Projections for EWPO uncertainties at the FCC-ee

1 Fermion pair production above the Z-pole at FCC-ee

Questions:

• Please check that the following expected precisions for $\sigma(e^+e^- \to f\bar{f})$ and A_{FB}^{ff} are correct:

$$\frac{\delta_{\text{sys}}\sigma_{f\bar{f}}}{\sigma_{f\bar{f}}} \sim 10^{-4}, \quad \frac{\delta_{\text{stat}}\sigma_{f\bar{f}}}{\sigma_{f\bar{f}}} \sim \text{Negligible}?$$
 (1)

$$\frac{\delta_{\text{sys}}A_{FB}^{f\bar{f}}}{A_{FB}^{f\bar{f}}} \sim \text{Negligible}?, \quad \frac{\delta_{\text{sys}}A_{FB}^{f\bar{f}}}{A_{FB}^{f\bar{f}}} \sim \frac{\sqrt{1 - (A_{FB}^{f\bar{f}})^2}}{\sqrt{N}}? \tag{2}$$

- For what channels does this apply? $f = e, \mu, \tau, b, c, had$?
- Does the systematic uncertainty for $\sigma_{f\bar{f}}$ of 10^{-4} approximately apply to all energies above the Z-pole (160, 240 and 350 GeV)?

2 Precision measurements at FCC-ee

- Please check that the expected uncertainties for the different electroweak precision observables in Table 1 are accurate/updated, taking into account the latest FCC-ee studies. (See caption of the Table for the origin of the different numbers.)
- Please provide estimates for the uncertainties for the measurements of the Left Right asymmetries for the b and c quarks, A_b and A_c , that would be possible with polarization. These would be needed to study the impact of using polarized beams in the determination of the quark couplings.

References

P. Janot, JHEP 1602 (2016) 053 doi:10.1007/JHEP02(2016)053 [arXiv:1512.05544 [hep-ph]].

	Current Data	FCCee- Z (no pol.)	FCCee- Z	FCCee-WW	FCCee- HZ	FCCee- $t\bar{t}$
$ \begin{array}{c} \alpha_s(M_Z^2) \\ \Delta \alpha_{\rm had}^{(5)}(M_Z^2) \\ M_Z \; [{\rm GeV}] \\ m_t \; [{\rm GeV}] \\ M_H \; [{\rm GeV}] \end{array} $	$\begin{array}{c} 0.1180 {\pm} 0.0010 \\ 0.02750 {\pm} 0.00033 \\ 91.1875 {\pm} 0.0021 \\ 173.1 {\pm} 0.6_{\mathrm{exp}} {\pm} 0.5_{\mathrm{th}} \\ 125.09 {\pm} 0.24 \end{array}$	$\pm 0.00003 \\ \pm 0.0001$			± 0.007	$\pm 0.014_{\rm stat} \pm 0.050_{\rm th}$
$\begin{array}{c} M_W \; [{\rm GeV}] \\ \Gamma_W \; [{\rm GeV}] \end{array}$	$80.379 {\pm} 0.012$ $2.085 {\pm} 0.042$			$\pm 0.001 \\ \pm 0.0015$		
$ \begin{array}{c} \Gamma_{Z} \; [\text{GeV}] \\ \sigma_{h}^{0} \; [\text{nb}] \\ R_{\ell}^{0} \\ A_{\text{FB}}^{0,\ell} \\ \hline A_{\tau}(P_{\tau}^{\text{pol}}) \end{array} $	$\begin{array}{c} 2.4952{\pm}0.0023\\ 41.540{\pm}0.037\\ 20.767{\pm}0.025\\ 0.0171{\pm}0.0010\\ \hline 0.1465{\pm}0.0033 \end{array}$	$\begin{array}{c} \pm 0.0001 \\ \pm 0.025 \\ \pm 0.001 \\ \pm 0.00001 \\ \end{array}$				
$A_e(P_{\tau}^{\mathrm{pol}})$		± 0.00011	1.0.000001			
$egin{array}{c} A_\ell \ A_c \ A_b \end{array}$	$\begin{array}{c} 0.1513 {\pm} 0.0021 \\ 0.670 {\pm} 0.027 \\ 0.923 {\pm} 0.020 \end{array}$		$\pm 0.000021 \\ \pm ??? \\ \pm ???$			
$egin{array}{l} A_b & \ A_{ m FB}^{0,c} & \ A_{ m FB}^{0,b} & \ A_{ m FB}^{0,b} & \ R_c^0 & \ R_b^0 & \ \end{array}$	$\begin{array}{c} 0.0707{\pm}0.0035\\ 0.0992{\pm}0.0016\\ 0.1721{\pm}0.0030\\ 0.21629{\pm}0.00066\end{array}$	± 0.0008 ± 0.0004 ± 0.00050 ± 0.00017				
$\Gamma_{\rm Inv}/\Gamma_\ell$	$5.943 {\pm} 0.016$			± 0.002		

Table 1: Expected sensitivities at the FCC-ee for the different observables included in the electroweak fits. Numbers in Blue come from the TLEP paper (arXiv:1308.6176) or more recent FCC-ee Talks. The error on $\Gamma_{\text{Inv}}/\Gamma_{\ell}$ was obtained from the expected uncertainty for N_{ν} of ± 0.001 . The error for $\Delta \alpha_{\text{had}}^{(5)}(M_Z^2)$ was extracted from the uncertainty $\delta \alpha_{\text{em}}^{-1}(M_Z^2) \sim 3 \times 10^{-5}$ from measuring A_{FB}^{μ} just below and above the Z pole [1]. Numbers in Red are the estimates provided by R. Tenchini. Finally, the quoted error for σ_h^0 is the current theory systematic uncertainty associated to the understanding of low-angle Bhabha scattering.