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1. Introduction
2. Deep Learning for Physical Sciences Workshop
3. NIPS Conference

4. Other Interesting Workshops/Symposia



Savannah Thais 01/28/2018 3

Monday Decemipér 04 -- Saturday December 09, 2017
t 6rig-Beach*Convention. Qe.n;.é.r,‘ Lorg Beach Q

« 2017 Neural Information
Processing Systems
Conference

 Features main conference +
tutorials + symposia +
workshops

« ~8000 participants!

 Associated Women in
Machine Learning (WiML)
and Black in Al Conferences
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‘Monday D'e'cem:*r 04 -- Saturday Décember 09, 2017
t orig:Béach*Convention.Canjar, Lorg Beach 9

« ~800 accepted papers, 53 workshops, and 9 tutorials

» All accepted papers are available on website, and featured talks
available on Facebook

» Best paper awards:

« Safe and Nested Subgame Solving for Imperfect-
Information Games: Noam Brown and Toumas Sandholm

 Variance-based Reqularization with Convex Objectives:
Hong Namkoong and John C Duchi

« A Linear-Time Kernel Goodness-of-Fit Test: Wittawat
Jitkrittum, Wenkai Xu, Zoltan Szabo, Kenji Fukumizu, Arthur
Gretton
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Deep Learning for Physical Soences

Workshop a‘tthe 31st Conference on Neural Information Processing Systems (NIPS)
4. December8,2017 .

* NIPS Workshop targeting ML researchers interested in scientific
applications and researchers in the physical sciences

« 30 accepted papers, 5 invited talks, and 6 contributed talks

Atilm Gunes Baydin Prabhat Kyle Cranmer
University of Oxford NERSC, Berkeley Lab New York University

a® o
Michela Paganini Daniela Huppenkothen Savannah Thais

Yale University New York University Yale University Columbia University
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DL4PS LHC Contributions: Classifiers

- Deep Topology Classifiers for a More
Efficient Trigger at the LHC: Weitekamp
et al

- Represent an event as a sequence of
particle flow candidates or an abstract
image for improved trigger performance

- Use an RNN to embed particle flow
candidates then process with an LSTM
or GRU, images are processed with a
CNN

- Initial experiment to select ttbar events,
currently dominated by W+jet and
multijet events when using single lepton
trigger

ML Classifiers have much better background rejection and are topology specific!
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DL4PS LHC Contributions: Classifiers

Survey of ML Techniques for High Energy

Calorimetry with DL: Particle

Electromagnetic Shower Classification:
Paganini, de Oliveira, Nachman

- Proposes multi-stream DenseNet to
classify particles from ATLAS calo cell
info

- Every layer receives feature map of all
previous layers, counters the vanishing
gradient problem in CNNs
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» DenseNet out performs other feature
and cell based classifications

Classification, Energy Regression, and
Simulation for HEP: Carminati et al

- Explores DL applications for a variety of
ATLAS calo based software problems

- Classification DNN using flattened cell
information from ecal and hcal

- Energy reconstruction CNN (separate
convolutions for ecal and hcal)

- Basic GAN for ecal generating 3D
energy arrays

ROC curve for y vs. n0 classifier
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DL4PHS LHC Contributions: Jets

- Tips and Tricks for Training GANs with Physics Constraints: de
Oliveira, Paganini, Nachman

« Nice summary of common issues when using GANs for HEP applications: sparsity,
attribute conditioning, training procedures, etc

- DeepJet: Generic Physics Object Based Multiclass Classification for
LHC Experiments: Markus Stoye et al
- CMS CNN jet classifier using particle candidate features, adaptable for wide jets

- Neural Message Passing for Jet Physics: Isaac Henrion et al
- Graph embedding of jets: node are particles and connecting weights are learned
« Outperforms previously studied RNN embedding of jets
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DL4PS LHC Contributions

Adversarial Learning to Eliminate Particle Track Reconstruction with Deep
Systematic Errors: a Case Study in HEP: | Learning: Farrel et al
Estrade et al - Imaged based approach to track
- Attempts to leverage ML to reduce reconstruction: RNN with individual
uncertainties in a cross-section layers of detector and CNN with image
measurement of full detector
- Data augmentation, pivot adversarial - Point based ML: RNN to predict the
network, and tangent propagation spacepoint in the next layer and RNN to
e (e 0 omesaw e 0 track class probability assignment
BIRN — o ‘X\\ —» | vector for each spacepoint
:D \\\ N\ o [] % \\:‘l\\ g Accuracy vs # of tracks
SN T N IUW? fﬂa i
 Tangent .\, Pivot "\ | § 5] TWT % WD EJ
oA and DA Yoo ) 3 o
. prop N | R g T
« DA and Pivot outperform baseline, " I
tangent prop does not E T T T S Y
» Indicates a knowledge free Number of tracks

assumption is ok for HEP applications ' * SpPacepoint RNNs more robust to PU
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DL4PS: Simulation and Modeling

- Improvements to Inference Compilation for Probabilistic Programming in
Large-Scale Scientific Simulators: Casado et al
- Implements a probabilistic inference package that interfaces with scientific simulators
- Successfully interfaces with tau decays produced in SHERPA

- Graph Memory Networks for Molecular Activity Prediction: Pham et al
- Models molecular behavior in target environment as a standard RNN interacting with a
matrix RNN (external memory)
- Nanophotonic Particle Simulation and Inverse Design Using Artificial
Neural Networks: Peurifoy et al
- Uses NN to produce a range of spectrum measurements of light scattered off a
dielectric: avoids having to solve Maxwell’'s Equations for multilayer objects

- Can also run the network 'backwards’ to design materials for desired spectrum
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DL4PS: Physics Influenced ML

- How Can Physics Inform Deep Learning Methods in Scientific Problems:
Recent Progress and Future Prospects: Karpatne et al

- Develops a ‘Physics Guided NN’ that forces NN to be consistent with known physics
(useful for developing a model from limited data)

- Utilizes network design, pre-training, and post-training processing and pruning
- Successfully applied to lake temperature modeling
- Towards a Hybrid Approach to Physical Process Modeling: Bezenac et al

- Models complex physics processes underlying ocean currents using CDNN and warping
to ultimately predict ocean temperature

- Allows the algorithm to learn the physics and produces an interpretable latent space
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DL4PS Conclusions

- Good attendance from both scientists and ML experts

- HEP applications were very well represented

- Nice way to get an overview of current projects and see what areas
are uncovered

- Developments in other physical sciences may be easier to

adapt to our needs than general ML research

- Seems that a lot of LHC papers use toy datasets...good
to see what is feasible but ultimately we want to actually
use these techniques in our experiments

- HEP applications tend to focus on classification
problems, interesting work in other fields on improving
simulations and modeling
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NIPS Conference: My Reading List

- What Uncertainties Do We Need in
Bayesian Deep Learning for Computer
Vision: Kendall and Gal

- A Unified Approach to Interpreting
Model Predictions: Lundberg and Lee

- Estimating Accuracy from Unlabeled
Data: A Probabilistic Logic Approach:
Platanios et al

- Spherical Convolutions and Their
Application in Molecular Modeling:
Boomsma and Frellsen

- Batch Renormalization: Towards
Reducing Minibatch Dependence in
Batch Normalized Models: loffe

- Deep Sets: Zaheer et al

- Learning Rel.Us via Gradient Descent:
Soltanolkotabi

- Learning Populations of Parameters:

Tian et al

+ Pixels to Graphs by Associative

Embedding: Newell and Dong

- An Empirical Bayes Approach to

Optimizing Machine Learning
Algorithms: Mclnerney

« A Dirichlet Mixture Model of Hawkes

Processes for Event Cluster
Sequencing: Xu and Zha

- Learning to Pivot with Adversarial

Networks: Louppe et al

« PixelGAN Autoencoders: Makhzani and

Frey

- AdaGAN: Boosting Generative Models:

Tolstikhin et al
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Predictive Recurrent Neural Networks

- Combine insight from RNNs and Predictive State
Representations (PSRs) to produce accurate predictions
in dynamical systems (paper)

- Predictive State Recurrent Neural Networks: Downey et al

- Basic building block is a 3-mode tensor that computes bilinear
combination of two input vectors: W s 00 Xa 0045

- Tensor W and bias vector b are the = [W xz 0 xs . + bll, 3

- Tensor contraction of integrates information from g and o+
multiplicatively, which acts as a gating mechanism

- Create multi-layer PSRNN by chaining on the observation

q, q, 9,

e~ W, [+ 1)@, CO—~ W, |~ w, [+ 1)@,

(a) Single Layer PSRNN (b) Multilayer PSRNN
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Predictive RNNs

- Initialize the network using a PSR algorithm 2 Stage
Regression: ¢, =W x5¢)(Z x3q¢)"" x2 0.

- W corresponds to calculating joint distribution, Z corresponds to
normalizing it to the conditional distribution

- Modify 2SR for PSRNN by replacing Z with two term normalization,
recover the functional form of single-layer PSRNN

- Extend to multi-layer by using q,,4 predictions as observation inputs to
following layer

- Then use Back Propagation Through Time to further refine

« Can also factorize to reduce number of learnable parameters

by decomposing W: w=>acbea  @+1 =W X20 X3g:+b
i=1 =(A®BRC) xXo0; Xgq: + b

B1A1*®Bz A b)-G) =AT(Bo,©Cq)+b
C1 Cz

Figure 2: Factorized PSRNN Architecture
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Predictive RNNs

- Tested on Penn Tree Bank, OpenAl Robot Swimmer Data,
Human Motion Capture Data, and Handwriting Data

- Compared LSTMs, GRUs, RNNs, and PSRNNs
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(a) BPC and OSPA on PTB. All

(b) Comparison between 1- and 2-

models have the same number of layer PSRNNs on PTB.

states and approximately the same
number of parameters.

Additional paper: Wang et al

(c) Cross-entropy and prediction
accuracy on Penn Tree Bank for
PSRNNs and factorized PSRNNs

of various rank.
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Interpretable ML Symposium

Relevant to HEP/general scientific applications, as well asAI etics
35 accepted papers, 6 invited talks, 2 panels (website)

- Introduced Explainable Machine Learning Challenge and hosted debate on
‘Interpretability is Necessary in Machine Learning’

- Interpretable Discovery in Large Image Datasets: Wagstaff
- Combines anomaly detection with CNNs to create interpretable explanations of new events

Debugging the ML Pipeline: Zhu
- Guidelines for partially automating the tuning process of building an ML model
- Interpretable Deep Learning Applied to Plant Stress Phenotyping:

Ghosal et al

- Uses gradient-weighted class activation mapping to discover which parts of image NN is
learning are most relevant to classification

- Learning and Visualizing Localized Geometric Features Using 3D CNN:
Ghadi et al

- 3D Application of gradient-weighted class activation mapping
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Machine Learning for Molecules and
Materials WWorkshop

- 22 accepted papers, 14 invited talks sessions, and panel
(some are on website)

- Sessions on ML in Chemistry, Kernel Learning with Structured
Data, and DL Approaches
- Quantum Machine Learning: von Lilienfeld
- Exploits underlying chemical redundancies in different molecules

- Neural Network Quantum States: Carleo

- Reinforcement learning to describe unitary time evolution of interacting
gquantum systems

- Distilling Expensive Simulations with NNs: Vinyals et al
- Compresses the knowledge of multiple classifiers into one algorithm
- Learning Hard Quantum Distributions with Variational
Autoencoders: Roccheto et al

- Encodes probability distributions associated with states from different
classes
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GEOMETRIC DEEP LEARNING

Geometric Deep Learning is one of the most emerging fields of the Machine Learning community. This
website represents a collection of materials of this particular research area.

- Applies DL to non-Euclidean geometries: graph and
manifold structured data (relevant to physics, bio, etc)

- Nice tutorial at NIPS: introduces the field, describes

existing solutions and applications, discusses future
directions

- Including ATLAS shout out!

- Many more resources (papers, tutorials, workshops) on
website
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Machine Learning in Computational
Biology Workshop

- Unfortunately papers and talks are currently not on
website

- But some interesting invited talks, could probably dig up
papers:

- A new sparse PCA algorithm with guaranteed asymptotic properties
and applications in methylation data: Eran Halperin

- Denoising scRNA-seq Data Using Deep Count Autoencoders:
Gocken Eraslan
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Conclusions

- More HEP people attending and submitting to NIPS! This
IS very important to ensure the robustness of our ML
applications and to accurately represent our problems to
ML community

- Likely to have annual ML for Physics Workshop

- Much work from main conference and other workshops
and symposia can be applicable to our work with clever
thinking:

- Alot of work is being done in interpretability techniques!

- New boosting, normalization, convolution designs, etc can be
implemented in our algorithm design

- More techniques can be incorporated in our simulation chain to
reduce computation time and mis-modeling

- Come to NIPS next year (and register early)!



