MICROMEGAS DHCAL

W-DHCAL workshop, Annecy

C. Adloff for A. Espargilière

September 24, 2009

Outline

- Simulation Activities
- MICROMEGAS Developments for DHCAL Active Layer
 - Bulk MICROMEGAS Prototypes
 - Electronics and acquisition
 - Analysis Framework
 - MICROMEGAS analog prototypes performances
 - Tests with digital electronics
 - Square meter project
- Engineering Developments
- Electronics Developments
 - Detector InterFace (DIF)
 - DIRAC ASICs Characterization and New Developments
- Conclusion

SIMULATION ACTIVITIES

Simulation Activities

- Cubic Meter Simulation (Jan Blaha):
 - Better understanding of DHCAL generally
 - The first qualitative view on DHCAL global performance
 - Study performed:
 - Study of the main calorimeter characteristics
 - Comparison of various absorber materials: Fe, W, Pb
 - Comparison of analog and digital readout
 - Dependency on the readout threshold
- High Energy Physics Simulation (J. J. Blaising)

MICROMEGAS DEVELOPMENTS FOR DHCAL ACTIVE LAYER

Bulk Micromegas Prototypes

General Features

- Robustness, industry process
- ullet Low voltage ($V_{
 m mesh}$ & $V_{
 m drift}$ < 500 V)
- $120\mu m$ amplification gap
- 1 cm² pads readout
- Needs for low noise electronics
- Needs for reliable sparks protection

ELECTRONICS AND ACQUISITION DAQ (D. Roy)

CENTAURE for analog readout

CENTAURE used for analog data acquisition and online monitoring

- Developed by D. Roy (SUBATECH, Nantes)
- GASSIPLEX chips on external boards
- Mesh readout

ELECTRONICS AND ACQUISITION

DAQ (C. Drancourt)

LabVIEW for digital readout

- Home made software for chips characterisation
- HARDROC1, HARDROC2 (input for calibration) and DIRAC chips
- Development for cosmic data acquisition ongoing

ELECTRONICS AND ACQUISITION

DAQ (C. Combaret)

X-DAQ

- Developed at IPNL
- Used for fast data acquisition
- Works for HARDROC1 and 2
- Development for DIRAC ongoing

Aspects

- Fast running
- html control interface
- need expert on site

Analysis Framework

(J. Jacquemier)

Characteristics (A. Espargilière)

Beam test 2008 Results

- Overall gain disparity $\approx 11\%$ (384 cm²)
- Efficiency = 97% at $1.5 \, \mathrm{fC}$
- $\bullet \ \mbox{Maximum Multiplicity} < 1.1 \ \mbox{at} \\ 1.5 \ \mbox{fC}$

Characteristics (A. Espargilière)

Beam test 2008 Results

- Overall gain disparity $\approx 11\%$ (384 cm²)
- Efficiency = 97% at $1.5 \,\mathrm{fC}$
- $\bullet \ \, \text{Maximum Multiplicity} < 1.1 \ \text{at} \\ 1.5 \ \text{fC}$

Environmental Study (M. Chefdeville)

- Two-week long data acquisition
- 5.9 keV photons from ⁵⁵Fe
- Dependency of response versus
 P and T
- Method for gain correction established:

$$f_x = 1 - C_x \cdot \Delta(x)$$

Environmental Study (M. Chefdeville)

- Two-week long data acquisition
- 5.9 keV photons from ⁵⁵Fe
- Dependency of response versus
 P and T
- Method for gain correction established:

$$f_{x} = 1 - C_{x} \cdot \Delta(x)$$

Environmental Study (M. Chefdeville)

- Two-week long data acquisition
- 5.9 keV photons from ⁵⁵Fe
- Dependency of response versus
 P and T
- Method for gain correction established:

$$f_{x} = 1 - C_{x} \cdot \Delta(x)$$

Environmental Study (M. Chefdeville)

- Two-week long data acquisition
- 5.9 keV photons from ⁵⁵Fe
- Dependency of response versus
 P and T
- Method for gain correction established:

$$f_x = 1 - C_x \cdot \Delta(x)$$

Shower Measurements (M. Chefdeville)

- Micromegas behaviour in 2 GeV electron:
 - Stable and high gain during test period (a few HV trips over 12 days)
 - correction for P, T variations, pads intercalibration
- Energy and number of hit distributions:
 - Show a similar trend with the number of absorber
 - Longitudinal hit distribution maximum reached slightly deeper
 - Transverse hit distribution shows larger RMS at first shower stages
- Future plans
 - Comparison with simulation
 - Take data at different energies at next beam test (next week)

Tests with digital electronics

First embedded electronics on a MICROMEGAS

- Single DIRAC chip 8×8 pad MICROMEGAS chamber
- 10,7 mm thickness

Figure: design of a bulk MICROMEGAS with embedded electronics

Tests with digital electronics

First DIRAC operative test (Beam test 2008, August)

- Single ASIC 8×8 pad MICROMEGAS chamber
- Very first test of bulk MICROMEGAS with embedded digital readout
- fully successful
- Raw multiplicity of 1.1

Figure: Beam profile obtained with digital readout using the DIRAC ASIC.

Tests with digital electronics

First $\operatorname{HARDROC1}$ operative test on $\operatorname{MICROMEGAS}$ (Beam test 2009, May)

- Beam profile observed w and w/o scintillator coincidence
- ▶ data mostly corrupted
- Raw efficiency estimated around 60%

Layout (N.Geffroy)

- : Flat Printed Circuit
- : ASIC chip (64 channels)
- : Hirose connector
- : Terminasion component

Layout (N.Geffroy)

Layout (N.Geffroy)

Test Box (N.Geffroy, F. Peltier)

- Every ASU has to be tested individually:
 - Electronics verifications
 - Mesh cooking
 - Get physical signal from the pads (⁵⁵Fe source and/or cosmics)
- Clean room available for handling naked mesh ASU
- A test box has been built:
 - ASU easily inserted and removed
 - Plexiglass lid for mesh cooking
 - Aluminum lid, drilled above every pad for X-rays injection
 - Drift cathode on the aluminum lid
 ⇒ 3 cm drift gap
 - A fully functional MICROMEGAS test chamber

Test Box (N.Geffroy, F. Peltier)

- Every ASU has to be tested individually:
 - Electronics verifications
 - Mesh cooking
 - Get physical signal from the pads (⁵⁵Fe source and/or cosmics)
- Clean room available for handling naked mesh ASU
- A test box has been built:
 - ASU easily inserted and removed
 - Plexiglass lid for mesh cooking
 - Aluminum lid, drilled above every pad for X-rays injection
 - Drift cathode on the aluminum lid
 ⇒ 3 cm drift gap
 - A fully functional MICROMEGAS test

Square Meter Project Test Box

First tests of MICROMEGAS HARDROC2 at LAPP

- Two 32×48 pad ASU
- 24 HARDROC2 chip each
- Foreseen to equip the m² physics prototype

Figure: Response of a $32\times48\,\mathrm{pad}$ ASU after irradiation with an 55 Fe source

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Mechanical Prototype (N.Geffroy, F.Peltier)

- Test various assembly possibilities on small samples
- Establish an assembly process
- Train on building a prototype w/o real ASUs
- Perform mechanical tests
- Verify gas tightness

Physics Prototype (N.Geffroy, F.Peltier)

• 1 week needed for assembly

Physics Prototype (N.Geffroy, F.Peltier)

- 1 week needed for assembly
- A third of the m² will be equipped (2 ASUs)

Physics Prototype (N.Geffroy, F.Peltier)

- 1 week needed for assembly
- A third of the m² will be equipped (2 ASUs)
- Both ASUs are under intensive tests to prove their reliability before integration to the m²

Physics Prototype (N.Geffroy, F.Peltier)

- 1 week needed for assembly
- A third of the m² will be equipped (2 ASUs)
- Both ASUs are under intensive tests to prove their reliability before integration to the m²
- next : Physics m² assembly

Engineering Developments

SID DHCAL Mechanical Design

(N.Geffroy)

SiD HCAL:

- Designed at LAPP
- Taken as a baseline in SiD LOI
- Detailed design needed
- Deeper study foreseen at LAPP (N. Geffroy)
- → Construction of a module 0

ELECTRONICS DEVELOPMENTS

Detector InterFace (DIF)

(J. Prast, G. Vouters)

Calice DAQ Scheme:

 $\mathsf{DIF} \Longleftrightarrow \mathsf{front}\text{-}\mathsf{end}\ \mathsf{electronics}\text{:}\ \mathsf{data}\ \mathsf{transfer},\ \mathsf{very}\ \mathsf{front}\text{-}\mathsf{end}\ \mathsf{chip}\ \mathsf{control}$

Detector InterFace (DIF)

(J. Prast, G. Vouters)

- Fully Designed at LAPP (J. Prast, S. Cap)
- First intermediate board between ASU and DAQ
- Programmable via VHDL code
- VHDL code implemented at LAPP (G. Vouters)
- Many firmwares available (see C. Drancourt's talk)
- Used in 2008 and 2009
 Eu-DHCAL beam tests:
 MICROMEGAS and RPC

DIRAC ASICs Characterization and New Developments (R. Gaglione)

- DIRAC initially developed at IPNL
- Now in tight collaboration with LAPP
- DIRAC2 intensively tested at LAPP
- Best Power pulsing performance (stable at $2.7 \,\mu \mathrm{s}$ power-on time)
- Very low threshold achievable (<10 fC?)
- First digital ASIC embedded on a bulk MICROMEGAS: tested successfully in 2008 beam test
- DIRAC2 m² foreseen for 2010

CONCLUSION

Conclusion

- Developments of MICROMEGAS chamber as an active layer for DHCAL
 - MICROMEGAS performances in agreement with the DHCAL requirements
 - Digital front-end electronics ready
 - MICROMEGAS related collaborators: CERN (bulk MICROMEGAS) and Saclay (Beam tests ...)
 - Eu-DHCAL collaborators: CIEMAT, IPNL, LAL, LLR
 - Building thin and large area chambers
 - Very good progress toward a 1 m³ technical prototype
- Other applications of MICROMEGAS now thinkable
 - MICROMEGAS W-HCAL (almost "copy and paste")
 - MICROMEGAS W-ECAL (segmentation and thickness)