extended by considering nucleus-nucleus
interactions.

Two approaches are frequently used in practice.

According to the first one, the nucleus is considered as a continuous medium, and nucleons appeared only in points
of the projectile interactions with the medium. It seems natural in this approach to sum the momenta of all ejected
particles. Then, subtracting it from the initial momentum, one can find the momentum of the residual nucleus. It is
unclear, however, what has to be done in the case of nucleus-nucleus interactions.

In the second approach, space coordinates and momenta of the nucleons are sampled according to some assumptions.
In order to satisfy the energy-momentum conservation law, the projectile momentum does not changed, and to each
nucleon is ascribed a new mass:

m=+/(mo— €)% —p?

where my is the nucleon mass in the free state, €, is the nuclear binding energy per nucleon, and p is the momentum
of the nucleon. In this approach, the nucleus is a collection of off-mass-shell particles. Apparently, in the case of
nucleus-nucleus interactions one has to consider two of such collections. The energy-momentum conservation law is
satisfied in this approach if it is satisfied in each collision of out-of-mass-shell nucleons. However, there is a problem
with the excitation energy of the nuclear residual: in most of the cases, it is too small.

All these questions are absent in the approach proposed in the paper [Adamovich].
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Let us consider it starting from a simple example of a hadron interaction with a bound system of two nucleons, (1, 2).
In this approach it is assumed that the process has two stages. At the first one, the system is dissociated:

h+(1,2) > h+1+4+2

At the second stage a “hard” collision of the projectile with the first or second nucleon takes place. Neglecting
transverse momenta let us write the energy-momentum conservation law in the form:

Ph = D), + D1+ D2
En+ E(,2) = Ej, + E1 + E»

In the above expressions, there are three variables and two equations. Thus, only one variable can be chosen as
independent. It can be pﬁl — hadron momentum in the final state, or p; or ps — nucleon momentum in the final state.
We choose as the variable the light-cone momentum fraction of one of the final-state nucleons:

1 = (E1 —p1)/(Er + E2 — p1 — p2)

This variable is invariant under the Lorentz transformation along the collision axis.

Using this variable and the energy-momentum conservation law, one can find:
W™ =B+ By —p1—po = [s —mj + 5 = N3 (s,mi, 6%)] /2 W
where:

W= En+Eqa +pn, Wy =En+Eq1z2) —pn
mi__m3

s = Wiwy, B*=

T 1—2q
(See (5.31) for the definition of A().)

The other kinematical variables are:

m% o W™ m% o W™
p1 = — — , By = —
2(E1W 2 21’1W 2
m2 1—x) W™ m2 1—z) W™
. P e md (e
2(1 — )W 2 2(1 — )W 2
Pl = ph—p1—Dp2, En=FEn+FEq2 —FE —E;

So, for the simulation of the interactions, one has to determine only one function: f(z) — the distribution of x;.
Distributions for p; and p» have interesting properties: at p, — oo they become stable (i.e. the distributions remain
nearly unchanged when we vary p,,, for large values of py,), thus reproducing the typical “limiting fragmentation”
(according to an old terminology) of bound system; at pp, — 0, Ej + E(1 2) > my + mq + my the distributions p;
and ps become narrower and narrower (i.e. similar to a §-Dirac distribution).

It is not complicated to introduce transverse momenta — Pih’ pi1 and p, o, such that p/| D11 +pi2 =0 Itis
sufficient to replace the masses with the the transverse ones: m; — m; = \/m? + p? .

In the case of interactions of two composed systems, A and B, consisting of A and B constituents respectively (for
brevity, we denote with the same symbol both a composed system and the number of its constituents), let us describe
the i*" constituent of A by the variables:

z} = (Bai +piz)/W1 and p;1

and the j*" constituent of B by the variables:

y; = (EBj —4qjz)/Wp and g1
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Here E4;(Ep;) and p;(q;) are energy and momentum of the i*” constituent of the system A (B).

A B
Wi = Z(EAi +piz), Wg = Z(EBi - ¢iz)

i=1 i=1

Using these variables, the energy-momentum conservation law takes the form:

A _ B
WX 1 m; | Wg 1 M1 0 0
Ay il By L — EQ+E
A _ B
WZ 1 szL _ Wg 1 M?L 0 0
T ¥ + o= == P+ P
2 2VVA i=1 Ty 2 2VVB i=1 Yi

A B
S i+ Y G = 0
i=1 i=1

where :math:)‘(m”2 _{iperp}=m”2 _i + vec p _{iperp} *2,mu *2 _{iperp}=mu *2 _i + vec q _{iperp} ~2°, and m; (14;)
is the mass of i*" constituent of the system A (B).

The system of equations (5.35) allows one to find WX, W and all kinematical properties of the particles at given
{zF7, P} Ay G}

Wi = (W Wi +a—B+VA)2W;

W, = Wy Wt —a+ 8+ VA) 2w

Wy = (B3 + Eg) + (P4, + Pp.)

Wy = (EY + Ep) — (P4, + Pp.)
A 2 B 9

o i—1TZ§rL7 521‘-1/3:‘L

A= (Wy W2 +a?+ B2 —2W; Wi a —2W; Wi B — 2a8
+ .t mi, 13y

Piz = (W zr; — . )/25 Qiz = —(Wiy; - %)/2
. o Wi " Yi Wg

Consequently, the problem of accounting for the binding energy and Fermi motion in the simulation of interacting
composed systems comes to the definition of the distributions for m;r, Y; s Dil, Gil-

The transverse momentum of an ejected nucleon (7| ) is sampled according to the distribution:
dW o exp(—pt ) < pl >)d°py

64 (ylab_2~5)

. e ey
<p1 >=0.035+0.04 -y

(GeV/c)?

where ¥4 is the projectile nucleus rapidity in the rest frame of the target nucleus. The sum of the transverse momenta
with minus sign is ascribed to the residual of the target nucleus.

z7 (and similarly for ™) is sampled according to the distribution:
dW o exp[—(zt —1/A)?/(d/A)*]dz", d=0.3

2" of the nuclear residual is determined as 1 — > m;"
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Excitation energy of nuclear residuals

According to the approach presented above, the excitation energy of a nuclear residual has to be determined before
the simulation of particle production. It seems natural to assume that this excitation energy is connected with the
multiplicity of ejected nuclear nucleons, both the participating ones and those involved in the reggeon cascading.
Without the involved nucleons, the excitation energy would be proportional to the multiplicity of the participating
nucleons as calculated in the Glauber approach. Such approach was followed in the paper [Abul-Magd], where proton-
nucleus interactions at intermediate energies were analyzed. There the multiplicity of the nucleons was calculated in
the Glauber approach. It was also assumed that each recoil of the participating nucleons contributes to the excitation
energy with a value sampled from the following distribution:

1
dW (E) = Ee*’f/ (EYdE

The sum of these contributions determines the residual excitation energy. The authors of the paper [Abul-Magd]
considered both absorptions and ejections of the nucleons, and took into account the effect of decreasing projectile
energy during the interactions. They obtained a good agreement of their calculations with experimental data on neutron
production as a function of the residual excitation energy.

Extending this approach, we assume, as a first step, that each participating or involved nucleon adds 100 MeV to
the nuclear residual excitation energy. The excited residual is then fragmented by using the Generalized Evaporation
Model (GEM) [Furihata].

5.8.9 Gamma Interaction

MC procedure.

At intermediate energies y-nucleon and y-nucleus interactions are performed within the hadron kinetic model similarly
as the hadron-nucleon and hadron-nucleus interactions.

At high energies the Monte Carlo procedure in the case of y—nucleon collision can be outlined as follows:

At given c.m. energy squared and at given virtuality Q2 sample mass M? of hadronic ¢ fluctuation according
to (??) and sample its flavor according to statistical weights: wyz = 1/2, wyg = 1/4 and wss = 1/4 are derived
from (2?);

e Sample the momentum fraction x of a valence quark inside a hadronic fluctuation according to

1
p(a) ~ ——
x(1—x)
and transverse momentum of a quark according to the Gaussian distribution as for hadrons;
* Split nucleon into quark and diquark as it was described for hadron-nucleon interaction;

 Create two strings spanned between quark from a hadronic fluctuation and diquark from nucleon and between
antiquark from a hadronic fluctuation and quark from nucleon;

* Decay string into hadrons as it was described for hadron-nucleon interactions.
In the case of y—nucleus collision the MC procedure is follows:

* At given c.m. energy squared and at given virtuality 9 sample mass M? of hadronic ¢g fluctuation and sample
its flavor as it is done for y—nucleon collision;

* Calculate coherence length d;

* If coherence length less than internucleon distance then simulate inelastic hadron fluctuation-nucleon collision
at choosen impact parameter B as was described above;
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e If coherence length more than internucleon distance then perform simulation of hadron fluctuation-nucleus
collision at choosen impact parameter B using parton string model similarly as for meson-nucleus interactions.
For this case the probability of inelastic collision of a hadron fluctuation with nucleon 7 at given impact parameter
b; is calculated according to

prn(s,b?) =1 — exp[—Qu(s,bQ)];

with the eikonal u(s, b?) defined by Eq. (2?) at Q* = 0 and M? = M,,.

Hadronic interaction of photons.
The high energy y-nucleon and ~-nucleus interactions.

To simulate high energy photon interactions with nucleon and nucleus we use the approach:cite:PRW95. We consider
the following kinematic variables for y-nucleon scattering: the Bjorken-x variable defined as x = Q?/2mv with Q2,
v and m the photon virtuality, the photon energy and nucleon mass, respectively. The the squared total energy of the
y-nucleon system is given by s = Q%(1 — xz)/x + m?2. We restrict consideration to the range of small z-values and
Q? is much less than s.

The Generalized Vector Dominance Model (GVDM) [BSY78][BSY79] assumes that the virtual photon fluctuates into
intermediate gg-states V' of mass M which subsequently may interact with a nucleon N. Thus the total photon-nucleon
cross section can be expressed by a relation [PRW95]:

2
oon (s, Q%) = dmarem fff dM2D(M?)x
2 2
X(M%QZ)QO + G%MVN(S’QQ),

where integration over M? should be performed between M3 = 4m?2 and M? = s. Here v, = €2 /47 = 1/137 and
the density of gg-system per unit mass-squared is given by

Rovo (M?)
D(M?) = =~
(M) 1272 M2 7
- M?
Re+67 (MQ) _ Oete %had'rons( )

~ 3% €2,
Je+e_—>u+u_(M2) 7

where e?- the squared charge of quark with flavor f. € is the ratio between the fluxes of longitudinally and transversally
polarized photons.

Similarly the inelastic cross section for the scattering of a y with virtuality Q% and with a nucleus A at impact parameter
B and the y-nucleon c.m. energy squared s is given by [ERR97]:

2
UWA(S’Q2vB) = 47Taem f]ygl dM2D(M2)X

2
X(Mé\/izQz )2(]- + 6%)0‘/14(57 Q27 B)7

To calculate y-nucleon or y-nucleus inelastic cross sections we need model for the M?2-, Q2- and s-dependence of the
oyn or oy 4. For these we apply the Gribov-Regge approach, similarly as it was done for h-nucleon or h-nucleus
inelastic cross sections.

The effective cross section for the interaction of a ¢g-system with squared mass M? with nucleus for the coherence
length

_ 2v
COM?+Q?
exceeding the average distance between two nucleons can be written as follows

ova(s,Q? B) = fH?:l d3ripa(r;)x
(1= T [ — uls, Q% M2, b2)] ).

d
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Here the amplitude (eikonal) u(s, Q?, M?, bf) for the interaction of the hadronic fluctuation with ¢-th nucleon is given
by [ERR97]

2 M2
uls, Q% M2, b)) = G5 8ri) x
2

x(1 —ipexp [*m]a

where p =/ 0 is the ratio of real and imaginary parts of scattering amplitude at 0 angle. The amplitude parameters: the
effective qg-nucleon cross section

2 2y _ 5VN(57Q2)
UVN(st vM )_ M2+Q2—|—C27
where C? = 2 GeV:math:(*2), and
2 s
2 2\ 14 /

The values of 5y (s, Q?) are calculated in paper [ERR97]. It was shown [ERR97] that Q? dependence of oy n (5, Q%)
is very week at Q? < m?,, + C?, where m, is p-meson mass, and we omitted this dependence. We also use

ov (s, Q%) calculated in [ERR97] at M2 = m?

rho*

If coherence length is smaller that an internuclear distance integrated over B then cross section oy 4 = Aoy N .

Reaction initial state.

The GEANT4 ~-nucleon and y-nucleus interaction model is capable to predict final states (produced hadrons which
belong to the pseudoscalar meson nonet and the baryon (antibaryon) octet) of reactions on nucleon and nuclear targets.
The break-up simulation of the residual excited target nucleus is performed with help of the nucleus deexcitation
models. The recommended bombarding energy in the photon—nucleon or photon—nucleus interaction has to be more
than 20 MeV in the laboratory frame.

5.8.10 Incl

INCL++: the Liége Intranuclear Cascade model

Introduction

There is a renewed interest in the study of spallation reactions. This is largely due to new technological applications,
such as Accelerator-Driven Systems, consisting of sub-critical nuclear reactor coupled to a particle accelerator. These
applications require optimized targets as spallation sources. This type of problem typically involves a large number
of parameters and thus it cannot be solved by trial and error. One has to rely on simulations, which implies that very
accurate tools need to be developed and their validity and accuracy need to be assessed.

Above ~200 MeV incident energy it is necessary to use reliable models due to the prohibitive number of open chan-
nels. The most appropriate modeling technique in this energy region is intranuclear cascade (INC) combined with
evaporation model. One such pair of models is the Liege cascade model INCL++/BCD+13][MBC+14] coupled with
the G4ExcitationHandler statistical de-excitation model. The strategy adopted by the INCL++ cascade is to
improve the quasi-classical treatment of physics without relying on too many free parameters.

This chapter introduces the physics provided by INCL++ as implemented in Geant4. Table 5.8 summarizes the key
features and provides references to detailed descriptions of the physics.

The INCL++ model is available through dedicated physics lists (see Table 5.8). The _HP variants of the physics lists
use the Neut ronHP model (Chapter [cha:low-energy-neutron]) for neutron interactions at low energy; the QGSP_
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and FTFP_ variants respectively use the QGSP and FTFP model at high energy. Figure [fig:inclxx_hadmodmap]

shows a schematic model map of the INCL++-based physics lists.

Finally, the INCL++ model is directly accessible through its interface (G4 INCLXXInterface).

The reference paper for the INCL++ model is Ref. [MBC+14]. Please make sure you cite it appropriately if you
publish any work based on this model.

A{+A2 A1+A2
p;n+A n+A  K+A A1<18 || A2<18 A1>18 && A2>18
QGSP/JQGSP/
QGSP/FTFP FTEP | FTEP
10 AGeV__b FTFP FTFP
Bertini Bertini
3 AGeV—-
INCL++ Bertini
— INCL++ INCL++ BIC
1.5 AMeV— NeutronHP

Fig. 5.50: Model map for the INCL++-based physics lists. The first two columns represent nucleon- and pion-induced
reactions. The third column represents nucleus-nucleus reactions where at least one of the partners is below A = 18.
The fourth column represents other nucleus-nucleus reactions.
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Table 5.8: INCL++ feature summary.

usage

physics lists QGSP_INCLXX
QGSP_INCLXX_HP
FTEFP_INCLXX
FTFP_INCLXX_HP

interfaces

G4INCLXXInterface | nucleon-, pion- and nucleus-nucleus

projectile particles

proton, neutron

pions (7T, 70, 77)

deuteron, triton

SHe, o

light ions (up to A = 18)

energy range

1 MeV - 20 GeV

target nuclei

lightest applicable

deuterium, 2H

heaviest

no limit, tested up to uranium

features

no ad-hoc parameters

realistic nuclear densities

Coulomb barrier

non-uniform time-step

pion and delta production cross sections

delta decay

Pauli blocking

emission of composite particles (4 < 8)

complete-fusion model at low energy

conservation laws satisfied at the keV level

typical CPU time

0.5 < INCL++/Binary Cascade < 2

code size

75 classes, 14k lines

references

Ref. [MBC+14]

Suitable application fields

The INCL++-dedicated physics lists are suitable for the simulation of any system where spallation reactions or light-
ion-induced reactions play a dominant role. As examples, we include here a non-exhaustive list of possible application
fields:

Accelerator-Driven Systems (ADS);

spallation targets;

* radioprotection close to high-energy accelerators;
* radioprotection in space;

e proton or carbon therapy;

* production of beams of exotic nuclei.

Generalities of the INCL++ cascade

INCL++ is a Monte-Carlo simulation incorporating the aforementioned cascade physics principles. The INCL++ al-
gorithm consists of an initialization stage and the actual data processing stage.
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The INCL++ cascade can be used to simulate the collisions between bullet particles and nuclei. The supported bullet
particles and the interface classes supporting them are presented in table [tbl:inclsummary].

The momenta and positions of the nucleons inside the nuclei are determined at the beginning of the simulation run by
modeling the nucleus as a free Fermi gas in a static potential well with a realistic density. The cascade is modeled by
tracking the nucleons and their collisions.

The possible reactions inside the nucleus are
e NN — NN (elastic scattering)
e NN - NAand NA - NN
* A—»aNandwN — A
e NN — NN xm (multiple pion production)
e TN — mN (elastic scattering and charge exchange)
e 1N — N (z + 1)7 (multiple pion production)
e NN - NNM (M = norw)
e NN — NNM xm (inclusive production, M = 7 or w)
e N - MN (M = norw)
e MN = 7N, mwN (M = norw)
e MN — MN (M = n or w; elastic scattering)

Model limits

The INCL++ model has certain limitations with respect to the bullet particle energy and type, and target-nucleus type.
The supported energy range for incident nucleons and pions is 1 MeV-20 GeV. Any target nucleus from deuterium
(®H) up is in principle acceptable, but not all areas of the nuclide chart have received equal attention during testing.
Heavy nuclei (say above Fe) close to the stability valley have been more thoroughly studied than light or unstable
nuclei. The model is anyway expected to accept any existing nucleus as a target.

Light nuclei (from A = 2 to A = 18 included) can also be used as projectiles. The G4INCLXXInterface class can
be used for collisions between nuclei of any mass, but it will internally rely on the Binary Cascade model (see chapter
[BinaryCascade]) if both reaction partners have A > 18. A warning message will be displayed (once) if this happens.

Physics ingredients

The philosophy of the INCL++ model is to minimize the number of free parameters, which guarantees the predictive
power of the model. All INCL++parameters are either taken from known phenomenology (e.g. nuclear radii, elemen-
tary cross sections, nucleon potentials) or fixed once and for all (stopping time, cluster-coalescence parameters).

The nucleons are modeled as a free Fermi gas in a static potential well. The radius of the well depends on the nucleon
momentum, the r-p correlation being determined by the desired spatial density distribution p,.(r) according to the
following equation:

dpr (T) f

a3

pp(p)p*dp = —

where pp,(p) is the momentum-space density (a hard-sphere of radius equal to the Fermi momentum).

After the initialization a projectile particle, or bullet, is shot towards the target nucleus. In the following we assume
that the projectile is a nucleon or a pion; the special case of composite projectiles will be described in more detail in
subsection [sec:inclxx_composite_projectiles].

310 Chapter 5. Hadronic



Physics Reference Manual, Release 10.4

The impact parameter, i.e. the distance between the projectile particle and the center point of the projected nucleus
surface is chosen at random. The value of the impact parameter determines the point where the bullet particle will
enter the calculation volume. After this the algorithm tracks the nucleons by determining the times at which an event
will happen. The possible events are:

* collision

* decay of a delta resonance

* reflection from the nuclear potential well

e transmission through the nuclear potential well

The particles are assumed to propagate along straight-line trajectories. The algorithm calculates the time at which
events will happen and propagates the particles directly to their positions at that particular point in time. This means
that the length of the time step in simulation is not constant, and that we do not need to perform expensive numerical
integration of the particle trajectories.

Particles in the model are labeled either as participants (projectile particles and particles that have undergone a col-
lision with a projectile) or spectators (target particles that have not undergone any collision). Collisions between
spectator particles are neglected.

Emission of composite particles

INCL++ is able to simulate the emission of composite particles (up to A = 8) during the cascade stage. Clusters
are formed by coalescence of nucleons; when a nucleon (the leading particle) reaches the surface and is about to
leave the system, the coalescence algorithm looks for other nucleons that are “sufficiently close” in phase space; if
any are found, a candidate cluster is formed. If several clusters are formed, the algorithm selects the least excited
one. Penetration of the Coulomb barrier is tested for the candidate cluster, which is emitted if the test is successful;
otherwise, normal transmission of the leading nucleon is attempted.

There are at least two peculiarities of INCL++’s cluster-coalescence algorithm. First, it acts in phase space, while
many existing algorithms act in momentum space only. Second, it is dynamical, in the sense that it acts on the
instantaneous phase-space distribution of nucleons in the system, and not on the distribution of the escaping nucleons.

Cascade stopping time

Stopping time is defined as the point in time when the cascade phase is finished and the excited remnant is passed to
evaporation model. In the INCL++ model the stopping time, Zop, is defined as:

tstop = tO (Atarget/208)0'16-

Here Ajarge: is the target mass number and tg = 70 fm/c. The intranuclear cascade also stops if no participants are left
in the nucleus.

Conservation laws

The INCL++ model generally guarantees energy and momentum conservation at the keV level, which is compatible
with the numerical accuracy of the code. It uses G4ParticleTable and G4IonTable for the masses of particles
and ions, which means that the energy balance is guaranteed to be consistent with radiation transport. However,
INCL++ can occasionally generate an event such that conservation laws cannot be exactly fulfilled; these corner cases
typically happen for very light targets.

Baryon number and charge are always conserved.

5.8. Theory-Driven 311



Physics Reference Manual, Release 10.4

Initialisation of composite projectiles

In the case of composite projectiles, the projectile nucleons are initialised off their mass shell, to account for their
binding in the projectile. The sum of the four-momenta of the projectile nucleons is equal to the nominal four-
momentum of the projectile nucleus.

Given a random impact parameter, projectile nucleons are separated in geometrical spectators (those that do not enter
the calculation volume) and geometrical participants (those that do). Geometrical participant that traverse the nucleus
without undergoing any collision are coalesced with any existing geometrical spectators to form an excited projectile-
like pre-fragment. The excitation energy of the pre-fragment is generated by a simple particle-hole model. At the end
of the cascade stage, the projectile-like pre-fragment is handed over to G4ExcitationHandler.

n and w mesons as new particles

The mesons 7 and w can be produced and emitted during the intranuclear cascade phase. The cross sections taken into
account are listed in section [sec:inclmodel]. By default in Geant4 the 1 meson emitted is not decayed by INCL++,
while that is the case for the w meson (then only the decay products (7 and 7y) are given to Geant4).

De-excitation phase

The INCL++ model simulates only the first part of the nuclear reaction; the de-excitation of the cascade remnant
is simulated by default by G4ExcitationHandler. As an alternative, the ABLA V3 model (Chapter [cha:abla-
v3-evap]) can be used instead, by employing the technique described in the Application Developer Guide, section
“hadronic interactions”.

Physics performance

ILeft: double-differential cross sections for the production of charged pions in 730-MeV :math:‘\(p\)‘\
+Cu. Right: double-differential cross sections for the production of neutrons in 290-\ :math:\(A\)‘\ MeV
:math: \(*{12}\)\ C+\ :math:\(*{12}\)‘\ C. Predictions of the ‘‘INCL++‘‘ and Binary-Cascade models are
compared with experimental data from Refs. :cite:*Cochran_1972,Cochran_1974¢ and :cite:‘Iwata0la‘.l|Left:
double-differential cross sections for the production of charged pions in 730-MeV :math:‘\(p\)‘\ +Cu. Right:
double-differential cross sections for the production of neutrons in 290-\ :math:‘\(A\)’\ MeV :math:‘\(*{12}))‘\
C+\ :math:\(*{12}\)‘\ C. Predictions of the ‘“‘INCL++‘‘ and Binary-Cascade models are compared with exper-
imental data from Refs. :cite:*Cochran_1972,Cochran_1974¢ and :cite:‘Iwata0la‘.|

INCL++ (coupled with G4ExcitationHandler) provides an accurate modeling tool for spallation studies in the
tens of MeV—-15 GeV energy range. The INCL++-ABLAQ7 [KAHOS] model was recognized as one of the best on the
market by the IAEA Benchmark of Spallation Models [/IAE] (note however that the ABLAO7 de-excitation model is
presenty not available in Geant4).

As a sample of the quality of the model predictions of INCL++-G4ExcitationHandler for nucleon-induced re-
actions, the left panel of Figure [fig:pDoubleDifferential] presents a comparison of double-differential cross sections
for pion production in 730-MeV p+Cu, compared with the predictions of the Binary-Cascade model (chapter [Bina-
ryCascade]) and with experimental data.

Reactions induced by light-ion projectiles up to A = 18 are also treated by the model. The right panel of Fig-
ure [fig:pDoubleDifferential] shows double-differential cross sections for neutron production in 290-AMeV 2C+2C.
Figure [fig:BiaxnExcitationCurves] shows excitation curves for 2°Bi(a, 2n) reactions at very low energy. We stress
here that intranuclear-cascade models are supposedly not valid below ~ 150 AMeV. The very good agreement pre-
sented in Figure [fig:BiaxnExcitationCurves] is due to the complete-fusion model that smoothly replaces INCL++ at
low energy.
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Fig. 5.51: Excitation functions for (o, rn) cross sections on 29°Bi.  The predictions of INCIL++-

G4ExcitationHandler are represented by the solid line and are compared to experimental data
[eal05][BL74][KSegre49][DL74 ][ PatelShahSingh99][RBAC90][SH74][SMS94][LMS85].
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INCL++ is continuously updated and validated against experimental data.

5.8.11 Multifragmentation

Multifragmentation process simulation.

The GEANT4 multifragmentation model is capable to predict final states as result of an highly excited nucleus statis-
tical break-up.

The initial information for calculation of multifragmentation stage consists from the atomic mass number A, charge
Z of excited nucleus and its excitation energy U. At high excitation energies U/A > 3 MeV the multifragmentation
mechanism, when nuclear system can eventually breaks down into fragments, becomes the dominant. Later on the
excited primary fragments propagate independently in the mutual Coulomb field and undergo de-excitation. Detailed
description of multifragmentation mechanism and model can be found in review [Bond95].

Multifragmentation probability.

The probability of a breakup channel b is given by the expression (in the so-called microcanonical approach
[BBIMS95], [Botvina87]):

1
Wil A 2) = s~ e SPISU A 2), (539)

where S, (U, A, Z) is the entropy of a multifragment state corresponding to the breakup channel b. The channels {b}
can be parametrized by set of fragment multiplicities N4, 7, for fragment with atomic number A and charge Zy.
All partitions {b} should satisfy constraints on the total mass and charge:

> Najz,Ap=A
f

and
ZNAf,Zfo =7
f

It is assumed [Botvina87] that thermodynamic equilibrium is established in every channel, which can be characterized
by the channel temperature 7T3.

The channel temperature T}, is determined by the equation constraining the average energy Fy(Ty, V') associated with
partition b:

Ey(T, V) =U+ Egrouna = U + M (A, Z), (5.36)

where V' is the system volume, Ey;oynq i8 the ground state (at T, = 0) energy of system and M (A, Z) is the mass of
nucleus.

According to the conventional thermodynamical formulae the average energy of a partitition b is expressed through
the system free energy F} as follows

Eb(Tb, V) = Fb(Tb, V) + TbSb(Tb, V) (5.37)

Thus, if free energy Fy of a partition b is known, we can find the channel temperature T3 from Eqs.(5.36) and (5.37),
then the entropy S, = —dFy/dT, and hence, decay probability W, defined by Eq.(5.35) can be calculated.
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Calculation of the free energy is based on the use of the liquid-drop description of individual fragments [Botvina87].
The free energy of a partition b can be splitted into several terms:

Fy(Ty,,V Zﬂﬂ,+%w,

where F'r (T}, V) is the average energy of an individual fragment including the volume

Ff = [~Bo — T} Je(Af)] Ay,

surface
Ffr = Bo[(T2 = TR) /(T2 + T4 AY° = p(13) A7, (5.38)
symmetry
F7™ =~(Ay —225)% /Ay,
Coulomb
Fy = 3ij1;/3 1= +re)™

and translational
Fp==TyIn(gsVs/A}) + Toln(Na, z,')/Na, .z,

terms and the last term

3222
5 R

Ec(V) =

is the Coulomb energy of the uniformly charged sphere with charge Ze and the radius R = (3V/47)/3 = rg AV/3(1+
kc)'/3, where ko = 2 [Botvina87].

Parameters Fy = 16 MeV, By = 18 MeV, 7 = 25 MeV are the coefficients of the Bethe-Weizsacker mass formula
at T, = 0. gy = (2Sy + 1)(2I; + 1) is a spin Sy and isospin I; degeneracy factor for fragment ( fragments with
Ay > 1 are treated as the Boltzmann particles), Ay, = (2mh?/myT;,)'/? is the thermal wavelength, my is the
nucleon mass, rp = 1.17 fm, T, = 18 MeV is the critical temperature, which corresponds to the liquid-gas phase
transition. €(Ay) = eo[l + 3/(Ay — 1)] is the inverse level density of the mass Ay fragment and ¢y = 16 MeV is
considered as a variable model parameter, whose value depends on the fraction of energy transferred to the internal
degrees of freedom of fragments [Botvina87]. The free volume V; = xkV = /<a37rr0A available to the translational
motion of fragment, where x =~ 1 and its dependence on the multiplicity of fragments was taken from [Botvina87]:

1.44
7"()141/3

K=[1+ (MY? —1)]3 —1.

For M =1k =0.

The light fragments with A; < 4, which have no excited states, are considered as elementary particles characterized by
the empirical masses My, radii Ry, binding energies By, spin degeneracy factors g of ground states. They contribute
to the translation free energy and Coulomb energy.

Direct simulation of the low multiplicity multifragment disintegration

At comparatively low excitation energy (temperature) system will disintegrate into a small number of fragments M <
4 and number of channel is not huge. For such situation a direct (microcanonical) sorting of all decay channels can
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be performed. Then, using Eq.(5.35), the average multiplicity value < M > can be found. To check that we really
have the situation with the low excitation energy, the obtained value of < M > is examined to obey the inequality
< M >< M,, where My = 3.3 and My = 2.6 for A ~ 100 and for A ~ 200, respectively [Botvina87]. If
the discussed inequality is fulfilled, then the set of channels under consideration is belived to be able for a correct
description of the break up. Then using calculated according Eq.(5.35) probabilities we can randomly select a specific
channel with given values of Ay and Z;.

Fragment multiplicity distribution.

The individual fragment multiplicities N4, 7, in the so-called macrocanonical ensemble [BBIMS95] are distributed
according to the Poisson distribution:

wNAf,Zf
A, Z
P(N =exp(—w _A52f (5.39)
( Afyzf) ( Af7Zf)NAf,Zf!
with mean value < NAf,Zf >=wA, z, defined as
1% 1
< Nay,z, >= ngj’c/z)\?f exp [ﬁ(Ff(Tba V) = Fi(Ty, V) — nAy — vZy)), (5.40)
Ty

where o and v are chemical potentials. The chemical potential are found by substituting Eq.(5.40) into the system of
constraints:

Z <Na;z, >Ay=A
f
and
> <Najz, >2;=2 (5.41)
f
and solving it by iteration.

Atomic number distribution of fragments.

Fragment atomic numbers A > 1 are also distributed according to the Poisson distribution [BBIMS95] (see Eq.(5.39)
with mean value < N4, > defined as

v, 1
< Ny, >= A?/Qﬁexp [ﬁ(Ff(Tb,V) — FNTy, V) — pAy —v < Zp >)),
b

where calculating the internal free energy Fy(Ty, V) — F};(Th, V') one has to substitute Zy —< Zy >. The average
charge < Z; > for fragment having atomic number A is given by

(4y+v)Af
_ 2/3"°
8y+2[1—(1+k) 1/3]Af
Chargedistributionof fragments.

< Z(4y) >=

At given mass of fragment Ay > 1 the charge Z distribution of fragments are described by Gaussian

(Zp(Ap)— < Zs(Ay) >)?
2(0z,(Ap))?

P(Z§(Ay)) ~ exp[— ]
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with dispertion

AfTb AfTb
0Z;(Ay) = ~ .
1 8y +2[1 — (1+,)~1/3]4%° 8

and the average charge < Zy(Ay) > defined by Eq.(5.41).

Kinetic energy distribution of fragments.

It is assumed [Botvina87] that at the instant of the nucleus break-up the kinetic energy of the fragment Tz{m in the rest
of nucleus obeys the Boltzmann distribution at given temperature 7}:

dP(T},,)
- Fns o~y T/ exp (=TL /Ty).

kin
Under assumption of thermodynamic equilibrium the fragment have isotropic velocities distribution in the rest frame
of nucleus. The total kinetic energy of fragments should be equal %M T}, where M is fragment multiplicity, and the
total fragment momentum should be equal zero. These conditions are fullfilled by choosing properly the momenta of
two last fragments.

The initial conditions for the divergence of the fragment system are determined by random selection of fragment
coordinates distributed with equal probabilities over the break-up volume V; = V. It can be a sphere or prolongated
ellipsoid. Then Newton’s equations of motion are solved for all fragments in the self-consistent time-dependent
Coulomb field [Botvina87]. Thus the asymptotic energies of fragments determined as result of this procedure differ
from the initial values by the Coulomb repulsion energy.

Calculation of the fragment excitation energies.

The temparature 7}, determines the average excitation energy of each fragment:

2
Up(Th) = Ep(Th) — B4 (0) = %Af + [B(Ty) — deigb) - ﬁo]A?/?’,

where E¢(T}) is the average fragment energy at given temperature 73, and 5(73) is defined in Eq.(5.38). There is no
excitation for fragment with A < 4, for * He excitation energy was taken as Ua g, = 472 /e,,.

Multifragmentation model.
5.8.12 Parton string

Kinky string decay simulation.

For kinky string decay simulation we have assumed the two steps process:
1. split gluon g — ¢q;q; and create two longitudinal strings;
2. decay longitudunal strings gg; — h and gq; — h into hadrons h.

The production of ¢;¢; is considered similar (the same sampling of quark flavors and the same p,-distribution for
the quarks) as a production of gg-pairs during a longitudinal string decay. We use the g — ¢1q; splitting function
[APKWSO0]:

fiz) =22+ (1= 2)%,

where z = gf izz , derived by Altarelli and Parisi [AP77].
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Kinky string excitation.

Having sampled the configuration of kinky strings we generate outgoing gluon—kink momenta.

We assume that kinky strings are produced as result of gg — gg hard interactions. Our generation of the outgoing
gluons (kinks) momenta is based on the two-jets inclusive production cross section:

dogg(8)
dcos@’

Yoo _ pat Q) (. Q%)

defdrydcosd

where we take § = Q% = x; z, s and s is the total colliding system center of mass energy squared, which calculated
using x; and ¢;; and m? string end partons. The value of s should be large enough to produce gluons with the transverse
momentum cutoff Q3 = 2 GeV? choosen. The QCD gluon — gluon interaction cross section

dogg(8)  9Imai(Q?) (3 + cos®0)?

= 5.42
dcosf 32s (1 —cos?0)? (542)

was calculated in the Born approximation [CKR77]. The € is the scattering angle in the center of mass of the parton-
parton system and —z¢ < cosf < zy with

403
=1/1— .
0 sxta—
The QCD running coupling constant
127
2 = -
(@) = 0T

which is corresponding to four flavours and A% = 0.01 GeV? is taken.

f(x,Q?) is the momentum fraction distribution of gluons in hadron. It is choosen from:cite:CKMT95:

=A@

f@,Q%) = AQ) ——— (1 - )" (@+

with parameters A(Q?) = A(1 + Qg%fm) and n(Q?) = 2(1 + szig%) and A(Q?) is calculated from energy-

momentum conservation sum rule. At QF = 2 GeV'?

ST 5.43
flz,Qp) = 1.71 . (1—2x)°. (5.43)

Thus the MC procedure to build the kinky strings can be outlined as follows:

e Sample z;, q;¢ and mf where ¢ = 1,2, ..., 2n, for partons, which will be on the 2n string ends for both the soft
and kinky strings.

» For each pair of kinky string calculate total center of mass energy s and sample x, . <zt andx, ., < z~,
where T, = 2Qq/+/S, for ingoing gluon momenta using gluon distribution function defined by Eq.(5.43) at

Q3 =2 GeV?2.
» Sample the outgoing gluon center of mass scattering angle ¢ using Eq.(5.42).
* For each kinky string recalculate parton string end energies and momenta.

This procedure should be improved taking into account initial and final state gluon radiation.

318 Chapter 5. Hadronic



Physics Reference Manual, Release 10.4

Longitudinal string decay.

Hadron production by string fragmentation.

A string is stretched between flying away constituents: quark and antiquark or quark and diquark or diquark and
antidiquark or antiquark and antidiquark. From knowledge of the constituents longitudinal ps; = p.; and transversal
D1i = Paxi» P2i = Py; momenta as well as their energies pg; = E;, where i = 1,2, we can calculate string mass
squared:

M3 = pHp, = pg — i — P — 3,
where p,, = py1 + D2 is the string four momentum and ¢ = 0,1, 2, 3.

The fragmentation of a string follows an iterative scheme:
string = hadron + new string,

i.e. a quark-antiquark (or diquark-antidiquark) pair is created and placed between leading quark-antiquark (or diquark-
quark or diquark-antidiquark or antiquark-antidiquark) pair.

The values of the strangeness suppression and diquark suppression factors are
u:d:s:qqg=1:1:0.35:0.1.

A hadron is formed randomly on one of the end-points of the string. The quark content of the hadrons determines
its species and charge. In the chosen fragmentation scheme we can produce not only the groundstates of baryons and
mesons, but also their lowest excited states. If for baryons the quark-content does not determine whether the state
belongs to the lowest octet or to the lowest decuplet, then octet or decuplet are choosen with equal probabilities. In
the case of mesons the multiplet must also be determined before a type of hadron can be assigned. The probability of
choosing a certain multiplet depends on the spin of the multiplet.

The zero transverse momentum of created quark-antiquark (or diquark-antidiquark) pair is defined by the sum of an
equal and opposite directed transverse momenta of quark and antiquark.

The transverse momentum of created quark is randomly sampled according to probability (??) with the parameter
a = 0.25 GeV 2. Then a hadron transverse momentum py, is determined by the sum of the transverse momenta of its
constituents.

The fragmentation function f"(z, p;) represents the probability distribution for hadrons with the transverse momenta
pt to aquire the light cone momentum fraction z = z* = (E" 4 p"/(E? 4+ p?), where E" and E7 are the hadron
and fragmented quark energies, respectively and p/ and p? are hadron and fragmented quark longitudinal momenta,
respectively, and 2=, < 2% <z from the fragmenting string. The values of Ziin.max are determined by hadron
my, and constituent transverse masses and the available string mass. One of the most common fragmentation function

is used in the LUND model [LUNDS83]:

b(mj + p7)
z

.

I ) ~ (1= 2)" exp |-

One can use this fragmentation function for the decay of the excited string.

One can use also the fragmentation functions are derived in [Kai87]:
i) = [L+ ali(< pe>))(1 = 2)7a(<P>),

The advantage of these functions as compared to the LUND fragmentation function is that they have correct
three—reggeon behaviour at z — 1 [Kai87].
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The hadron formation time and coordinate.

To calculate produced hadron formation times and longitudinal coordinates we consider the (1 + 1)-string with mass
Mg and string tension «, which decays into hadrons at string rest frame. The i-th produced hadron has energy E; and
its longitudinal momentum p,;, respectively. Introducing light cone variables pii = FE; £ p;, and numbering string

breaking points consecutively from right to left we obtain p = Mg, pj” = x(z;" | — z;7) and p;” = k.

We can identify the hadron formation point coordinate and time as the point in space-time, where the quark lines of
the quark-antiquark pair forming the hadron meet for the first time (the so-called *yo-yo’ formation point [LUND83]):

i—1
1
ti = %[MS - QZPZJ' + Ei — pzil

j=1
and coordinate

i—1
1
Z; = %[MS_2ZEJ +pzz _EZ]

=1

Longitudinal string excitation

Hadron-nucleon inelastic collision

Let us consider collision of two hadrons with their c. m. momenta P, = {FE],m?/E{,0} and P, =

{E; ,m3/E, ,0}, where the light-cone variables EfQ = Ey 2 &+ P15 are defined through hadron energies Ey o =
\/™M3 5 + P2 5, hadron longitudinal momenta P.; » and hadron masses m; 2, respectively. Two hadrons collide by
two partons with momenta p; = {x* E;",0,0} and p, = {0, 2~ E; , 0}, respectively.

The diffractive string excitation

In the diffractive string excitation (the Fritiof approach [FRITIOF87]) only momentum can be transferred:

P =P +q
PZ/ = P2 —q,
where
q={-¢;/(x"E3),q; /(T E), qc} (5.44)

is parton momentum transferred and q is its transverse component. We use the Fritiof approach to simulate the
diffractive excitation of particles.

The string excitation by parton exchange

For this case the parton exchange (rearrangement) and the momentum exchange are allowed
[QGSMS82],:cite:DPM94,:.cite:AmS86:

Pl =P —pi+pr+q

5.45
Py =Py +p —pr—q, (5:45)

where ¢ = {0,0,q¢} is parton momentum transferred, i. e. only its transverse components ¢; = 0 is taken into
account.
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Transverse momentum sampling

The transverse component of the parton momentum transferred is generated according to probability

a
P(qt)dqs = \/; exp (—aq; )dqg, (5.46)

where parameter a = 0.6 GeV 2.

Sampling x-plus and x-minus

Light cone parton quantities z+ and z~ are generated independently and according to distribution:
u(z) ~ (1 — )P, (5.47)

where x = 1 or z = z~. Parameters « = —1 and 3 = 0 are chosen for the FRITIOF approach [FRITIOF87]. In the
case of the QGSM approach [Am86] « = —0.5 and 8 = 1.5 or 8 = 2.5. Masses of the excited strings should satisfy
the kinematical constraints:

P{TP™ > mjy +q; (5.48)
and

Py Py > mips +4f, (5.49)
where hadronic masses my; and mpo (model parameters) are defined by string quark contents. Thus, the random

selection of the values x* and =~ is limited by above constraints.

The diffractive string excitation

In the diffractive string excitation (the FRITIOF approach [FRITIOF87]) for each inelastic hadron—nucleon collision
we have to select randomly the transverse momentum transferred g (in accordance with the probability given by Eq.
(5.46) and select randomly the values of 2% (in accordance with distribution defined by Eq. (5.47). Then we have to
calculate the parton momentum transferred q using Eq. (5.44) and update scattered hadron and nucleon or scatterred
nucleon and nucleon momenta using Eq. (5.45). For each collision we have to check the constraints (5.48) and (5.49),
which can be written more explicitly:

2 2 2
q mi qi 2 2
[1 x*E;HEf x*Ef]_ h1 T Gt
and
2 m2 2
By + )22 - I >md, 4 g

v~ Ey 'Ey atEf
The string excitation by parton rearrangement

In this approach [Am86] strings (as result of parton rearrangement) should be spanned not only between valence quarks
of colliding hadrons, but also between valence and sea quarks and between sea quarks. The each participant hadron or
nucleon should be splitted into set of partons: valence quark and antiquark for meson or valence quark (antiquark) and
diquark (antidiquark) for baryon (antibaryon) and additionaly the (n — 1) sea quark-antiquark pairs (their flavours are
selected according to probability ratios u : d : s = 1 : 1 : 0.35), if hadron or nucleon is participating in the n inelastic

5.8. Theory-Driven 321



Physics Reference Manual, Release 10.4

collisions. Thus for each participant hadron or nucleon we have to generate a set of light cone variables x,,, where
Ton = xzﬁl Or Toy, = X5, according to distribution:

2n 2n
[ (@1, w0, s wan) = fo HUZ (z:)o(1 — Z%%
i=1 i=1

h

where fo is the normalization constant. Here, the quark structure functions u,,

sea quark and antiquark ¢, and valence diquark (antidiquark) gq are:

(x;) for valence quark (antiquark) g¢,,

u}qlu (xy) =257, u

ZS (xs) = xgsv qu(xqq) - xqﬂgqa

where o, = —0.5 and a;, = —0.5 [QGSMS82] for the non-strange quarks (antiquarks) and o, = 0 and gy = 0 for
strange quarks (antiquarks), By, = 1.5 and 5,4 = 2.5 for proton (antiproton) and 54q = 1.5 and 3,4 = 2.5 for
neutron (antineutron). Usualy x; are selected between x;’”” < x; < 1, where model parameter ™™ is a function of
initial energy, to prevent from production of strings with low masses (less than hadron masses), when whole selection
procedure should be repeated. Then the transverse momenta of partons q;; are generated according to the Gaussian
probability Eq. (5.46) with a = 1/4A(s) and under the constraint: 212:1 qit = 0. The partons are considered as the
off-shell partons, i. e. m? # 0.

Quark or diquark annihilation in hadronic processes.

We consider also hadron-hadron inelastic processes when antiquark or antidiquark from hadron projectile annihilate
with corresponding quark or diquark from hadron target. In this case excitation of one baryonic (string with quark
and diquark ends) or mesonic (string with quark and antiquark ends) is created, respectively. These processes in the
Regge theory correspond to cut reggeon exchange diagrams. Initial energy /s dependences of these processes cross
sections are defined by intercepts of reggeon exchange trajectories. For example o+, 5(5) ~ 52 (0)=1 8 notes
string and o, (0) is the intercept of p reggeon trajectory. Thus o+, g(s) decreases with energy rise. Cross sections
for other quark and diquark proccesses have simiar as 0+, 5(,) initial energy dependences. Thus quark and diquark
annihilation processes are important at relative low initial energies. Another example of these processes is pp — 5,
which is used in the kinetic model to describe final state of pp annihilation. Simulation of such kind process is rather
simple. We should randomly (according to weight calculated using hadron wave function) choose quark (antiquark)
or diquark (antidiquark) from projectile and find suitable (with the same flavor content) partner for annihilation from
target. The created string four-momentum will be equal total reaction four-momentum since annihilated system has
small neglected momentum (only low momenta quarks are able to annihilate).

To determine statistical weights for quark annihilation processes are leading to a string production and separate them
from processes, when two or more strings can be produced we use the Regge motivated total cross section parametriza-
tion suggested by Donnachie and Landshoff [DL92]. Using their parametrization the statistical weight for the one
string production process is given by

Yins™"
Wi = —
OnN (5)

and statistical weight to produce two and more strings is given by

where hadron-nucleon total cross sections a};‘}f,(s) and its fit parameters Y, n, Xpn, which do not depend from the

total c.m. energy squared s and depend on type of projectile hadron / and target nucleon N can be found in [PDG96].
The reggeon intercept 7 =~ 0.45 and the pomeron intercept € ~ 0.08.

Parton string model MC procedure.

The parton string model algorithm can be considered as a set of steps should be performed:
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1. Create two vectors (projectile and target) of particles: assign initial projectile and target particle types, their
coordinates and momenta. In the case of hadron-nucleus (or nucleus-nucleus) interaction one should perform
target nucleus (or projectile and target nuclei) initial state simulation and sample impact parameter;

2. Sample collision participants and separated them into diffractive and non-diffractive. Store the total interaction
four momentum of participants;

3. For non-diffractive inelastic collisions sample the number of the soft longitudinal and hard kinky string can be
produced.

4. Excite and reexcite colliding particles in the case of diffractive collisions and create diffractive longitudinal
strings, if particles are not participate in further soft or hard collisions;

5. Perform longitudinal and kinky string excitations;
6. Perform string decay simulation;

7. Correct energies and momenta of produced particles, if it is needed.

Parton string model.
Reaction initial state simulation.

Allowed projectiles and bombarding energy range for interaction with nucleon and nuclear targets

The GEANT4 parton string models are capable to predict final states (produced hadrons which belong to the scalar
and vector meson nonets and the baryon (antibaryon) octet and decuplet) of reactions on nucleon and nuclear targets
with nucleon, pion and kaon projectiles. The allowed bombarding energy /s > 5 GeV is recommended. Two
approaches, based on diffractive excitation or soft scattering with diffractive admixture according to cross-section, are
considered. Hadron-nucleus collisions in the both approaches (diffractive and parton exchange) are considered as a
set of the independent hadron-nucleon collisions. However, the string excitation procedures in these approaches are
rather different.

MC initialization procedure for nucleus.

The initialization of each nucleus, consisting from A nucleons and Z protons with coordinates r; and momenta p;,
where i = 1,2, ..., A is performed. We use the standard initialization Monte Carlo procedure, which is realized in the
most of the high energy nuclear interaction models:

* Nucleon radii r; are selected randomly in the rest of nucleus according to proton or neutron density p(r;). For
heavy nuclei with A > 16 [GLMP91] nucleon density is

Po
1+exp[(r; — R)/a]

p(ri) =
where

Po (14 —5-

= 47 R3

Here R = rgAY/3 fmand rp = 1.16(1 — 1.16A72/3) fm and a =~ 0.545 fm. For light nuclei with A < 17
nucleon density is given by a harmonic oscillator shell model [Elton61], e. g.

p(ri) = (nR*) 2 exp (=17 /R?),

where R? = 2/3 < r? >= 0.8133A4%/3 fm:math:(*2). To take into account nucleon repulsive core it is assumed
that internucleon distance d > 0.8 fm;
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* The initial momenta of the nucleons are randomly choosen between 0 and pz“**, where the maximal momenta
of nucleons (in the local Thomas-Fermi approximation [DF74]) depends from the proton or neutron density p
according to

p;_‘na:c _ hC(37T2p>1/3

with hc = 0.197327 GeV fm;

* To obtain coordinate and momentum components, it is assumed that nucleons are distributed isotropicaly in
configuration and momentum spaces;

* Then perform shifts of nucleon coordinates ry = rj —1/A >, r; and momenta pj = p; —1/A ", p; of nucleon
momenta. The nucleus must be centered in configuration space around 0, i. e. ), r; = 0 and the nucleus must
be atrest, i. e. >, p; = 0;

* We compute energy per nucleon e = E/A = my + B(A, Z)/A, where my is nucleon mass and the nucleus
binding energy B(A, Z) is given by the Bethe-Weizsicker formula:cite:BM69:

B(A,Z) =
= —0.01587A + 0.01834A42/3 + 0.09286(Z — 4)2 + 0.0007122 /A'/3,

and find the effective mass of each nucleon m®// = \/(E/A)Z — p?.

Random choice of the impact parameter.

The impact parameter 0 < b < R; is randomly selected according to the probability:
P(b)db = bdb,

where R; is the target radius, respectively. In the case of nuclear projectile or target the nuclear radius is determined
from condition:

@ = 0.01.

p(0)

The longitudinal and kinky strings are produced in hadronic collisions.
The number of the cut Pomerons.

In the case of a nondiffractive interaction we can determine n of cut Pomerons or 2n produced strings according to
probability [AGK74]

Separation of the longitudinal soft strings from the kinky hard strings.

We assume [ASGABP95], [WDFHQ97] that each cut Pomeron can be substituted either by the two longitudinal soft
strings or by the two kinky hard strings.

At the moment it is not completely clear how to choose which cut pomeron should be substituted by longitudinal and
which one should be substituted by kinky strings.

One recipe is based on the eikonal model [RCT94], [WDFHO97]

u(b?j, 5) = usoft(b?j, s)+ uhmd(b?j7 s).
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The soft eikonal part is defined as

ot (B, 8) = 2 (s 50) o1t exp(—b, AN wore(5)).

)\soft( )
The hard part is calculated according to
2 _ Ojet Apar 2
uhard(bijy S) = m (S/SO) hard exp(—bij/él)\hard(s))-

The 0je; = 0.027 mbarn and Ajq.q = 0.47 were found from the fit of the two—jet experimental cross section [UA1].
Then from the global fit of the total and elastic cross sections for pp collisions the values of vso5; = 35.5 mbarn,
Asoft = 0.07and R, = RZ,;, = 3.56 GeV~? were found.

Thus we can examine each cut Pomeron and substitute it by two kinky strings with probability

uhard(b?_p )
usoft(bwy ) + uhard(bwv S) .

Phard(bz]7 ) =

Sample of collision participants in nuclear collisions.

MC procedure to define collision participants.

The inelastic hadron—nucleus interactions at ultra—relativistic energies are considered as independent hadron—nucleon
collisions. It was shown long time ago [CK78] for the hadron—nucleus collision that such a picture can be obtained
starting from the Regge—Gribov approach [BT76], when one assumes that the hadron-nucleus elastic scattering ampli-
tude is a result of reggeon exchanges between the initial hadron and nucleons from target—nucleus. This result leads
to simple and efficient MC procedure [Am86] to define the interaction cross sections and the number of the nucleons
participating in the inelastic hadron—nucleus collision:

* We should randomly distribute B nucleons from the target-nucleus on the impact parameter plane according
to the weight function T’ ([bf ]). This function represents probability density to find sets of the nucleon impact
parameters [bB] where j = 1,2, ..., B.

* For each pair of projectile hadron ¢ and target nucleon j with choosen impact parameters b; and l_)}rg we should

check whether they interact inelastically or not using the probability p;; (l_); — gf ,8), where s;; = (p; + p;)? is
the squared total c.m. energy of the given pair with the 4-momenta p; and p;, respectively.

In the Regge-Gribov approach:cite:BT76 the probability for an inelastic collision of pair of ¢ and j as a function at the
squared impact parameter difference bfj = (b; — bf)2 and s is given by

pij(bi = b7, 8) = ¢ [L — exp { —2u(b};, s Zp‘“) b — 0, 5), (5.50)
n=1
where
n ¢ [2u(b127 )]n
P (B = B, 5) = ¢ exp {~2u(b?, )} 2 (5.51)

is the probability to find the n cut Pomerons or the probability for 2n strings produced in an inelastic hadron-nucleon
collision. These probabilities are defined in terms of the (eikonal) amplitude of hadron—nucleon elastic scattering with
Pomeron exchange:

(bgj’ ):

) exp(-1/4(5).
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The quantities z(s) and A(s) are expressed through the parameters of the Pomeron trajectory, a}, =0.25 GeV =2 and
ap(0) = 1.0808, and the parameters of the Pomeron-hadron vertex Rp and yp:

2
(s) = S (5/50)° O
As) = R% + alp In(s/so),
respectively, where s is a dimensional parameter.

In Egs. (5.50),(5.51) the so—called shower enhancement coefficient c is introduced to determine the contribution
of diffractive dissociation:cite:BT76. Thus, the probability for diffractive dissociation of a pair of nucleons can be
computed as

- - c—1 ot /37 - - -
pii(bi —bF,s) = — b — b, s) — pij(bi — b7, s)],

where

Pigt(b; — bP.s) = (2/c)[1 — exp{—u(b};, 5)}]-
The Pomeron parameters are found from a global fit of the total, elastic, differential elastic and diffractive cross

sections of the hadron—nucleon interaction at different energies.

For the nucleon-nucleon, pion-nucleon and kaon-nucleon collisions the Pomeron vertex parameters and shower en-
hancement coefficients are found: RZY = 3.56 GeV =2, v = 3.96 GeV =2, si¥ = 3.0 GeV?, ¢V = 1.4 and
R?}r =2.36 GeV 2, vp =217 GeV =2, and R%DK =1.96 GeV 2, ’yg =1.92 GeV 2, s{f =23GeV?2, ™ =1.8.

Separation of hadron diffraction excitation.

For each pair of target hadron ¢ and projectile nucleon j with choosen impact parameters b; and 1_933 we should check
whether they interact inelastically or not using the probability

P (b — bP,8) = pij(bi — bY, ) + p (b — b7 s).

If interaction will be realized, then we have to consider it to be diffractive or nondiffractive with probabilities
pgj(bl - bf? S)
and
pij(bi — b7, s)
pzl(bA - bJBa 5)

?

5.8.13 Parton string

Precompound model.
Reaction initial state.

The GEANT4 precompound model is considered as an extension of the hadron kinetic model. It gives a possibility
to extend the low energy range of the hadron kinetic model for nucleon-nucleus inelastic collision and it provides a
“smooth” transition from kinetic stage of reaction described by the hadron kinetic model to the equilibrium stage of
reaction described by the equilibrium deexcitation models.
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The initial information for calculation of pre-compound nuclear stage consists from the atomic mass number A, charge
Z of residual nucleus, its four momentum P, excitation energy U and number of excitons n equals the sum of number
of particles p (from them py are charged) and number of holes h.

At the preequilibrium stage of reaction, we following the [GMT83] approach, take into account all possible nuclear
transition the number of excitons n with An = +2,—2,0 [GMT83], which defined by transition probabilities. Only
emmision of neutrons, protons, deutrons, thritium and helium nuclei are taken into account.

5.8.14 QMD

Quantum Molecular Dynamics for Heavy lons

QMD is the quantum extension of the classical molecular dynamics model and is widely used to analyze various
aspects of heavy ion reactions, especially for many-body processes, and in particular the formation of complex frag-
ments. In the previous section, we mentioned several similar and dissimilar points between Binary Cascade and QMD.
There are three major differences between them:

1. The definition of a participant particle,
2. The potential term in the Hamiltonian, and
3. Participant-participant interactions.

At first, we will explain how they are each treated in QMD. The entire nucleons in the target and projectile nucleus are
considered as participant particles in the QMD model. Therefore each nucleon has its own wave function, however the
total wave function of a system is still assumed as the direct product of them. The potential terms of the Hamiltonian
in QMD are calculated from the entire relation of particles in the system, in other words, it can be regarded as self-
generating from the system configuration. On the contrary to Binary Cascade which tracks the participant particles
sequentially, all particles in the system are tracked simultaneously in QMD. Along with the time evolution of the sys-
tem, its potential is also dynamically changed. As there is no criterion between participant particle and others in QMD,
participant-participant scatterings are naturally included. Therefore QMD accomplishes more detailed treatments of
the above three points, however with a cost of computing performance.

Equations of Motion
The basic assumption of QMD is that each nucleon state is represented by a Gaussian wave function of width L,

1 (r—mr)? i
w0 = GrpEa e\~ TR

where r; and p; represent the center values of position and momentum of the it particle. The total wave function is
assumed to be a direct product of them,

U(ry,ra,...,TN) = H%‘(Ti) :

Equations of the motion of particle derived on the basis of the time dependent variation principle as
. 0H . OH

T

- Op;’ piiiari

where H is the Hamiltonian which consists particle energy including mass energy and the energy of the two-body
interaction.

However, further details in the prescription of QMD differ from author to author and JAERI QMD
(JQMD):cite:Niita95 is selected as a basis for our model. In this model, the Hamiltonian is

H:Z\/mf—&-p?—i—f/
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A Skyrme type interaction, a Coulomb interaction, and a symmetry term are included in the effective Potential V).
The relativistic form of the energy expression is introduced in the Hamiltonian. The interaction term is a function of
the squared spatial distance:

Rij = (R, — R;)?

This is not a Lorentz scalar. In Relativistic QMD (RQMD):cite:Sorge89, they are replaced by the squared transverse
four-dimensional distance,

(Qij 'pij)2
2

j

2 2
—qri; = — ¢ +

where ¢;; is the four-dimensional distance and p;; is the sum of the four momentum. In JQMD they change the
argument by the squared distance in center of mass system of the two particles,

R R2 +71](RU ﬁl])

with

pitpy oo 1
Ei+E;" Y /18y

As a result of this, the interaction term in also depends on momentum.

ﬂij =

Recently R-JQMD, the Lorentz covariant version of JQMD, has been proposed:cite:Mancusi09. The covariant version
of Hamiltonian is

C:Z\/p%m%?mi%
i

where Vj is the effective potential felt by the i*" particle.

With on-mass-shell constraints and a simple form of the “time fixations” constraint, the entire particle has the same
time coordinate. They justified the latter assumption with the following argument “In high-energy reactions, two-
body collisions are dominant; the purpose of the Lorentz-covariant formalism is only to describe relatively low energy
phenomena between particles in a fast-moving medium”[Mancusi09].

From this assumption, they get following equation of motion together with a big improvement in CPU performance.

. Pi 2m;
"= 2p? + Z 2pQ Opi
= 8p \/pj +m —|—2m]V

. 2m] ;
pi= _Z 2p0 87“1
9 2 2 ¥

= 8r»z\/pj+mj+2mjv

The '™ particle has an effective mass of

mi = /m?+2m;V; .

We follow their prescription and also use the same parameter values, such as the width of the Gaussian L = 2.0 fm?
and so on.
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lon-ion Implementation

For the case of two body collisions and resonance decay, we used the same codes which the Binary Cascade uses
in Geant4. However for the relativistic covariant kinematic case, the effective mass of i particle depends on the
one-particle effective potential, V;, which also depends on the momentum of the entire particle system. Therefore, in
R-JQMD, all the effective masses are calculated iteratively for keeping energy conservation of the whole system. We
track their treatment for this.

As already mentioned, the Binary cascade model creates detailed 37 + 3p dimensional nucleus at the beginning of each
reaction. However, we could not use them in our QMD code, because they are not stable enough in time evolution.
Also, a real ground state as an energy minimum state of the nucleus is not available in the framework of QMD,
because it does not have fermionic properties. However, a reasonably stable “ground state” nucleus is required for
the initial phase space distribution of nucleons in the QMD calculation. JQMD succeeded to create such a “ground
state” nucleus. We also follow their prescription of generating the ground state nucleus. And “ground state” nuclei for
target and projectile will be Lorentz-boosted (construct) to the center-of-mass system between them. By this Lorentz
transformation, additional instabilities are introduced into both nuclei in the case of the non-covariant version.

The time evolution of the QMD system will be calculated until a certain time, typically 100 fm/c. The 67 of the
evolution is 1 fm/c. The user can modify both values from the Physics List of Geant4. After the termination of the
time evolution, cluster identification is carried out in the phase space distribution of nucleons in the system. Each
identified cluster is considered as a fragmented nucleus from the reaction and it usually has more energy than the
ground state. Therefore, excitation energy of the nucleus is calculated and then the nucleus is passed on to other
Geant4 models like Binary Cascade. However, unlike Binary Cascade which passes them to Precompound model and
Excitation models by calling them inside of the model, the QMD model uses Excitation models directly. There are
multiple choices of excitation model and one of them is the GEM model:cite: Furihata00 which JQMD and RIQMD
use. The default excitation model is currently this GEM model.

Figure [fig:qgmd-time] shows an example of time evolution of the reaction of 290 MeV/n *°Fe ions bombarding a 2°*Pb
target. Because of the small Lorentz factor (~ 1.3), the Lorentz contractions of both nuclei are not seen clearly.

Cross Sections

Nucleus-Nucleus (NN) cross section is not a fundamental component of either QMD or Binary Light Ions Cascade
model. However without the cross section, no meaningful simulation beyond the study of the NN reaction itself can
be done. In other words, Geant4 needs the cross section to decide where an NN reaction will happen in simulation
geometry.

Many cross section formulae for NN collisions are included in Geant4, such as Tripathi:cite:Tripathi97 and Tripathi
Light System:cite: Tripathi99, Shen:cite:Shen89, Kox:cite:Kox87 and Sihver:cite:Sihver93. These are empirical and
parameterized formulae with theoretical insights and give total reaction cross section of wide variety of combination
of projectile and target nucleus in fast. These cross sections are also used in the sampling of impact parameter in the
QMD model.

5.8.15 Stopped Absorption

Reaction initial state.

The GEANT4 hadron kinetic model is capable to predict final states particles and nuclear fragments as result of
absorption of the stopped 7—, K~ and p by a nucleus.

MC procedure.

The stopped particle absorption MC procedure consists from several steps:
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1. Sample position inside nucleus, where absorption takes place, according to phenomenological probability dis-
tribution;

2. Simulate particle absorption according to particular particle absorption mechanism;
3. Using the hadron kinetic model perform propagation of final state (after absorption) particles;

4. Using corresponding deexcitation model perform decay of residual excited nucleus.

Stopped particle absorption.
Stopped particle absorption simulation.

Mechanism of the stopped particle absorption by a nucleus.

An absorption of a stopped 7~ -meson, K ~-meson and p by a nucleus procceeds in several steps [IKP94]:
1. A particle is captured by the Coulomb fiels of a nucleus forming a pionic or a kaonic or p-atom;
2. Such atom de-excites through the emission of Auger-electrons and X -rays;

3. A stopped particle from the atomic orbit is captured by nucleus ( by a pair or more of intranuclear nucleons in
the case of a stopped pion or by reaction on a quasifree nucleon producing a pion and A or X hyperon in the
case of a stopped kaon or by annihilation on a quasifree nucleon in the case of p-capture);

4. Rescatterings of fast nucleons and pions produced in a stopped particle absorption (hadron kinetics);
5. Decay of excited residual nucleus (nucleus deexcitation).

Thus the absorption processes for the stopped pion, kaon and antiproton are similar. However, there are some absorp-
tion peculiarities for each type of particles.

Absorption of stopped 7=~ by nucleus.

It is simulated by the kinetic model. As follows from calculations within the framework of the optical model [INC76]
with the Kisslinger potential [Kiss55] the capture a pion from an orbit of atom takes place at radius r in the nuclear
surface and absorption probability P,;s(r) can be approximated by

r— R,

Paps(r) = Pyexp [—0.5( i)

)], (5.52)

where parameters of the Gaussian distribution R, = R, /5, where R, /; is the half-density radius, and D for different
nuclei can be found in [IKP94].

The absorption of the pion is considered as the s-wave (non-resonant) absorption mainly by the the simplest cluster
consisting of two nucleon (np) or (pp).

Once a pion has been absorbed by a nucleon pair, the pion mass is converted into kinetic energy of nucleon. Each
nucleon has the energy Ey = m /2 in the center of mass pair. In the center of mass nucleons flay away in opposite
direction isotropically. The inital momentum of pair is taken as a sum of nucleon Fermi momenta.

Absorption of stopped K~ by nucleus.

It is simulated in the kinetic model framework. In this case the absorption probability was choosen the same as in
annhihilation of the stopped antiprotons.
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Annihilation of stopped p by nucleus.

In this case the absorption probability was also given by equation of (5.52) with the values of R; = R, and dispertion
D? =1 fm:math:("2) [INC82].

The annhihilation of antiproton on a quasifree nucleon is modelled via the annihilation of a diquark-antidiquark with
subsequent fragmentation of the meson string as it was done in the parton string model.
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CHAPTER
SIX

PHOTOLEPTON

6.1 Introduction

Gamma-nuclear and lepto-nuclear reactions are handled in Geant4 as hybrid processes which typically require both
electromagnetic and hadronic models for their implementation. While neutrino-induced reactions are not currently
provided, the Geant4 hadronic framework is general enough to include their future implementation as a hybrid of
weak and hadronic models.

The general scheme followed is to factor the full interaction into an electromagnetic (or weak) vertex, in which a
virtual particle is generated, and a hadronic vertex in which the virtual particle interacts with a target nucleus. In most
cases the hadronic vertex is implemented by an existing Geant4 model which handles the intra-nuclear propagation.

The cross sections for these processes are parameterizations, either directly of data or of theoretical distributions
determined from the integration of lepton-nucleon cross sections double differential in energy loss and momentum
transfer.

6.2 Cross-sections in Photonuclear and Electronuclear Reactions

6.2.1 Approximation of Photonuclear Cross Sections.

The photonuclear cross sections parameterized in the G4PhotoNuclearCrossSection class cover all incident photon
energies from the hadron production threshold upward. The parameterization is subdivided into five energy regions,
each corresponding to the physical process that dominates it.

» The Giant Dipole Resonance (GDR) region, depending on the nucleus, extends from 10 Mev up to 30 MeV. It
usually consists of one large peak, though for some nuclei several peaks appear.

* The “quasi-deuteron” region extends from around 30 MeV up to the pion threshold and is characterized by small
cross sections and a broad, low peak.

* The A region is characterized by the dominant peak in the cross section which extends from the pion threshold
to 450 MeV.

* The Roper resonance region extends from roughly 450 MeV to 1.2 GeV. The cross section in this region is not
strictly identified with the real Roper resonance because other processes also occur in this region.

* The Reggeon-Pomeron region extends upward from 1.2 GeV.

In the GEANT4 photonuclear data base there are about 50 nuclei for which the photonuclear absorption cross sections
have been measured in the above energy ranges. For low energies this number could be enlarged, because for heavy
nuclei the neutron photoproduction cross section is close to the total photo-absorption cross section. Currently, how-
ever, 14 nuclei are used in the parameterization: 'H, 2H, *He, °Li, "Li, °Be, '2C, 160, 27Al, *°Ca, Cu, Sn, Pb, and U.
The resulting cross section is a function of A and e = log(E., ), where E., is the energy of the incident photon. This
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function is the sum of the components which parameterize each energy region. The cross section in the GDR region
can be described as the sum of two peaks,

GDR(e) = th(e, b1, s1) - exp(c1 — p1 - e) + th(e, bz, 52) - exp(ca — p2 - €).

The exponential parameterizes the falling edge of the resonance which behaves like a power law in E.,. This behavior is
expected from the CHIPS modelling approach (/DKW00c]), which includes the nonrelativistic phase space of nucleons
to explain evaporation. The function

1
1 —s—egcp(b_"‘)7

S

th(e,b,s) =

describes the rising edge of the resonance. It is the nuclear-barrier-reflection function and behaves like a threshold,
cutting off the exponential. The exponential powers p; and ps are

p1 = 1,py =2 for A<4
pr=2,p2 =4 for 4<A<8
pr=3,p2 =06 for8§ <A <12
p1 =4,py; =8 for A>12.

The A-dependent parameters b;, ¢; and s; were found for each of the 14 nuclei listed above and interpolated for other
nuclei. The A isobar region was parameterized as

d- th(e, f»g)
Ale,d =—"=
(e’ ’f’g7r7Q) 1—‘,—7"(6—(1)2’
where d is an overall normalization factor. ¢ can be interpreted as the energy of the A isobar and r can be interpreted
as the inverse of the A width. Once again th is the threshold function. The A-dependence of these parameters is as
follows:

e d=0.41- A (for 'Hit is 0.55, for 2H it is 0.88), which means that the A yield is proportional to A;

e f =5.13 —.00075 - A. exp(f) shows how the pion threshold depends on A. It is clear that the threshold
becomes 140 MeV only for uranium; for lighter nuclei it is higher.

e g=10.09for A > 7and 0.04 for A < 7,

e ¢q=>584— H.f%’ which means that the “mass” of the A isobar moves to lower energies;

o 7 =11.9-1.24-log(A). ris 18.0 for 'H. The inverse width becomes smaller with A, hence the width increases.

The A-dependence of the f, ¢ and r parameters is due to the A + N — N + N reaction, which can take place in the
nuclear medium below the pion threshold. The quasi-deuteron contribution was parameterized with the same form as
the A contribution but without the threshold function:

v
D(e,v,w,u) = ———.

Q ( ) ) k) ) 1 + w - (e _ u)2

For 'H and ?H the quasi-deuteron contribution is almost zero. For these nuclei the third baryonic resonance was used

instead, so the parameters for these two nuclei are quite different, but trivial. The parameter values are given below.

exp(—1.74+a-0.84)

14+exp(7-(2.38—a))’
stronger than A%-34, It is clear from the denominator that this contribution is very small for light nuclei (up to
6Li or "Li). For 'H it is 0.078 and for 2H it is 0.08, so the delta contribution does not appear to be growing. Its

relative contribution disappears with A.

v = where a = log(A). This shows that the A-dependence in the quasi-deuteron region is

e u = 3.7 and w = 0.4. The experimental information is not sufficient to determine an A-dependence for these
parameters. For both 'H and 2H v = 6.93 and w = 90, which may indicate contributions from the A(1600) and
A(1620).
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The transition Roper contribution was parameterized using the same form as the quasi-deuteron contribution:

v
Tr(e,v,w,u) = TTw (e—u?
Using a = log(A), the values of the parameters are

e v =exp(—2.+a-0.84). For 'H it is 0.22 and for 2H it is 0.34.

e u=6.46 + a - 0.061 (for 'H and for 2H it is 6.57), so the “mass” of the Roper moves higher with A.

e w=0.14+a-1.65. For 'H it is 20.0 and for 2H it is 15.0).

The Regge-Pomeron contribution was parametrized as follows:
RP(e,h) =h-th(7.,0.2) - (0.0116 - exp(e - 0.16) + 0.4 - exp(—e - 0.2)), 6.1)

where h = A - exp(—a - (0.885 4 0.0048 - a)) and, again, a = log(A). The first exponential in Eq.(6.1) describes the
Pomeron contribution while the second describes the Regge contribution.

6.2.2 Electronuclear Cross Sections and Reactions

Electronuclear reactions are so closely connected with photonuclear reactions that they are sometimes called “pho-
tonuclear” because the one-photon exchange mechanism dominates in electronuclear reactions. In this sense electrons
can be replaced by a flux of equivalent photons. This is not completely true, because at high energies the Vector
Dominance Model (VDM) or diffractive mechanisms are possible, but these types of reactions are beyond the scope
of this discussion.

6.2.3 Common Notation for Different Approaches to Electronuclear Reactions

The Equivalent Photon Approximation (EPA) was proposed by E. Fermi [Fer24] and developed by C. Weizsacker
and E. Williams [Weizsacker34][Wil34] and by L. Landau and E. Lifshitz /LL34]. The covariant form of the EPA
method was developed in Refs. [PS6/] and [GSKO62]. When using this method it is necessary to take into account
that real photons are always transversely polarized while virtual photons may be longitudinally polarized. In general
the differential cross section of the electronuclear interaction can be written as

dPo o
WZTQQ(STL'(UT-FUL)—SL'UL%
where
2 2 7712 2
o _ oyt Gt 5
TL =Y y2—|—Q—2 I
E2
y,,  2m2
SL_§(1—@)

The differential cross section of the electronuclear scattering can be rewritten as

Fou oy (- 1 _m
= e On* A,
Wi~ @\ prg T1T @)™

where 0.« 4 = 0.4 (v) for small Q2 and must be approximated as a function of ¢, v, and Q? for large Q2. Interactions
of longitudinal photons are included in the effective o« 4 cross section through the ¢ factor, but in the present GEANT4
method, the cross section of virtual photons is considered to be e-independent. The electronuclear problem, with
respect to the interaction of virtual photons with nuclei, can thus be split in two. At small Q? it is possible to use the
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0., () cross section. In the Q% >> m? region it is necessary to calculate the effective o.,- (€, v, Q?) cross section.
Following the EPA notation, the differential cross section of electronuclear scattering can be related to the number of
equivalent photons dn = df’* . For y << 1 and Q2 < 4m? the canonical method /VBB71] leads to the simple result

Oy

ydn(y) 2o
TR In(y). (6.2)

In /[BGMS75] the integration over Q? for v? >> Q2. ~ m? leads to

maxr —

ydnly) _ o <1+(12_ y) ln(ly_y)+(1 —y)) :

dy T

In the y << 1 limit this formula converges to Eq.(6.2). But the correspondence with Eq.(6.2) can be made more
explicit if the exact integral

ydn(y) o (1+(1—y)? (2 —y)?
S (i Gt D B S Gl A 6.3
i - ( 5 1— (1 =yl 1 3, (6.3)
2 2 2 2 2 2 2
where I = In (82) lp =1 — pex, Iy = In (%) 2 = M2V is caleulated for
4m>
imw(me) = 1 _ey' (64)

The factor (1 — y) is used arbitrarily to keep Q7 o(me) > Q?2,:,» which can be considered as a boundary between

the low and high Q? regions. The full transverse photon flux can be calculated as an integral of Eq.(6.3) with the
maximum possible upper limit

anaw(max) = 4E2(1 - y) (6.5)

The full transverse photon flux can be approximated by

ydn(y) 20 ((2—y)* +¥°
= _ A2 -1 6.6
dy T 2 n(7) ’ 6.6)
where = —. It must be pointed out that neither this approximation nor .(6.3) works at y ~ 1; at this point
here v = 2. T be pointed hat neither this approximati Eq.(6.3) works at iy ~ 1; at this poi

me *
2
mazx(maz

2
min*

1

) becomes smaller than @ The formal limit of the method isy < 1 — 5

In FignSigma' (a,b) the energy distribution for the equivalent photons is shown.
The low-:math:(Q”"2)‘ photon flux with the upper limit defined by Eq.(6.4) is compared with the full photon
flux. The low-Q? photon flux is calculated using Eq.(6.2) (dashed lines) and using Eq.(6.3) (dotted lines). The full
photon flux is calculated using Eq.(6.6) (the solid lines) and using Eq.(6.3) with the upper limit defined by Eq.(6.5)
(dash-dotted lines, which differ from the solid lines only at v ~ E.). The conclusion is that in order to calculate either
the number of low-Q? equivalent photons or the total number of equivalent photons one can use the simple approx-
imations given by Eq.(6.2) and Eq.(6.6), respectively, instead of using Eq.(6.3), which cannot be integrated over y
analytically. Comparing the low-@Q)? photon flux and the total photon flux it is possible to show that the low-Q? photon
flux is about half of the the total. From the interaction point of view the decrease of 0., with increasing * must be
taken into account. The cross section reduction for the virtual photons with large Q2 is governed by two factors. First,
the cross section drops with Q? as the squared dipole nucleonic form-factor

G4L(Q%) ~ (1 + Qz)_2.
(843 MeV)2

2

Second, all the thresholds of the A reactions are shifted to higher v by a factor QQ—M, which is the difference between

the K and v values. Following the method proposed in [BFG+76] the o.,~ at large Q* can be approximated as

0y = (1= )0, (K) G (Q7)el O el O, (67)
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Fig. 6.1: Relative contribution of equivalent photons with small 2 to the total “photon flux” for (a) 1 GeV electrons
and (b) 10 GeV electrons. In figures (c) and (d) the equivalent photon distribution dn (v, @?) is multiplied by the
photonuclear cross section o, (K, Q%) and integrated over Q2 in two regions: the dashed lines are integrals over the
low-Q? equivalent photons (under the dashed line in the first two figures), and the solid lines are integrals over the
high-Q? equivalent photons (above the dashed lines in the first two figures).
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where r = %ln((‘?i;”2 ). The e-dependence of the a(e, K) and b(e, K) functions is weak, so for simplicity the b(K)

and ¢(K) functions are averaged over e. They can be approximated as

K 0.85
bK) ~ <185 MeV) ’

and

K 3
K~ (2 ).
«(K) (1390M6V>

The result of the integration of the photon flux multiplied by the cross section approximated by Eq.(6.7) is
shown in Fig.nSigma' (c,d). The integrated cross sections are shown separately for
the low-:math:(Q"2)‘ region (Q? < anam(me), dashed lines) and for the high-Q? region (Q? > Qfmm(me),
solid lines). These functions must be integrated over In(v), so it is clear that because of the Giant Dipole Resonance
contribution, the low-Q2 part covers more than half the total eA — hadrons cross section. But at v > 200 MeV,
where the hadron multiplicity increases, the large Q2 part dominates. In this sense, for a better simulation of the
production of hadrons by electrons, it is necessary to simulate the high-Q? part as well as the low-Q? part. Taking
into account the contribution of high-Q? photons it is possible to use Eq.(6.6) with the over-estimated 0« 4 = 0y 4 (V)
cross section. The slightly over-estimated electronuclear cross section is

o = (2n(y) = 1) -y — PO (2J2 - J3") .

E. E.
where
a [Ee
A(E) =2 / o A(v)din(v)
« Fe
J2(Ee) = ;/ voya(v)din(v),
and
a [Fe
J3(Ee) = —/ V2o, a(v)din(v).
™

The equivalent photon energy v = yE can be obtained for a particular random number R from the equation

(20n(y) = 1)Jy(v) — 22 (27, () — 2202
(2in(vy) = 1)J1(E.) — “LE(Z) (2J2(Ee) — %Pj))

Eq.(6.3) is too complicated for the randomization of ) but there is an easily randomized formula which approximates
Eq.(6.3) above the hadronic threshold (£ > 10 MeV). It reads

m O ydn(y, Q) , )
d@”=—1L -v 6.8

aD(y) /Q ayaqe 9 (4, Q) — Uly), (6.8)

where
y2
) = P(y) _ Q2 1

L(y, Q%) =In | F(y) + (e 1+Q2.) 7

and

max

U(y) = P(y) - (1— z”")
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with
2-y)(2-2y) Q%
Py = E=0C=2) @
y max
and
1—y
P(y) = ——.
W= D)

The Q2 value can then be calculated as

2 R -1
g 1P (eR-L(y,cgm,mHlfR)-U(y) _ F(y)) ,
where R is a random number. In Fig.Fig. 6.2, Eq.(6.3) (solid curve) is compared to Eq.(6.8) (dashed curve). Because
the two curves are almost indistinguishable in the figure, this can be used as an illustration of the )2 spectrum of virtual
photons, which is the derivative of these curves. An alternative approach is to use Eq.(6.3) for the randomization with

a three dimensional table % (Q%,y,E.).
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Fig. 6.2: Integrals of Q2 spectra of virtual photons for three energies 10 MeV, 100 MeV, and 1 GeV at y=0.001, y=0.5,
and y=0.95. The solid line corresponds to Eq.(6.3) and the dashed line (which almost everywhere coincides with the
solid line) corresponds to Eq.(6.3).

After the v and Q? values have been found, the value of 0., 4 (v, Q?) is calculated using Eq.(6.7). If R - 0, 4(v) >
o4 (v, Q?), no interaction occurs and the electron keeps going. This “do nothing” process has low probability and
cannot shadow other processes.
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6.3 Gamma-nuclear Interactions

6.3.1 Process and Cross Section

Gamma-nuclear reactions in Geant4 are handled by the class G4PhotoNuclearProcess. The default cross section class
for this process is G4PhotoNuclearCrossSection, which was described in detail in the previous chapter.

6.3.2 Final State Generation

Final state generation proceeds by two different models, one for incident gamma energies of a few GeV and below, and
one for high energies. For high energy gammas, the QGSP model is used. Indicent gammas are treated as QCD strings
which collide with nucleons in the nucleus, forming more strings which later hadronize to produce secondaries. In this
particular model the remnant nucleus is de-excited using the Geant4 precompound and de-excitation sub-models.

At lower incident energies, there are two models to choose from. The Bertini-style cascade (G4Cascadelnterface
interacts the incoming gamma with nucleons using measured partial cross sections to decide the final state multiplicity
and particle types. Secondaries produced in this initial interaction are then propagated through the nucleus so that
they may react with other nucleons before exiting the nucleus. The remnant nucleus is then de-excited to produce low
energy fragments. Details of this model are provided in another chapter in this manual.

An alternate handling of low energy gamma interactions is provided by G4GammaNuclearReaction, which is based
upon the Chiral Invariant Phase Space model (CHIPS [DKWO00a][DKWO0O0b][DKWO0Oc]). In Geant4 version 9.6 and
earlier a separate CHIPS model was provided for gamma nuclear interactions. Here the incoming gamma is absorbed
into a nucleon or cluster of nucleons within the target nucleus. This forms an excited bag of partons which later fuse to
form final state hadrons. Parton fusion continues until there are none left, at which point the final nuclear evaporation
stage is invoked to bring the nucleus to its ground state.

6.4 Electro-nuclear Interactions

6.4.1 Process and Cross Section

Electro-nuclear reactions in Geant4 are handled by the classes G4ElectronNuclearProcess and
G4 PositronNuclearProcess. The default cross section class for both these processes is G4ElectroNuclearCrossSection
which was described in detail in an earlier chapter.

6.4.2 Final State Generation

Final state generation proceeds in two steps. In the first step the electromagnetic vertex of the electron/positron-
nucleus reaction is calculated. Here the virtual photon spectrum is generated by sampling parameterized ? and v
distributions. The equivalent photon method is used to get a real photon from this distribution.

In the second step, the real photon is interacted with the target nucleus at the hadronic vertex, assuming the photon
can be treated as a hadron. Photons with energies below 10 GeV can be interacted directly with nucleons in the
target nucleus using the measured (v, p) partial cross sections to decide the final state multiplicity and particle types.
This is currently done by the Bertini-style cascade (G4Cascadelnterface). Photons with energies above 10 GeV are
converted to Vs and then allowed to interact with nucleons using the FTFP model. In this model the hadrons are
treated as QCD strings which collide with nucleons in the nucleus, forming more strings which later hadronize to
produce secondaries. In this particular model the remnant nucleus is de-excited using the Geant4 precompound and
de-excitation sub-models.
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This two-step process is implemented in the G4ElectroVDNuclearModel. An alternative model is the CHIPS-based
G4ElectroNuclearReaction [DKWO0Oc]. This model also uses the equivalent photon approximation in which the in-
coming electron or positron generates a virtual photon at the electromagnetic vertex, and the virtual photon is converted
to a real photon before it interacts with the nucleus. The real photon interacts with the hadrons in the target using the
CHIPS model in which quasmons (generalized excited hadrons) are produced and then decay into final state hadrons.
Electrons and positrons of all energies can be handled by this single model.

6.5 Muon-nuclear Interactions

6.5.1 Process and Cross Section

Muon-nuclear reactions in Geant4 are handled by the class G4MuonNuclearProcess. The default cross section class
for this process is G4KokoulinMuonNuclearXS, the details of which are discussed in section [section:muonNuclear].

6.5.2 Final State Generation

Just as for the electro-nuclear models, the final state generation for the muon-nuclear reactions proceeds in two steps.
In the first step the electromagnetic vertex of the muon-nucleus reaction is calculated. Here the virtual photon spectrum
is generated by sampling parameterized momentum transfer ((Q?) and energy transfer (1) distributions. In this case the
same equations used to generate the process cross section are used to sample Q2 and v. The equivalent photon method
is then used to get a real photon.

In the second step, the real photon is interacted with the target nucleus at the hadronic vertex, assuming the photon
can be treated as a hadron. Photons with energies below 10 GeV can be interacted directly with nucleons in the
target nucleus using the measured (v, p) partial cross sections to decide the final state multiplicity and particle types.
This is currently done by the Bertini-style cascade (G4Cascadelnterface). Photons with energies above 10 GeV are
converted to ms and then allowed to interact with nucleons using the FTFP model. In this model the hadrons are
treated as QCD strings which collide with nucleons in the nucleus, forming more strings which later hadronize to
produce secondaries. In this particular model the remnant nucleus is de-excited using the Geant4 precompound and
de-excitation sub-models.

This two-step process is implemented in the G4MuonVDNuclearModel.
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