

INFN Eugenio Paoloni (INFN & Università di Pisa)

Saturday, January 16, 2010

The Super*B* team: Machine, Theory, Detector, Data Analysis

SuperB: a II generation e⁺e⁻ B factory $\mathcal{L} \equiv f_{\text{coll}} \frac{N^+ N^-}{2\pi \Sigma_x \Sigma_y} = 10^{36} \text{ cm}^{-2} \text{ s}^{-1} = 1 \text{ kHz/nb}$

	Units	HER	LER
Release		LNF 22-Jul-09	
Circumference	m	1315	
Frequency turn	Hz	2.28	E+05
# bunch		10	11
Frequency collision	Hz	2.31	E+08
Full crossing angle	Rad	0.0	60
Energy	GeV	6.7	4.18
Energy ratio		1.60	
βx	cm	2	3.2
βy	ст	0.032	0.02
coupling		0.0025	0.0025
٤X	nm	1.6	2.56
εγ	pm	0.004	0.0064
Bunch length	cm	0.5	0.5
Current	Α	2.12	2.12
# particles		5.74E+10	5.74E+10
σχ	micron	5.66	9.05
σy	micron	0.036	0.036
Piwinsky angle		26.52	16.58
Horizontal tune shift	%	0.17 0.45	
Vertical tune shift	%	11.70 11.70	
Luminosity	Hz/cm^2	1.02E+36	

The data samples

e^+e^-	\rightarrow	σ
$bar{b}$		$1.05 \ \mathrm{nb}$
c ar c		1.30 nb
$s \overline{s}$		$0.35 \ \mathrm{nb}$
$uar{u}$		1.39 nb
$dar{d}$		$0.35 \mathrm{nb}$

- B Physics @ Y(4S) :
 ~1 kHz x 1.5 10⁷ s / year = 15 10⁹ Y(4S)/year
- Dedicated runs @ Y(5S) for B_s Physics (possibles)
- D Physics:
 - ccbar continuum @ 10.58 GeV (1kHz)
 - Short (2 months) dedicated run @ $\psi(3770)$ (Cleo-C sample x 500 + boost)
- tau Physics:
 - Polarization of the e⁻ beam for tau CP studies

How can Super*B* pin down the 4th family parameters?

- Scenario:
 - There is an SM fermionic 4th family:
 4x4 CKM matrix, heavy 4th neutrino
- The Players:
 - SuperB (5 years of data taking starting around 2015) +
 Super KEKB
 - BaBar + Belle (datasets fully exploited)
 - CDF + D0 (collecting data till at least 2011...)
 - CMS, Atlas, LHCb (collecting data from now on)

Observable	B Factories (2 ab^{-1})	Super B (75 ab ⁻¹)	
$\sin(2\beta) \; (J/\psi K^0)$	0.018	$0.005~(\dagger)$	
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	
$\sin(2\beta) \ (Dh^0)$	0.10	0.02	
$\cos(2\beta) \ (Dh^0)$	0.20	0.04	
$S(J/\psi\pi^0)$	0.10	0.02	CP violating
$S(D^+D^-)$	0.20	0.03	0
$S(\phi K^0)$	0.13	0.02 (*)	measurements:
$S(\eta' K^0)$	0.05	0.01 (*)	
$S(K^0_S K^0_S K^0_S)$	0.15	0.02 (*)	SM framework
$S(K^0_s \pi^0)$	0.15	0.02 (*)	
$S(\omega K_s^0)$	0.17	0.03 (*)	to be recast
$S(f_0 K_s^0)$	0.12	0.02 (*)	
			ın SM4
$\gamma \ (B \to DK, \ D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	
$\gamma \ (B \to DK, D \to \text{suppressed star})$	tes) $\sim 12^{\circ}$	2.0°	
$\gamma \ (B \to DK, D \to \text{multibody stat})$	$(es) \sim 9^{\circ}$	1.5°	
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1–2°	
$\alpha \ (B \to \pi\pi)$	$\sim 16^{\circ}$	3°	
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1 - 2^{\circ} (*)$	
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	[0709.0451] SuperB:
$\alpha \text{ (combined)}$	$\sim 6^{\circ}$	$1 - 2^{\circ} (*)$	<u>A High-Luminosity Asymmetric e+ e-</u>
			Super Flavor Factory.
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, \ D^{\pm}K^{0}_{s}\pi^{\mp})$	20°	5°	Conceptual Design Report

Observable	B Factories (2 ab ⁻¹)	Super B (75 ab ⁻¹)
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	$1\%\;(*)$	$0.5\%\;(*)$
$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$ V_{ub} $ (inclusive)	$8\%\;(*)$	2.0% (*)
$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\mathcal{B}(B \to \mu \nu)$	visible	5%
$\mathcal{B}(B \to D \tau \nu)$	10%	2%
$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)
$\mathcal{B}(B \to \omega \gamma)$	30%	5%
$A_{CP}(B \to K^* \gamma)$	0.007(†)	0.004 († *)
$A_{CP}(B \to \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \to s\gamma)$	$0.012(\dagger)$	0.004(†)
$A_{CP}(b \to (s+d)\gamma)$	0.03	0.006(†)
$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)
$S(ho^0\gamma)$	possible	0.10
$A_{CP}(B \to K^*\ell\ell)$	7%	1%
$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%
$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$\mathcal{B}(B \to \pi \nu \bar{\nu})$		possible

[0709.0451] SuperB: A High-Luminosity Asymmetric e+ e-Super Flavor Factory. Conceptual Design Report Unitary triangle in 2020 assuming a *lot* of work on the experimental & theoretical side "It is tough to make predictions, especially about the future"

The Dream

The Nightmare

Unitary triangle in 2020 assuming a *lot* of work on the experimental & theoretical side "It is tough to make predictions, especially about the future"

The Nightmare

Tau Physics: LFV

Charm Physics

Running at charm threshold (SuperB specific)

Strong dynamics and CKM measurements

D decay form factor and decay constant @ 1% Dalitz structure useful for γ measurement

ξ ~1%, exclusive V_{ub} ~ few % syst. error on γ from Dalitz Model <1°

Rare decays FCNC down to 10⁻⁸

	Channel	Sensitivity
	$D^0 \rightarrow e^+ e^-, \ D^0 \rightarrow \mu^+ \mu^-$	1×10^{-8}
	$D^0 \rightarrow \pi^0 e^+ e^-, \ D^0 \rightarrow \pi^0 \mu^+ \mu^-$	2×10^{-8}
$\widehat{\boldsymbol{S}}$	$D^0 \rightarrow \eta e^+ e^-, \ D^0 \rightarrow \eta \mu^+ \mu^-$	3×10^{-8}
С)	$D^0 \to K^0_S e^+ e^-, \ D^0 \to K^0_S \mu^+ \mu^-$	3×10^{-8}
(4	$D^+ \rightarrow \pi^+ e^+ e^-, \ D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}
olo		
hsi	$D^0 \to e^{\pm} \mu^{\mp}$	1×10^{-8}
hre	$D^+ \to \pi^+ e^\pm \mu^\mp$	1×10^{-8}
®	$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$	2×10^{-8}
Ŭ	$D^0 \to \eta e^{\pm} \mu^{\mp}$	3×10^{-8}
	$D^0 \to K^0_S e^{\pm} \mu^{\mp}$	3×10^{-8}
	$D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+$	1×10^{-8}
	$D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+$	1×10^{-8}
	$D^+ \to \pi^- e^\pm \mu^\mp, \ D^+ \to K^- e^\pm \mu^\mp$	1×10^{-8}

D mixing		2.5 HAC-down 5-finy2te7 2	CPV allowed
Better studied using the high statistics collected at Y(4S)	10		0.5 1 1.5 2 2.5 x (%)
Mode	Observable	B Factories (2 ab ⁻¹)	Super B (75 ab ⁻¹)
$D^0 \to K^+ K^-$	y_{CP}	$2 - 3 \times 10^{-3}$	5×10^{-4}
$D^0 \to K^+ \pi^-$	y'_D	$2 - 3 \times 10^{-3}$	7×10^{-4}
	$x_D^{\prime 2}$	$1 - 2 \times 10^{-4}$	3×10^{-5}
$D^0 \to K^0_{\scriptscriptstyle S} \pi^+ \pi^-$	y_D	$2 - 3 \times 10^{-3}$	5×10^{-4}
	x_D	$2 - 3 \times 10^{-3}$	5×10^{-4}
Average	y_D	$1 - 2 \times 10^{-3}$	3×10^{-4}
	x_D	$2 - 3 \times 10^{-3}$	5×10^{-4}

CP Violation in mixing could now addressed

Charm Physics

Using the charm produced at Y(4S) +

Charm physics at threshold

0.3 ab⁻¹

Consider that running 2 month at threshold we will collect 500 times the stat. of CLEO-C

D mixing

Strong dynamics and CKM measurements

D decay form factor and decay constant @ 1% Dalitz structure useful for γ measurement

 ξ ~1%, exclusive V_{ub} ~ few % syst. error on γ from Dalitz Model <1°

2.5 HEAG-Ja

Rare decays FCNC down to 10⁻⁸

	Channel	Sensitivity
	$D^0 \rightarrow e^+ e^-, \ D^0 \rightarrow \mu^+ \mu^-$	1×10^{-8}
	$D^0 \rightarrow \pi^0 e^+ e^-, \ D^0 \rightarrow \pi^0 \mu^+ \mu^-$	2×10^{-8}
S	$D^0 \rightarrow \eta e^+ e^-, \ D^0 \rightarrow \eta \mu^+ \mu^-$	3×10^{-8}
Ū	$D^0 \to K^0_S e^+ e^-, \ D^0 \to K^0_S \mu^+ \mu^-$	3×10^{-8}
(4	$D^+ \rightarrow \pi^+ e^+ e^-, \ D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}
plo		
ŝ	$D^0 \to e^{\pm} \mu^{\mp}$	1×10^{-8}
Jre	$D^+ \to \pi^+ e^{\pm} \mu^{\mp}$	1×10^{-8}
®t	$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$	2×10^{-8}
U	$D^0 \to \eta e^{\pm} \mu^{\mp}$	3×10^{-8}
	$D^0 \to K^0_S e^{\pm} \mu^{\mp}$	3×10^{-8}
	$D^+ \rightarrow \pi^- e^+ e^+, \ D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}
	$D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+$	1×10^{-8}
	$D^+ \to \pi^- e^{\pm} \mu^{\mp}, \ D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8}

Bette the colle	r studied using high statistics ected at Y(4S)	10		
	Mode	Observable	B Factories (2 ab ⁻¹)	Super B (75 ab ⁻¹)
	$D^0 \to K^+ K^-$	y_{CP}	23×10^{-3}	5×10^{-4}
	$D^0 \to K^+ \pi^-$	y'_D	23×10^{-3}	7×10^{-4}
		$x_D^{\prime 2}$	12×10^{-4}	3×10^{-5}
	$D^0 \to K^0_{\scriptscriptstyle S} \pi^+ \pi^-$	y_D	23×10^{-3}	5×10^{-4}
		x_D	23×10^{-3}	5×10^{-4}
	Average	y_D	$1-2 \times 10^{-3}$	3×10^{-4}
		x_D	$2 - 3 \times 10^{-3}$	5×10^{-4}

CP Violation in mixing could now addressed

Running at charm threshold (SuperB specific)

30 40 50 2.5 x (%)

Saturday, January 16, 2010

Conclusions and Questions

- The 4th family have many way to play in Super*B*
 - CP violation
 - *FCNC in B and D mesons and in tau*
 - If it shows up early in hadron machines, then
 <u>much</u> of fun measuring all the consequences
- Are there golden modes?
- What campaign of measurements are useful to measure the 2 extra phases? What is the needed precision?