

# **RFD design update**

P. Berrutti for the US HL-LHC AUP team

17/11/2017



#### Outline

- RFD EM design change driven by 760 MHz HOM
- RFD mechanical design update:
  - Tuner interface
  - pressure sensitivity dF/dP
  - Lorentz Force Detuning
  - Tuning range
- Summary



# **RF Design update: shift the 760 MHz HOM**

Option 1: pole shrinkage, higher 760 MHz frequency



Option 2: wall to pole shrinkage, lower 760 MHz frequency



#### Option 2 preferable:

No changes for the pole length and tips  $\rightarrow$  no changes on field components



# **RF Design update: MP and Multipoles**

Multipoles amplitude table: roughly unchanged

$$E_{acc}(r,\varphi) = \sum_{n} E_{acc}^{n} r^{n} \cos(n\varphi) \qquad (e^{j\omega z.c} \text{ included in } E_{acc}^{n})$$

| Component          | Value                    |  |
|--------------------|--------------------------|--|
| Vt (total)         | 10 MV                    |  |
| b3                 | 429 mT/m <sup>2</sup>    |  |
| b5                 | -1.8e6 mT/m <sup>4</sup> |  |
| b7                 | -4.9E+08 mT/m            |  |
| Subashini De Silva |                          |  |

MP simulations show no indication of worsening in MP barriers



### **RF Design update: changes summary**

Shrinking the gap implies reducing the overall cavity length. Matching the frequency for the TE11 mode requires tweaking the outer body shape.





M. Parise



| RFD Crab Cavity             |                   |            |  |  |
|-----------------------------|-------------------|------------|--|--|
|                             | Current Prototype | New Design |  |  |
| Frequency (MHz)             | 400               | 400        |  |  |
| Lowest dipole HOM (MHz)     | 633               | 635        |  |  |
| Lowest acc HOM              | 715               | 717        |  |  |
| High R/Q acc HOM            | 760.9             | 755.3      |  |  |
| Transverse dimension (mm)   | 281               | 280        |  |  |
| Vertical dimension (mm)     | 281               | 280        |  |  |
| R <sub>⊤</sub> (ohm/cavity) | 427               | 427        |  |  |
| V <sub>⊤</sub> (MV/cavity)  | 3.34              | 3.34       |  |  |
| Bs (mT)                     | 55.5              | 55.4       |  |  |
| Es (MV/m)                   | 32.6              | 32.7       |  |  |

14

Z. Li

#### **RF Mechanical design: Tuner interface**

Tuner interface has been identified as a possible critical area, both from US and CERN team, stiffeners are required (1.8 bar tuner free)



#### Updated mechanical design: racetrack shape





#### **RF Mechanical design: Tuner interface**



- Use of thicker material to distribute stresses and tuning forces.
- Large radius (19 mm) reduces stress concentration
- More material under the interface (original design was 1.6 mm)
- Shape optimized to allow EBW from both sides for a 4mm thick weld





#### **RF Mechanical design: Tuner interface**



- Use of thicker material to distribute stresses and tuning forces.
- Large radius (19 mm) reduces stress concentration
- More material under the interface (original design was 1.6 mm)
- Shape optimized to allow EBW from both sides for a 4mm thick weld





# **Evolution of Mechanical Design**



GOAL: Guarantee satisfying functional specifications 1.8 bar pressure, df/dP, LFD

- 1) LARP prototype design
- 2) Removed Ribs + Racetrack
- 3) Racetrack and electric ribs + wider stiffeners at pole base

#### **RFD electric ribs**





#### **RFD mechanical design: LFD**



#### GOAL: LFD dF < |10| kHz (0 to 3.4 MV) LFD has been simulated with tuner stiffness= 6.8 kN/mm

- 1) LFD dF= -7.2 kHz
- 2) LFD dF= -7.2 kHz
- 3) LFD dF= -5.3 kHz

| Model | dF [kHz] | LFD [Hz/(MV)^2] |
|-------|----------|-----------------|
| 1     | -7.17    | -602            |
| 2     | -7.16    | -602            |
| 3     | -5.31    | -447            |

# **RFD mechanical design: pressure sensitivity**



GOAL: pressure sensitivity < |150| Hz/mbar dF/dP has been simulated with tuner stiffness= 6.8 kN/mm

- 1) dF/dP= -147 Hz/mbar  $\rightarrow$  exactly in spec
- 2)  $dF/dP = -194 Hz/mbar \rightarrow out$
- 3) dF/dP= -112 Hz/mbar  $\rightarrow$  well within spec

# **RFD mechanical design: tuning range I**



# **RFD mechanical design: tuning range II**

The new tuner interface design improves the tuning range since the stresses are lowered by approx. 50%

| 3 |
|---|
|   |
|   |

| Parameter                         | 1                                          | 3                                              |  |  |
|-----------------------------------|--------------------------------------------|------------------------------------------------|--|--|
| Force at each side                | 1500 N                                     | 1500 N                                         |  |  |
| Total frequency<br>shift          | 240 kHz                                    | 233 kHz                                        |  |  |
| Displacement at<br>each side      | 0.357 mm                                   | 0.208 mm                                       |  |  |
| Peak stress                       | <b>124</b> <i>MPa</i>                      | 66.9 MPa                                       |  |  |
| Calculated sensitivity per side   | $\frac{120}{0.357} = 340  kHz/mm$          | $\frac{116}{0.208} = 560  kHz/mm$              |  |  |
| Spring constant of<br>cavity wall | $\frac{1500}{0.357} = 4202 N/mm$           | $\frac{1500}{0.208} = 7212  N/mm$              |  |  |
| Calculated<br>tunability (Total)  | $\frac{4202}{2\cdot 340}=6.2\frac{N}{kHz}$ | $\frac{7212}{2\cdot 560} = 6.44 \frac{N}{kHz}$ |  |  |
| Allowable stress at<br>2K         | 333 MPa                                    | 333 MPa                                        |  |  |
| Maximum elastic<br>range at 2K    | $240 \cdot \frac{333}{124} = 644 \ kHz$    | $233 \cdot \frac{333}{66.9} = 1160 \ kHz$      |  |  |
|                                   |                                            |                                                |  |  |

Mattia Parise

### Summary

- The updated RFD EM design detunes the 760 MHz HOM preserving the cavity performance, field components and MP characteristics.
- Few dimensions need to be adjusted as a consequence of the new EM design.
- The proposed new tuner interface improves the e-beam welding procedure (NbTi parts) keeping stresses below allowable values (1.8 bar pressure).
- Electric ribs (pole area) improve dF/dP and LFD parameters, both well within specs.
- Tuning range results improved by the usage of racetrack shape on the cavity side.



### **Backup Slides**



P. Berrutti for AUP Team 17/11/2017

#### **RFD electric ribs**





#### **RFD electric ribs weld detail I**





# **RFD electric ribs weld detail II**

- Negligible impact: maximum displacement along X under LFD load varies less than  $1\%_0$
- Max. equivalent linearized stress values (ASME BPVC) along Paths A group and Paths B group are under the allowable values in every considered situation. Results of FEM analysis:

| Fillet Radiu | Weld Depth    | 0.5 <i>mm</i>  | 1 <i>mm</i>    | 1.5 <i>mm</i>   | All.<br>values |
|--------------|---------------|----------------|----------------|-----------------|----------------|
|              | 0.5 <i>mm</i> | 10.1 MPa       | 8.2 <i>MPa</i> | 8.3 MPa         | 50 MPa         |
| PATH A       |               | 27.3 MPa       | 22.2 MPa       | 22.6 <i>MPa</i> | 75 MPa         |
|              | 1mm           | 8.4 <i>MPa</i> | 8.3 MPa        | 8.4 <i>MPa</i>  | 50 MPa         |
|              |               | 21.3 MPa       | 20.7 MPa       | 21.1 MPa        | 75 MPa         |
|              | 0.5 <i>mm</i> | 13.2 MPa       | 26.7 MPa       | 26.8 <i>MPa</i> | 50 MPa         |
| PATH B       |               | 35.0 MPa       | 37.3 MPa       | 37.5 MPa        | 75 MPa         |
|              | 1 <i>mm</i>   | 24.7 MPa       | 25.7 MPa       | 25.8 MPa        | 50 MPa         |
|              |               | 34.8 MPa       | 35.2 MPa       | 35.2 MPa        | 75 MPa         |



Membrane • Membrane + Bending



# **Cavity Processing**

- BCP Processing in horizontal orientation with rotation and possibly also tilting
  - Allows more uniform removal
  - Better acid circulation and drainage





ANL rotational processing tool

