Probes for 4th generation at CDF: 9_s, A_{FB}(KII), D^o-mixing

Giovanni Punzi Iniversity & INFN-Pisa / FNAL

Taiper, TAIWA

2nd Workshop on Beyond 3-Generation SM

CDF and the 4th-generation

CDF II Detector

- Tracker: Silicon Vertex Detectors
 Precision Drift Chamber
- Excellent Momentum Resolution
- Trigger on long-lived particles
- Particle ID: TOF and dE/dx
- Triggered Muon Coverage |η|<1

CDF can access a wide variety of channels. This talk is about "indirect" signatures in flavor physics [see D. Whiteson talk in Sess.III for direct searches]

- Ever-increasing luminosity current ~2fb⁻¹/year/experim.
- Current sample ~6 fb⁻¹. Expect FY 2010: 8fb⁻¹, FY 2011: 10fb⁻¹
- Most flavor physics analyses currently use 1 fb⁻¹ -- 5 fb⁻¹ but many updates still in the queue \Rightarrow doubling of statistics by end of 2011

B_s oscillation parameters

 ϕ and $\Delta\Gamma$ are the least known, and are sensitive to a lot of possible New Physics: SUSY, 4th generation, GUT, Extended Higgs, MFV, unparticle, ...

Measuring β_s with $B_s{\rightarrow}J/\psi\phi$

1. Reconstruct decays from stable products:

- $B_s \rightarrow J/\Psi[\mu^+\mu^-] \Phi[K^+K^-]$
- $B_d \rightarrow J/\Psi[\mu^+\mu^-] K^{*0}[K^+\pi^-]$ (control sample)
- 2. <u>Measure lifetime</u> $ct = m_B * L_{xy}/p_T$ •Proper time resolution essential to resolve oscillations
- 3. Measure decay angles in transversity base:

 $\vec{w} = (\vartheta, \phi, \psi)$

- 4. <u>Identify Bs flavor at production time</u>:
 •Flavor Tagging (Tag decision ξ)
- 5. Perform maximum likelihood fit:
 - Likelihood in m, ct, w, ξ

$\phi_{\rm s}^{J/\psi\phi} \equiv -2\beta_{\rm s}^{J/\psi\phi}$ results (2.8fb⁻¹/exp.)

Yield: 3150 events

Tantalizing: small deviation in the same direction as D0

The making of a Tevatron average

- Combining CDF and D0 is important although not trivial.
- Substantial work to bring CDF and D0 to common standards.
- Account for non-asymptotic statistical behavior important not to underestimate the effect of tails, due to limited statistics !

D0 and CDF brought to the same grounds (unconstrained)

tails \Rightarrow same level of SM agreement.

1-D p-value for SM= $0.020 (2.3\sigma)$

 CDF currently working on 2x samples and improved analysis.

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.
- Explicitly account for the possibility of Swave contamination.

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.
- Explicitly account for the possibility of Swave contamination.
- Now can explicitly see the Bs oscillations with different tagger algorithms. Changes the way we do tagging: calibrations on data, combined NN tagging...

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.
- Explicitly account for the possibility of Swave contamination.
- Now can explicitly see the Bs oscillations with different tagger algorithms. Changes the way we do tagging: calibrations on data, combined NN tagging...
- A small reduction of efficiency at the higher luminosities of latest running.

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.
- Explicitly account for the possibility of Swave contamination.
- Now can explicitly see the Bs oscillations with different tagger algorithms. Changes the way we do tagging: calibrations on data, combined NN tagging...
- A small reduction of efficiency at the higher luminosities of latest running.
- Looking at addition of data from hadronic trigger - will offset the above

- CDF currently working on 2x samples and improved analysis.
- Full use of dE/dx for PID.
- Explicitly account for the possibility of Swave contamination.
- Now can explicitly see the Bs oscillations with different tagger algorithms. Changes the way we do tagging: calibrations on data, combined NN tagging...
- A small reduction of efficiency at the higher luminosities of latest running.
- Looking at addition of data from hadronic trigger - will offset the above
- Next step: possibility of improved precision of the combination by simultaneous fit of CDF and D0 samples.

Outlook

- High probabity of discovery for β_s above ~0.4
- \Rightarrow Implies high exclusion power if effect not found.
 - Assumes constant data taking efficiency and no analysis improvements
 - No external constraint or additional information (e.g. ASL)

- B → sss penguin process. CPV can enter in both mixing and decay.
 Possibility of deviations in BR and polarization ("polarization puzzle").
- Very clean ! Currently ~300 events/2.9fb⁻¹ ⇒ expect 1000 events by 2011. (Might still add some additional trigger paths)

Relative BR: $\frac{\mathcal{B}[B_s \to \phi\phi]}{\mathcal{B}[B_s \to J/\psi\phi]} = [1.78 \pm 0.14(stat) \pm 0.20(syst)] \cdot 10^{-2}$ Translate to: $\mathcal{B}[B_s \to \phi\phi] = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$

Prediction [Beneke 06] $\mathcal{B}[B_s \to \phi \phi] = [2.18^{+0.11+3.04}_{-0.11-1.7}] \cdot 10^{-5}$

Comparison dominated by theoretical and BR uncertainties. Expect polarization measurement soon with precision 10%, eventually CPV

- Hints of deviations from SM in A_{FB} at the B-factories, possible 4th generation effect, but not enough data.
- CDF has reconstructed signals on 1fb⁻¹, but not enough data for meaningful A_{FB} measurements [Phys.Rev.D79:011104,2009]
- New results with 4.4 fb⁻¹

B \rightarrow KII at CDF (4.4fb⁻¹)

- Use neural network to optimize event selection
- Currently use a single final state per decay channel
 - $\checkmark B^+ \rightarrow K^+ \mu^+ \mu^-$
 - ✓ $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$

Total BRs

(x10⁻⁶)

$K^+\mu\mu$ $0.41^{+0.16}_{-0.15}(stat)\pm 0.02(syst)$ $0.53^{+0.08}_{-0.07}(stat)\pm 0.03(syst)$ $0.38\pm 0.05(stat)\pm 0.03(syst)$ $K^{*0}\mu\mu$ $1.35^{+0.40}_{-0.37}(stat)\pm 0.10(syst)$ $1.06^{+0.19}_{-0.14}(stat)\pm 0.07(syst)$ $1.06\pm 0.14(stat)\pm 0.09(syst)$ KII $0.39\pm 0.07(stat)\pm 0.02(syst)$ $0.48^{+0.05}_{-0.04}(stat)\pm 0.03(syst)$ Same as K ⁺ µµ
K*0 $\mu\mu$ 1.35+0.40 -0.37 (stat) ±0.10 (syst)1.06+0.19 -0.14 (stat) ±0.07 (syst)1.06±0.14 (stat) ±0.09 (syst)KII0.39±0.07 (stat) ±0.02 (syst)0.48+0.05 -0.04 (stat) ±0.03 (syst)Same as K+ $\mu\mu$
KII 0.39±0.07(stat)±0.02(syst) 0.48 ^{+0.05} - _{0.04} (stat)±0.03(syst) Same as K ⁺ μμ
K*II 1.11 ^{+0.19} -0.18(stat)±0.07(syst) 1.07 ^{+0.11} -0.10(stat)±0.09(syst) Same as K ^{*0} μμ
PRE102:091803 (2009) PRE103:171801 (2009)

- Compatible with previous measurements
- Best results for the given final state
- Other final states also accessible in principle at CDF using other trigger selections, but not yet studied how well.

B→KII at CDF: differential BR

BR wrt q², where q²= $M_{\mu \mu}^{2}$

SM maximum allowed SM minimum allowed

q² binning

	$B^0 \to K^{*0} \mu^+ \mu^-$	$B^+ \to K^+ \mu^+ \mu^-$
Bin#1	0.00-2.00	0.00-2.00
Bin#2	2.00 - 4.30	2.00 - 4.30
Bin#3	4.30 - 8.68	4.30 - 8.68
Bin#4	10.09 - 12.86	10.09 - 12.86
Bin#5	14.18 - 16.00	14.18 - 16.00
Bin#6	16.00-19.30	16.00-23.00

Same definition as Belle

Consistent with SM and previous measurements

- BaBar, PRL102:091803 (2009)
- Belle, PRL103:171801 (2009)

B \rightarrow KII at CDF: F_L and A_{FB} results

- Consistent with both SM and a BSM expectations: need more data.
- Consistent with B-factories measurements, shows a slight positive excess as well. Combination might be interesting.
 - BaBar: PRD79,031102(R) (2009) Belle: PRL103,171801(2009)
- Expect several further improvements:
 - >2x data in 2010/2011 run
 - additional sub-decay channels and additional trigger paths
- \Rightarrow CDF will give important contribution to this measurement.

 ✓ Similar analysis as B→K^(*) µ µ
 ✓ Obtain pretty clean signal
 ✓ First Measurement: BR(B_s→φ µ µ)= =[1.44±0.33(stat)±0.46(syst)]×10⁻⁶ Consistent with prediction ~1.6×10⁻⁶ [curiosity: the rarest observed B_s decay]
 ✓ Next step: measure polarization F₁

Stat. significance ~6 σ

Measurement of CP-asymmetries in $D^0 \rightarrow h^+h^-$ D⁰-mixing at CDF

CDF observed evidence of mixing at 3.8σ with just 1.5 fb⁻¹[PRL 100,121802(2008)]. Data extends up to 10 lifetimes. Next step is precision measurements.

Here we focus on CPV in CS modes $(D^0 \rightarrow \pi\pi, D^0 \rightarrow KK)$

```
\begin{array}{l} \mathsf{A}_{\mathsf{CP}}(\mathsf{t})\approx(\mathsf{x}\,\sin\,\phi-\mathsf{y}\,\epsilon\,\cos\,\phi\,)\,(\mathsf{t}/\tau)\\ & \mathsf{In}\,\,\mathsf{SM}:\,\sin\,\phi\,,\,\epsilon<\!\!10^{\text{-3}}\\ & \mathsf{NP}\,\,\mathsf{can}\,\,\mathsf{make}\,\,\mathsf{them}\,\,\mathsf{of}\,\,\mathsf{O}(1).\\ & \mathsf{4th}\,\,\mathsf{gen}\,\,\mathsf{can}\,\,\mathsf{be}\,\,\sin\,\phi\sim0.1\text{-}0.2\\ & [\mathsf{Hou},\,\mathsf{hep}\text{-ph}/0611154] \end{array}
```


\Rightarrow Look for A_{CP}(t) ~10⁻³(t/ τ) vs. SM ~10⁻⁵(t/ τ)

This survives integration over time if incoherently produced, as in CDF

CDF now has world's largest samples

Currently taking data at a rate 10xBelle

CDF as a "Charm Decay Factory" ?

Would be interesting to keep it up for a while

Need "very accurate" correction for charge asymmetries

Some *unique features* of CDF allow for cancellation of all detector-induced charge asymmetries. Totally data-driven technique, already used in $B \rightarrow hh$. Exploits two points:

1) p-pbar production \rightarrow same number of particle/antiparticle at production.

2) Detector symmetric in pseudo-rapidity (η) \rightarrow cancellation of beam-drag effects.

NOTE Direct CPV in $D^0 \rightarrow K^-\pi^+ ALSO$ cancels out

Work in progress, but expect cancellation works to the percent level, \Rightarrow expect systematics on A_{CP} <u>well below 0.1%</u>

Prospects for $A_{CP}(D^0 \rightarrow \pi^+\pi^-)$ on 4.8 fb⁻¹

Assuming:
$$\sigma_{_N} \cong \sigma_{_{\overline{N}}} \cong 1/\sqrt{N} \Rightarrow \sigma_{_{A_{CP}}} = 1/\sqrt{N+\overline{N}}$$

Experiment	N (D ⁰ $\rightarrow\pi^+\pi^-$) CDF(4.8/fb)	Current Babar/Belle
$A_{CP}(D^0 \rightarrow \pi^+\pi^-)$ (%)	xxx ± 0.19(stat) ± xxx (syst)	0.5(stat)
A _{CP} (D⁰→K⁺K⁻) (%)	xxx ± 0.11(stat) ± xxx (syst)	0.3(stat)

- A good step forward in precision, further factor of 2 by end of 2011.
- For CPV in mixing, can combine $\pi^+\pi^-$ and $\kappa^+\kappa^-$. Precision 0.07%
- Potential to actually see an effect of few permille !
- Long lever arm in lifetime helps

Further CDF measurements

A_{CP}(J/ψ K⁺)

10 Kevents/fb⁻¹ ⇒ 0.4% stat in 5fb⁻¹ systematics not determined yet.
Best B-factory result: Babar 1.4%
D0 published result 0.6% statistical
4th generation effect expected O(1%) [Hou et al., PRL 95 (2005) 141601]

A_{CP}(Kπ)

CDF will measure $A_{CP}(K^+\pi^-)$ to < 1% World's largest sample (3k/fb⁻¹), most precise result. Cannot do much on $K^+\pi^0$ and $K_s\pi^0$ though.

■ $BR(B_s \rightarrow \mu\mu)$, $BR(D^0 \rightarrow \mu\mu)$

World's best measurements.

Both down to BR ~10⁻⁸

- but 4th gen effects maybe too small ?

- CDF allows many crucial measurements sensitive to 4th generation, in addition to direct searches:
 - ♦ \$\phi\$, KII,ACP(D⁰),DCPV...

- CDF allows many crucial measurements sensitive to 4th generation, in addition to direct searches:
 - ♦ \$\phi\$, KII,ACP(D⁰),DCPV...
- Still going full-steam for the coming 2 years.

- CDF allows many crucial measurements sensitive to 4th generation, in addition to direct searches:
 - φs, KII,ACP(D⁰),DCPV...
- Still going full-steam for the coming 2 years.
- Many effects suggested by theoreticians will be thoroughly explored.

- CDF allows many crucial measurements sensitive to 4th generation, in addition to direct searches:
 - φs, KII,ACP(D⁰),DCPV...
- Still going full-steam for the coming 2 years.
- Many effects suggested by theoreticians will be thoroughly explored.

The dawn of a new generation?