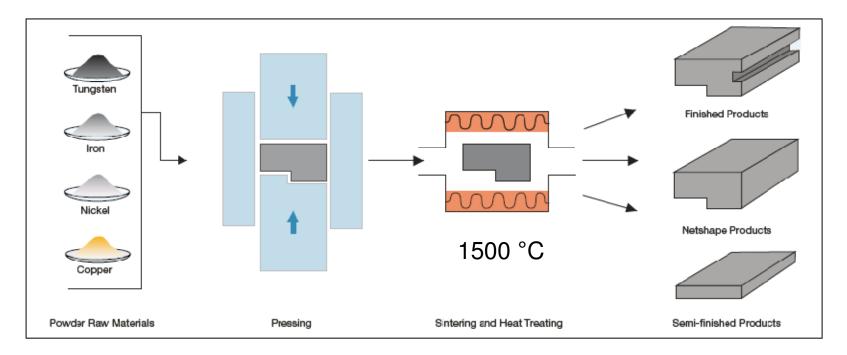
Commercially available Tungsten Plates

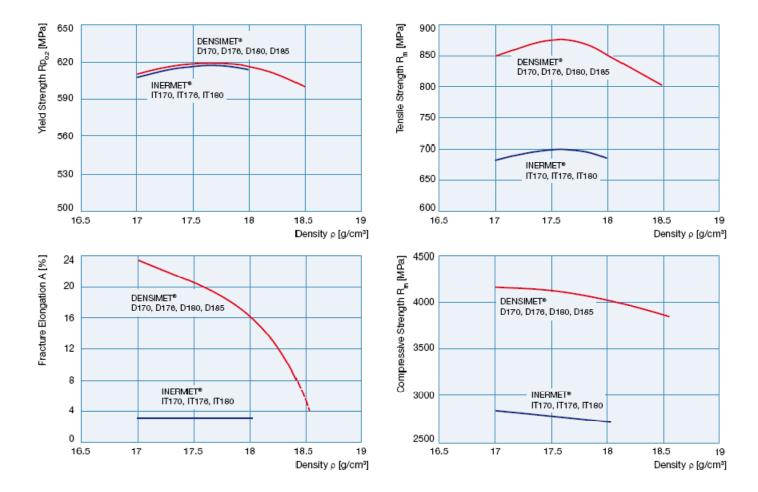

Cime Bocuze (St Pierre-en Faucigny, France) Plansee (Reutte, Austria)

W. Klempt CERN/PH

W HCAL Prototype meeting in Annecy 24/9/2009

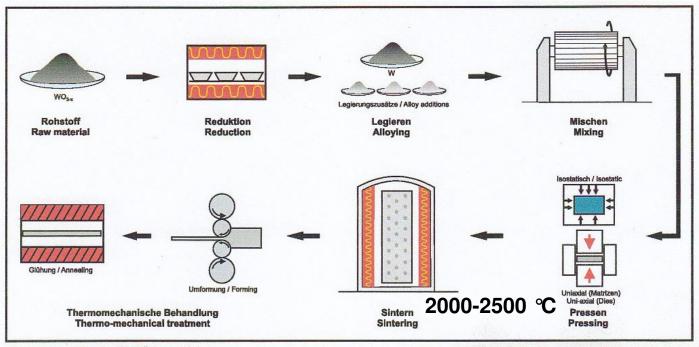
W Composite Material (Cime Bocuze)

- Consist of W (≥ 90%) rest mixture of (Fe), Ni, Cu …
- $\rho = 17 18 \text{ g/cm}^3$
- $-\Lambda \approx 10 \text{ cm}, X_0 \approx 0.4 \text{ cm}$
- Well established production procedure
- Easy to machine (i.e. sawing/cuting of plates)



Product Range and Material Properties

Werkstoff	Abkürzung		mmensetzung [%]	Nominelle Dichte	AMS-T-21014	
Material	Abbreviation	Chemical composition [%] W Rest		Nominal density	Class	
Schwach ferromagnetisch / Weakly ferromagnetic						
DENSIMET® 170	D170	90,5	Ni, Fe	17,0	1	
DENSIMET® 176 / W	D176 / DW	92,5	Ni,Fe	17,6	2	
DENSIMET® 180	D180	95	Ni, Fe	18,0	3	
DENSIMET® 185	D185	97	Ni, Fe	18,5	4	
DENSIMET® 188	D188	98,5	Ni, Fe	18,8	-	
DENSIMET® D2M	D2M	90	Ni, Mo, Fe	17,2	-	
Paramagnetisch / Paramagnetic						
INERMET® 170	IT170	90,2	Ni, Cu	17,0	1	
INERMET® 176	IT176	92,5	Ni, Cu	17,6	2	
INERMET® 180	IT180	95	Ni, Cu	18,0	3	


Mechanical Properties

	D170	IT170	D176/W	IT176	D180	IT180	D185
Elastizitätsmodul E [GPa] Youngʻs modulus E [GPa]	340	330	360	350	380	360	385
Schubmodul G [GPa] Modulus of rigidity G [GPa]	140	125	145	135	150	140	160

Pure Tungsten Plate Production (Plansee)

Produce ingots (weight ≤ 500kg) Sintering temp. 2000-2500 °C Roll to final thickness

Schematischer Ablauf der Herstellung von Halbzeug Schematic flow of the production of semi-finished products

Mechanical Properties of Pure Tungsten

- Sintered Tungsten exhibits low ductility (is rather brittle) at room temperature.
- Its mechanical properties are situated somewhere between metals and ceramics and are very dependent on small (~ 1%) admixtures (Re, La₂O₃ etc.)
- It's Young's modulus is known (≈2 x E_{ss})
- But it is not easy to get other engineering values like: stress- strain diagram, tensile strength, fracture elongation etc..
- A single load test will not give enough information, other series of measurements are needed;
- Plansee is willing to help us with these values

Comparison of Mechanical Properties

	Pure W	INERMET 176*	Steel
% Tungsten	100	92.5	-
Alloying materials	-	Cu, Ni	-
Elasticity (Young) [GPa]	400	350	200
Density [g/cm ³]	19.3	17.6	7.85
Elongation at yield	< 5%**	5%	30%-50%

*Alloys used must be paramagnetic, **Tests required

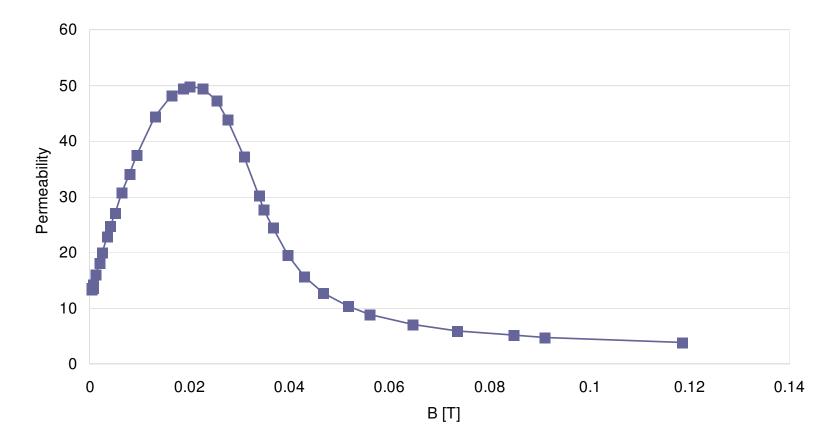
Plate size and tolerances

• Currently available plate sizes

Pure Tungsten	INERMET
1200 mm x 1600 mm	600 mm x 600 mm

- Thickness of 12 mm is feasible for both
- Flatness tolerance ca. 1.5 mm
 - $\leq 1 \text{ mm possible}$
- Thickness tolerance ± 0.5 mm

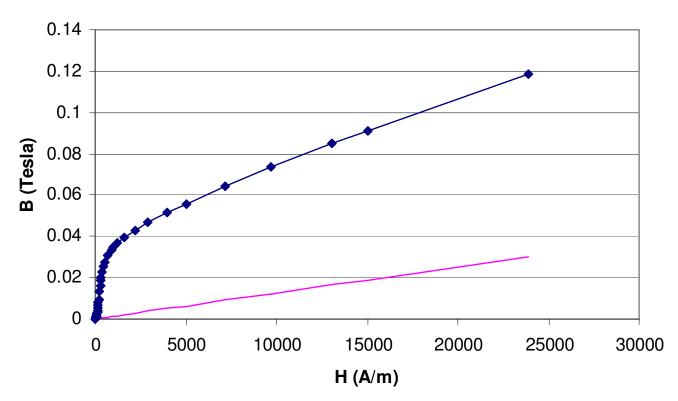
- With machining $\pm 0.1 \text{ mm} (\text{cost} \uparrow)$


Machinability

- Abrasive water jet cutting is suitable
- Holes, slots & various cut-outs are possible
- Precision of ± 0.1 mm is possible (but very expensive)

Magnetic properties of Densimet 180

Tungsten+Nickel :: Permeability vs B



Magnetic properties of Densimet 180

Tungsten B vs H

 \rightarrow Desimet 180 μ = 1

