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Now, LHC is going to reveal 

How the Electroweak Gauge Symmetry breaks 

How the Electroweak Symmetry restores 
at finite temperature in the early Universe 

“the structure of the Higgs sector”

“the behavior of the EW phase transition”

the LHC era



• Baryon # non-conservation

• C, CP symmetry violation
 （SU(2)xU(1) chiral int.,  Kobayashi-Maskawa Matrix)

• Out of Equilibrium
 （1st order restoration of EW symmetry at finite temp.）

 SM can in principle satisfy the three conditions ! 
 But, in real life ...

mH > 114 GeV crossover or 2nd order EWPT
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Baryogenesis

Sakharov’s three conditions

Farrar and Shaposhnikov (1994)
Gavela, et al. (1994) 
Huet and Sather (1995)

• required for big-bang nucleosynthesis
• measured thorough CMB (WMAP)

Kajantie et al.  (1996)
Csikor et al. (1999) 
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• required for big-bang nucleosynthesis
• measured thorough CMB (WMAP)
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 the Higgs sector in SM  = O(4) linear sigma model 

the finite-temperature PT governed by 
 “Wilson-Fisher IR-stable fixed point”
  --> 2nd. order PT 

Once the Higgs sector is extended 
to include multiple scalar fields
--> multiple quartic couplings 
      (run away directions)
--> fluctuation-induced 1st. order PT

Electroweak Phase Transition

ex.  massless QCD with Nf >= 3

 SU(Nf) x SU(Nf) linear sigma model
--> no stable IR fixed point
--> chiral symmetry restoration cannot be 2nd. order PT

 Pisarski-Wilczek (1984)
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The four-fermion interactions may be rewritten into
the form of Yukawa interactions by introducing the aux-
iliary scalar fields Φ, Hτ ′ and χa (a = 1, 2, 3), which
correspond to the bilinear operators of the fourth-family
quarks and leptons as follows:

Φij ∼ q̄′Rjq
′
Li , Hτ ′ ∼ τ̄ ′

R#′Li , χa ∼ #̄′LτaεC #̄′
T
L. (2)

Then one obtains

L′
4f = −m2

Φ0 tr(Φ†Φ) − m2
Hτ′0H

†
τ ′Hτ ′ − m2

χ0χ
a∗χa + LY,

(3)

where LY is the Yukawa interaction terms given by

LY = − yq′0(q̄′LΦq′R + c.c.) − yτ ′(#̄′LHτ ′τ ′
R + c.c.)

− f(#′TL C†ετaχa#′L + c.c.). (4)

B. Effective Renormalizable Theory

Through the renormalization group evolution from the
scale µ = Λ4f down to the electroweak scale µ = v
(=246 GeV), the kinetic and interaction terms of the
scalar fields and other higher dimensional operators may
be generated. We then extend this model by including
the kinetic, cubic and quartic terms of the scalar fields
so that it becomes renormalizable, neglecting the effect of
the higher dimensional operators. The effective renormal-
izable theory is then given by the following Lagrangian:

L = Lk + LY − V, (5)

where Lk consists of the kinetic terms for fourth-family
fermions and scalar bosons and V is the scalar potential.
The explicit form of V is given in appendix A [133].

Strictly speaking, the renormalization group equations
are subject to the compositeness condition as a bound-
ary condition at the scale µ = Λ4f [44]. Accordingly, the
values of the renormalized couplings at the lower scale
µ = v are restricted in a certain region of the param-
eter space. In the following analysis, however, we will
first explore the parameter space of the renormalizable
theory without the constraint due to the compositeness
condition, in order to locate the parameter region where a
strongly first-order EWPT is realized. We then examine
the possible overlap of these two regions.

In this paper (I), we concentrate on the effect of the
fourth-family quarks and consider two SU(2) doublets
out of four scalar fields. We also neglect, in this paper,
the SU(3)×SU(2)×U(1) gauge interaction and consider
the global symmetry limit, simply because we do not ex-
pect a large effect of the color and the electroweak inter-
actions on the dynamics of the first-order phase transition
in this model. Then the Lagrangian Eq. (5) reduces to

L = q̄′i/∂q′ − y(q̄′LΦq′R + c.c.)

+ tr(∂µΦ†∂µΦ) − m2
Φ tr Φ†Φ

−
λ1

2
(tr Φ†Φ)2 −

λ2

2
tr(Φ†Φ)2 + c(detΦ + c.c.).(6)

We include the last term which breaks the U(1)A sym-
metry and induces the mass of the pseudo NG boson.
Then, the symmetry of the theory is the chiral symmetry
SU(2)L×SU(2)R plus the U(1)V symmetry correspond-
ing to the baryon number. We do not include the terms
which consist of εΦ∗ε other than in the determinant term.

C. Electroweak Symmetry Breaking

We assume that the chiral symmetry SU(2)L×SU(2)R

breaks down to the diagonal subgroup SU(2)V by the
vacuum expectation value (VEV) of Φ(x):

〈Φ〉 =
φ

√

2Nf

I, (7)

where Nf (= 2) is the number of the fourth-family quark
flavors, I is the Nf ×Nf unit matrix and φ ≥ 0. At tree-
level, the VEV is determined by the effective potential:

V0(φ) =
1

2
(m2

Φ − c)φ2 +
1

8

(

λ1 +
λ2

Nf

)

φ4. (8)

For (m2
Φ − c) < 0, the VEV is given by

φ0 =

√

−2(m2
Φ − c)

λ1 + λ2/Nf
. (9)

For the effective potential to be stable in this channel,
the following conditions must be satisfied:

λ1 + λ2/Nf ≥ 0, λ2 ≥ 0. (10)

Around the VEV, we may parametrize the fluctuation
of Φ(x) as follows:

Φ(x) =
φ + h + iη

√

2Nf

I +
3

∑

α=1

(ξα + iπα)
σα

2
, (11)

where σα (α = 1, 2, 3) are the Pauli matrices. The fields
h, η, ξα, πα and q′ acquire masses at tree level as summa-
rized in Table I, where, for notational simplicity, we use
the following abbreviations:

ah =
3

2
(λ1 + λ2/Nf), aξ =

1

2
(λ1 + 3λ2/Nf ), (12)

aη = aπ =
1

2
(λ1 + λ2/Nf ), aq′ =

1

2Nf
y2, (13)

and

bh = ah − aπ = (λ1 + λ2/Nf ), (14)

bξ = aξ − aπ = (λ2/Nf ). (15)

The bosonic sector of this model is just the 2HDM. h is
the singlet of SU(2)V and corresponds to the SM Higgs
boson. The adjoint πα are the NG bosons of the break-
ing of SU(2)L×SU(2)R, while the singlet η is the pseu-
doscalar Higgs boson and is also the pseudo NG boson

L =
stable fixed points. In Fig. 1, the flow diagrams for the
cases Nf ! 1 and Nf >

!!!
3

p
are shown.

The case of Nf ! 2 requires special care. As discussed
in the previous section, one can add the quadratic term
Eq. (12) and take the O(4) limit. Then the quartic couplings
reduce to the single coupling !1 " !2=2 and the unstable
direction no longer exists. The fixed point (b) is then the
IR-stable Wilson-Fisher fixed point with the O(4) critical
exponent.

From these considerations, one can see that there is no
IR-stable fixed points for Nf # 3. This suggests that the
critical behavior of the restoration of chiral symmetry with
Nf # 3 is not second order, although the possibility is not
completely excluded.

In order to see that the transition can actually be first
order, we next examine the effective potential. At one loop,
the effective potential of the linear sigma model is given by
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where
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For consistency with the $ expansion, it is assumed that

 !1 ' !2 'O$$%: (40)

The first-order phase transition requires that the follow-
ing conditions are fulfilled at some values of the parame-
ters, as shown in Fig. 2:
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Now we consider the parameter region on ‘‘the stability
boundary to O$$%,’’ following Rudnick [65], Iacobson and
Amit [63,66]:

 !1 " !2=Nf 'O$$2%: (42)

There, if one assumes
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the effective potential can be approximated as
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FIG. 2. Schematic form of the effective potential at the first-
order phase transition.

FIG. 1 (color online). The flow diagrams in the SU$Nf% ( SU$Nf% linear sigma model at d ! 4& $ for Nf ! 1 (left diagram) and
for Nf >

!!!
3

p
(right diagram). The arrows indicate the flows of the effective coupling constants toward the IR direction. In the shaded

region, the effective potential, Eq. (4), is unstable.
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-->  Chiral symmetry restoration, 
i.e.  Electroweak symmetry restoration, 
       cannot be 2nd. order PT !

 walking Technicolor theories with large Nf (>= 3)

 cf.   M . Kohda,  J.  Yasuda  and  Y.K.,  PRD77, 015014 (2008) (arXiv:0709.2221)

      “1st. order restoration of SU(Nf)LxSU(Nf)R chiral symmetry 

        with large Nf and electroweak phase transition” 
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Fourth Family

still consistent with experiments !

extra CP violating phases in CKM scheme

If extremely heavy, close to Unitarity bound, 
couples strongly to the Higss sector 

Holdom (1984)

order parameter of EW symmetry !?

cf. Nambu (1989);  
   Miransky, Tanabashi , Yamawaki(1989)

large Jarlskog invariants possible !?

Hou (2008)

Kribs , Plehn, Spannowsky and Tait  (2007)

Holdom (2006)

PDG 2008  .....
neutrino number (Nν=3?),  mass 

direct searches(Tevatron, LEPII)

EW precision data

mt’, mb’ > 256 GeV mτ’, mν’ > 100 GeV

mt’ - mb’  ~ (1+ ln(mh/115GeV)/5) x 50 GeV 
mτ’ - mν’ > 30~60 GeV

CP asymmetry (anomaly) in B, K system 
Hou et al (2006~)
Soni et al (2008)
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extra CP violating phases in CKM scheme

If extremely heavy, close to Unitarity bound, 
couples strongly to the Higss sector 

Holdom (1984)

order parameter of EW symmetry !?

cf. Nambu (1989);  
   Miransky, Tanabashi , Yamawaki(1989)

large Jarlskog invariants possible !?

Hou (2008)

Kribs , Plehn, Spannowsky and Tait  (2007)

Holdom (2006)

PDG 2008  .....
neutrino number (Nν=3?),  mass 

direct searches(Tevatron, LEPII)

EW precision data

mt’, mb’ > 256 GeV mτ’, mν’ > 100 GeV

mt’ - mb’  ~ (1+ ln(mh/115GeV)/5) x 50 GeV 
mτ’ - mν’ > 30~60 GeV

How about EW phase transition? cf. Carena, Megevand, Quiros, Wagner (2004)

    Fok and Kribs(2008)

CP asymmetry (anomaly) in B, K system 
Hou et al (2006~)
Soni et al (2008)



SU(2)LxSU(2)R Linear sigma model + t’ b’ 

3

The four-fermion interactions may be rewritten into
the form of Yukawa interactions by introducing the aux-
iliary scalar fields Φ, Hτ ′ and χa (a = 1, 2, 3), which
correspond to the bilinear operators of the fourth-family
quarks and leptons as follows:

Φij ∼ q̄′Rjq
′
Li , Hτ ′ ∼ τ̄ ′

R#′Li , χa ∼ #̄′LτaεC #̄′
T
L. (2)

Then one obtains

L′
4f = −m2

Φ0 tr(Φ†Φ) − m2
Hτ′0H

†
τ ′Hτ ′ − m2

χ0χ
a∗χa + LY,

(3)

where LY is the Yukawa interaction terms given by

LY = − yq′0(q̄′LΦq′R + c.c.) − yτ ′(#̄′LHτ ′τ ′
R + c.c.)

− f(#′TL C†ετaχa#′L + c.c.). (4)

B. Effective Renormalizable Theory

Through the renormalization group evolution from the
scale µ = Λ4f down to the electroweak scale µ = v
(=246 GeV), the kinetic and interaction terms of the
scalar fields and other higher dimensional operators may
be generated. We then extend this model by including
the kinetic, cubic and quartic terms of the scalar fields
so that it becomes renormalizable, neglecting the effect of
the higher dimensional operators. The effective renormal-
izable theory is then given by the following Lagrangian:

L = Lk + LY − V, (5)

where Lk consists of the kinetic terms for fourth-family
fermions and scalar bosons and V is the scalar potential.
The explicit form of V is given in appendix A [133].

Strictly speaking, the renormalization group equations
are subject to the compositeness condition as a bound-
ary condition at the scale µ = Λ4f [44]. Accordingly, the
values of the renormalized couplings at the lower scale
µ = v are restricted in a certain region of the param-
eter space. In the following analysis, however, we will
first explore the parameter space of the renormalizable
theory without the constraint due to the compositeness
condition, in order to locate the parameter region where a
strongly first-order EWPT is realized. We then examine
the possible overlap of these two regions.

In this paper (I), we concentrate on the effect of the
fourth-family quarks and consider two SU(2) doublets
out of four scalar fields. We also neglect, in this paper,
the SU(3)×SU(2)×U(1) gauge interaction and consider
the global symmetry limit, simply because we do not ex-
pect a large effect of the color and the electroweak inter-
actions on the dynamics of the first-order phase transition
in this model. Then the Lagrangian Eq. (5) reduces to

L = q̄′i/∂q′ − y(q̄′LΦq′R + c.c.)

+ tr(∂µΦ†∂µΦ) − m2
Φ tr Φ†Φ

−
λ1

2
(tr Φ†Φ)2 −

λ2

2
tr(Φ†Φ)2 + c(detΦ + c.c.).(6)

We include the last term which breaks the U(1)A sym-
metry and induces the mass of the pseudo NG boson.
Then, the symmetry of the theory is the chiral symmetry
SU(2)L×SU(2)R plus the U(1)V symmetry correspond-
ing to the baryon number. We do not include the terms
which consist of εΦ∗ε other than in the determinant term.

C. Electroweak Symmetry Breaking

We assume that the chiral symmetry SU(2)L×SU(2)R

breaks down to the diagonal subgroup SU(2)V by the
vacuum expectation value (VEV) of Φ(x):

〈Φ〉 =
φ

√

2Nf

I, (7)

where Nf (= 2) is the number of the fourth-family quark
flavors, I is the Nf ×Nf unit matrix and φ ≥ 0. At tree-
level, the VEV is determined by the effective potential:

V0(φ) =
1

2
(m2

Φ − c)φ2 +
1

8

(

λ1 +
λ2

Nf

)

φ4. (8)

For (m2
Φ − c) < 0, the VEV is given by

φ0 =

√

−2(m2
Φ − c)

λ1 + λ2/Nf
. (9)

For the effective potential to be stable in this channel,
the following conditions must be satisfied:

λ1 + λ2/Nf ≥ 0, λ2 ≥ 0. (10)

Around the VEV, we may parametrize the fluctuation
of Φ(x) as follows:

Φ(x) =
φ + h + iη

√

2Nf

I +
3

∑

α=1

(ξα + iπα)
σα

2
, (11)

where σα (α = 1, 2, 3) are the Pauli matrices. The fields
h, η, ξα, πα and q′ acquire masses at tree level as summa-
rized in Table I, where, for notational simplicity, we use
the following abbreviations:

ah =
3

2
(λ1 + λ2/Nf), aξ =

1

2
(λ1 + 3λ2/Nf ), (12)

aη = aπ =
1

2
(λ1 + λ2/Nf ), aq′ =

1

2Nf
y2, (13)

and

bh = ah − aπ = (λ1 + λ2/Nf ), (14)

bξ = aξ − aπ = (λ2/Nf ). (15)

The bosonic sector of this model is just the 2HDM. h is
the singlet of SU(2)V and corresponds to the SM Higgs
boson. The adjoint πα are the NG bosons of the break-
ing of SU(2)L×SU(2)R, while the singlet η is the pseu-
doscalar Higgs boson and is also the pseudo NG boson

z

Effective theory of 
Models of Dynamical EW Breaking  with Fourth Family

(but, τ’ ν’  and top omitted;  SU(2)LxU(1)Y  switched off )

Z=0

+ compositeness condition

composite scale

+ mass term of pseudo NG bosons



Low energy properties of model

 ξ = (H0, H±): extra Higgs

 π : would be NG bosons 

 h : SM like Higgs 

 experimental bound on Yukawa coupling (tree)

 η : pseudo scalar Higgs

 mass spectra of Higgs bosons （tree）

cf.

 degeneracy due to SU(2)R (                           )

 ⇒ pNGB of U(1)A breaking
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Cutoff scale of the Effective theory

one-loop RG eq. 

mass bound ‐‐> y >2.1 at μ=246 GeV

blow up around 1～10 TeV
estimation of  cutoff scale Λ

Starting from (λ1, λ2, y) at μ=246 GeV, 
search the scale Λ at which the vacuum instability or Landau pole occurs :

( pertubativity bound)



10• exclude the region where Λ < 1TeV

•contour plot of cutoff Λ

•5 TeV

•1.5 TeV

•1.5TeV

•500GeV

•500GeV

To ensure the renormalizability, Λ >> m

•  largest mass scale in the interes]ng region: mξ ～ 500 GeV 

unstable 
at tree‐level

Instability below 1TeV

Landau pole below 1 TeV

•Λ > 1TeV
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the Effective theory at finite temperature 

one-loop + ring diagram contributions  
• 1‐

•+ •+ • + 
• 1‐

• 1‐

• 1‐

• 1‐ • 1‐

• 1‐At high T ,
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the Effective theory at finite temperature (cont’d)

high temperature expansion

 extra Higgs ξ induce cubic term  for 

 strongly 1st. order   for 

 valid for λi , y << 1

 cannot rely on high-T expansion for strongly coupled 4th family

cf.  Carena, Megevand, Quiros, Wagner (2004)



14

unstable 
at tree‐level

Landau pole
  below 1TeV

  Contour plot for various φc/Tc on λ1‐λ2/Nf plane 

y=2 ( mq’=246 GeV ) and mη=0

Instability 
below 1TeV

Numerical results (1)
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unstable 
at tree‐level

Landau pole
  below 1TeV

  Contour plot for various φc/Tc on λ1‐λ2/Nf plane 

y=2 ( mq’=246 GeV ) and mη=0

Instability 
below 1TeV

Numerical results (1)

14

unstable 
at tree‐level

Instability 
  below 1TeV

Landau pole
  below 1TeV

y=2.5 ( mq’=310 GeV ) and mη=0
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 Contour plot for various φc/Tc on y‐λ2/Nf plane  

λ1+λ2/Nf ～ 0 and mη=0

Instability 
  below 1TeV

Landau pole
  below 1TeV

mq’ < 256 GeV

256 GeV < mq’ < 290 GeV  
430GeV < mξ < 500 GeV
200 GeV < mh(1‐loop) < 300 GeV

 upper bound on λ2/Nf and y 
    ⇒ upper bound on mξ and mq’

Numerical results (2)
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 Contour plot for various φc/Tc on y‐λ2/Nf plane  

λ1+λ2/Nf ～ 0 and mη=0

Instability 
  below 1TeV

Landau pole
  below 1TeV

mq’ < 256 GeV

Numerical results (2)

compositeness condi]on

Λ = 1 TeV

⇒ φc/Tc ～ 0
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 Contour plot for various φc/Tc on y‐λ2/Nf plane  

λ1+λ2/Nf ～ 0 and mη=0

Instability 
  below 1TeV

Landau pole
  below 1TeV

mq’ < 256 GeV

Numerical results (2)

compositeness condi]on

Λ = 1 TeV

⇒ φc/Tc ～ 0

Λ = 4 TeV

⇒ φc/Tc > 1
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0 50GeV100GeV150GeV

 For larger mη , φc/Tc becomes smaller

 for srongly 1st order PT, mη <  100 GeV 

 effect of pseudo scalar Higgs mass : mη

Numerical results (3)

～
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Summary & Discussion

• EW vacuum fluctuation may be described 
   by multiple scalar(Higgs) fields
• EWPT at finite temperature can be first order 
    due to “fluctuation-induced first order PT”
    (due to the absence of IR stable fixed point)

with extremely heavy/ strongly coupled fourth family, 

•a region with strongly first order PT in Yukawa theory  
    caused by extra heavy Higgs (cubic term in high T exp.)
    narrow around 
        mq’ =260 GeV, mh =180GeV, mξ =450GeV, mη=100 GeV 
•does not overlap with the compositeness cond.  
•perturbativity --> seems hard to probe larger Yukawa coupling 
•SU(2)R breaking (mass splitting, top), leptons  should be included

“semi-quantitative” estimate of the strength of the1st. order PT
 with an effective field theory:
       SU(2)L x SU(2)R Linear sigma model + t’ b’ + Cutoff Λ + Compositeness cond.

      τ’ ν’  and top omitted;  SU(2)LxU(1)Y  switched off
      one-loop, ring-improved finite-temperature effective pot. (perturbativity)
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Back Up Slides



 EW symmetry breaking scale is given by

Nambu – Jona‐Lasinio model of 4th family

Pagels‐Stokar formula :

Nf =2 : # of 4th family quark flavor
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•auxiliary field:

• [Bardeen, Hill and 
Lindner]

ConstrucXon of effecXve theory  

•When, •,
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 by rescaling the field

 compositeness condi]on

when
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 one‐loop Higgs mass on y‐λ2/Nf plane (mη=0)



the Glashow-Weinberg-Salam model 
(SU(2)x U(1) sector of the standard model without SU(3) color int.)

• a chiral gauge theory with SU(2)L x U(1)Y 

• gauge symmetry breaking via Higgs mechanism 

• baryon number violation due to chiral anomaly   

• etc. 

• no gauge-invariant regularization is known

(cf. dimensional reg.)

• non-perturbative definition is missing

but ...

Weakly coupled theory, 
Still, non-perturbative dynamics may be relevant 
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previous attempts to put on the lattice ...

• Eichten-Preskill approach (symmetry/symmetry breaking) 

• Wilson-Yukawa model (Smit, Swift, Aoki) 

• Rome (gauge-fixing) approach (Testa et al, Golterman-Shamir)   

• domain-wall + Eichten-Preskill hybrid (Creutz)

• Mirror GW fermion approach (Poppitz)      etc.

in our formulation  ...

★ a gauge-invariant construction of GWS model on the lattice

• use of overlap Dirac operator (the Ginsparg-Wilson relation)
• cf.  U(1) chiral gauge theory with exact gauge invariance
• the first invariant / non-perturbative regularization of the model (at finite V)
• all SU(2) togological sectors with vanishing U(1) magnetic fluxes

Luscher (99) 

based on :

 D. Kadoh and Y.K.,  JHEP 0805:095 (2008),  0802:063 (2008)

 D.~Kadoh, Y.~Nakayama and Y.K., JHEP 0412, 006 (2004) 

  Y. Nakayama and Y.K., Nucl. Phys. B597, 519  (2001)



overlap Dirac op. / the GW rel.

Neuberger(1997,98) 
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Hw
√

H2
w

)

chiral operator

Luscher ; Hasenfratz, Niedermayer(1998) 

γ5D + Dγ5 = 2aDγ5D
chiral fermion

γ̂5ψ±(x) = ±ψ±(x)

ψ̄±(x)γ5 = ∓ ψ̄±(x)
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−
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Path Integral Quantization
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“overlap formula”

γ̂5 ≡ γ5(1 − 2aD) = −

Hw
√
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Path Integral Measure depends on gauge fields !

ṽi(x) = vj(x)
(

Q̃−1

)

ji

c̃i = Q̃ijcj

det Q̃
complex 
phase !

Narayanan-Neuberger(1993) 



v
(b)
j (x) =

(

γ5C
−1

⊗ iσ2

)

[vj(x)]∗

v
(a)
j (x) = vj(x)

a pair of doublets (a,b)

measure defined globally !

cf.  Nuberger(98)  Bar-Campos (00)  
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Q
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! topological sectors (⇐ the admissibility cond. )

mµν =
1

2πi

∑

s,t

ln U(1)
µν (x + sµ̂ + t ν̂)

Q =
∑

x∈Γ4

tr{γ5(1− D)(x , x)}|U(2)

[SU(2

m

Q

[U(1)]

SU(2)

 U(1) ~ T^n

! Global SU(2) anomaly (single SU(2) doublet)
O. Bär and I. Campos, Nucl. Phys. B581, 499 (2000)

non-contractible loops

Uµ(x) = eiAT
µ (x)g(x)g(x + µ̂)−1U[w](x, µ)V[m](x, µ)

U(1) degrees of freedom 

T
n[U(1)] × M [SU(2)]measure term smooth on

pure SU(2) theory

our approach

proof of the global integrability condition



introduction of Higgs field 
& Yukawa-couplings

−

∑

x

{

yt Q̄
−

φ̃ t+(x) + yb Q̄
−

φ b+(x) + c.c.
}

SEW = SG + SF +
∑

x

{∇µφ†∇µφ + V (φ)}

sphaleron on the lattice    

288 M. Garcfa Pdrez, P van Baal/Nuclear Physics B 468 (1996) 277-292 
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Fig. I. The scalar field (top) and the energy density (bottom) in a plane through the centre of the electroweak 

sphalerons for (a) MH = oo at MwL = 2.53, (b) MH = Mw and (c) MH = 3Mw, both at MwL = 4.0. 

The energy density is normalized to its peak value (0.093, 0.025 and O.Ol6M4/aw, respectively) and the 

scalar field p to its expectation value v ( (b)  Pmin/V = 0.238 and pmax/V = 0.908, (c) Pmin/V = 0.165 and 

pmax/V = 0.718 ). 

positive, with almost identical energies.) Initially, a negative value for the trace of  one 

of the links mislead us to believe that we were dealing with dislocations. 

Putting all constraints in we found for MH = c~ the window of allowed values to be 

MwL ~ 2.5, aMw <~ 0.40, for MH = Mw the window is MwL >~ 3.8, aMw <<. 0.60 

and for M H  = 3 Mw it is MwL >~ 4.0, aMw <. 0.65. 

Fig. 1 gives the energy density profiles of the electroweak sphaleron at each of the 

three Higgs masses. We should not directly use Eq. (2),  but first average over all 

directions of the links connected to a point x (without affecting the total energy), in 

order to compute the energy density at this point. Note that for MH = cx~ the solution 

is very much more peaked in the core region and will have larger lattice artefacts. The 

behaviour in the tail region is similar to the case where Mw = MH. For MH = 3Mw 

this tail region is dominated by the decay of the scalar field. Also plotted in Fig. 1 

is the behaviour of p ( x ) / v  for MH = Mw and MH = 3Mw at MwL = 4. Because 

of finite volume effects the scalar field does not exactly equal its expectation value at 

the boundary. Likewise it does not quite go to zero at the centre, which is also due to 

finite lattice spacing errors. To be precise we find for MH = Mw, Pmin = 0.238v and 

3 M Pmax = 0.908v, whereas for MH = ~ w, Pmin = 0.165v and Pmax = 0.718v, see Fig. 1. 

The way we obtained the required configurations was by first constructing a sphaleron 

for the frozen-length Higgs model, starting at N = 8. All links at the boundary were first 

put to the identity, which serves the purpose of positioning the solution in the centre 

of the lattice and of lifting the energy of the finite volume sphaleron by a considerable 

amount. The latter helps avoid getting trapped in that solution. Centering the energy 

profile will reduce the probability of getting stuck in a saddle point with spurious 

unstable modes due to the breakdown of translational and rotational invariance. We then 

release the frozen boundary condition and compute the Hessian after cooling to verify 

that we have one unstable mode only. This way the maximal energy density occurs at the 

U (2)
µ (x), U (1)

µ (x), φ(x) (x ∈ L
3)

saddle point cooling
Perez- van Baal (96)

cf. Moore (96)

fermion fluctuation det.

• sum over matsubara freq.

• one-loop renormarizations

• dependence on the Higgs, 
Yukawa coupling 

• comparison to other methods

cf. Bodeker et. (00)

Mt =

(

(v̄kDvj) yt(v̄kφ̃uj)
yt(ūkφ̃†vj) (ūkDuj)

)

κF (v, λ, yt, · · · ) ≡
∏

q,l

∏

ωn

detM/ detM0



• a perturbative computation of the EW contributions to muon 
g-2 (one-loop check,  beyond one-loop)

• a computation of the effect of quarks & leptons to the 
sphaleron rate at finite temp. (at one-loop, top quark?)

• a lattice construction of a model of dynamical EW symmetry 
breaking

• “SU(2) minimal walking” technicolor model can be put on 
the lattice (!)    Dietrich, Sannino, Tuominen (05)

• cf.  recent activitiy to study QCD-like theories in/close to 
the conformal window 

• T. Appelquist, G.T. Flemming and E.T. Neil (Yale Univ.) Phys.Rev.Lett.
100:171607,2008 (arXiv:0712.0609)

• ...

• some other non-perturbative applications ?

possible applications of lattice EW theory


