Tilman Plehn

4th Generation

Precision dat

Higgs physic

# Four Generations and Precision Constraints

Tilman Plehn

Heidelberg University

Beyond 3 Generations, Taipei, 2010

# Four Generations and Precision Constraints Tilman Plehn

4th Generation

Higgs physics

# Outline

Chiral 4th Generation

Electroweak precision data

Higgs physics

Tilman Plehn

#### 4th Generation

Some questions

Chiral 4th Generation

Precision data

simply phenomenological: why three generations? [review: Framton, Hung, Sher]

anomaly cancellation?
 light neutrinos and LEP?
 Majorana neutrinos in neutrinoless double beta decay?
 electroweak precision data?
 flavor constraints?

- ⇒ none of the constraints convincing ['Why there should not be a fourth generation'; Feyerabend]
- strongly interacting theory? [Holdom; Burdman & De Rold] electroweak baryogenesis? [Fok & Kribs] dark matter?
- ⇒ at least as interesting as other LHC scenarios

Tilman Plehn

4th Generation

### Chiral 4th Generation

### Some questions

- simply phenomenological: why three generations? [review: Framton, Hung, Sher]
- anomaly cancellation? light neutrinos and LEP? Majorana neutrinos in neutrinoless double beta decay? electroweak precision data? flavor constraints?
- ⇒ none of the constraints convincing ['Why there should not be a fourth generation'; Feyerabend]
  - strongly interacting theory? [Holdom: Burdman & De Rold] electroweak baryogenesis? [Fok & Kribs] dark matter?
- ⇒ at least as interesting as other LHC scenarios

#### The model [old story]

- complete additional generation  $[Q_4, U_4, D_4, L_4, e_4, \nu_4]$
- masses from Yukawas
- representations as Standard Model: no FCNC
- charged currents: (4  $\times$  4) fermion-mixing matrices [single-top (D0)  $V_{bt} \gtrsim 0.68$ ]
- neutrino mass:  $\mathcal{L} \sim y_4 \ \tilde{H} \bar{L}_4 \nu_{4B} + M \ \bar{\nu}_{4B}^c \nu_{4B}/2$

### Tilman Plehn

Precision data

Higgs physic

# Electroweak precision data

### Oblique parameters

- weak sector overconstrained
- universal terms contributing to  $sin^2\theta_W$  or  $m_W$  with given  $M_Z$  and  $G_F$ .
- states contributing to  $M_Z$

$$\alpha S = \frac{4s_w^2 c_w^2}{M_Z^2} \left[ \Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0) - \frac{c_{2w}}{c_w s_w} \Pi_{Z\gamma}(M_Z^2) - \Pi_{\gamma\gamma}(M_Z^2) \right]$$

– one generation of fermions  $[Y_{\ell} = -1/2; Y_q = 1/6]$ 

$$\Delta S = \frac{N_f}{6\pi} \left( 1 - 2Y \log \frac{m_u^2}{m_d^2} \right)$$

 $\Rightarrow$  counting mass degenerate new states [old problem for ETC]

# Electroweak precision data

#### Oblique parameters

- weak sector overconstrained
- universal terms contributing to  $sin^2\theta_W$  or  $m_W$  with given  $M_Z$  and  $G_F$ .
- states contributing to  $M_Z$

$$\alpha S = \frac{4s_w^2 c_w^2}{M_Z^2} \left[ \Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0) - \frac{c_{2w}}{c_w s_w} \Pi_{Z\gamma}(M_Z^2) - \Pi_{\gamma\gamma}(M_Z^2) \right]$$

- one generation of fermions  $[Y_{\ell} = -1/2; Y_q = 1/6]$ 

$$\Delta S = \frac{N_f}{6\pi} \left( 1 - 2Y \log \frac{m_u^2}{m_d^2} \right)$$

- ⇒ counting mass degenerate new states [old problem for ETC]
  - SU(2) symmetry of W and Z  $[m_Z \rightarrow \sqrt{\rho}m_Z]$

$$\alpha T = 4m_Z^2(\rho - 1) = \frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2}$$

- two Standard Model contributions  $[m_t^2 = m_b^2 + \delta]$ 

$$\begin{split} & \Delta^{(f)} \rho = \frac{3G_F}{8\sqrt{2}\pi^2} \left( m_t^2 + m_b^2 - 2\frac{m_t^2 m_b^2}{m_t^2 - m_b^2} \log \frac{m_t^2}{m_b^2} \right) \propto \frac{\delta^2}{m_W^4} \\ & \Delta^{(H)} \rho = -\frac{11G_F m_Z^2 s_w^2}{24\sqrt{2}\pi^2} \log \frac{m_H^2}{m_Z^2} \end{split}$$

 $\Rightarrow$  limit on  $m_H$  for known  $m_t$  [blue band plot]

Tilman Plehn

Precision data

Higgs physics

# On a fourth generation

#### Electroweak precision data [LEPEWWG]

 Particle Data Group:
 An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone...

Tilman Plehn

4th Generation

Precision data

Higgs physic

# On a fourth generation

#### Electroweak precision data [LEPEWWG]

Particle Data Group:

An extra generation of ordinary fermions is excluded at the  $6\sigma$  level on the basis of the S parameter alone...

This result assumes that...any new families are degenerate

Tilman Plehn

4th Generation

Precision data

# Electroweak precision data [LEPEWWG]

Particle Data Group:

On a fourth generation

An extra generation of ordinary fermions is excluded at the  $6\sigma$  level on the basis of the S parameter alone...

This result assumes that...any new families are degenerate

Just as the 3rd generation... [Holdom; Vysotsky,...; Kribs, TP, Spannowsky, Tait]

#### Tilman Plehn

4111 Generation

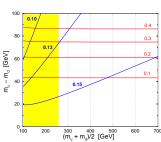
Precision data

Higgs physic

# On a fourth generation

#### Electroweak precision data [LEPEWWG]

Particle Data Group:


An extra generation of ordinary fermions is excluded at the  $6\sigma$  level on the basis of the S parameter alone...

This result assumes that...any new families are degenerate

Just as the 3rd generation... [Holdom; Vysotsky,...; Kribs, TP, Spannowsky, Tait]

- okay, got is, some people prefer a boring Z'
   but let's be honest for a change...
- for our purpose: leading S and T [ $\Delta U \sim 0$  as in SM]
- neutrino with Dirac mass
- remember doublet:  $\Delta S = N_f/(6\pi)(1-2Y\log m_u^2/m_d^2)$
- (1) keep  $\Delta S$  and  $\Delta T$  small

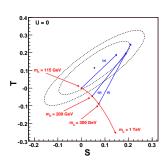
 $[\Delta S_q \text{ blue}; \Delta T_q \text{ red}]$ 



# Heavy quark masses

#### Electroweak precision data [LEPEWWG]

(2) old trick: compensate  $\Delta S \sim \Delta T > 0$  [Hill...]


small  $m_H$ :  $\Delta T \sim \Delta S \sim 0.2$ 

large  $\textit{m}_{\textit{H}} \colon \Delta \textit{T} \sim \Delta \textit{S} + 0.2 \sim 0.3$ 

- allowed parameter points  $[m_{\nu_4} = 100 \text{ GeV}, m_{\ell_4} = 155 \text{ GeV}]$ 

| $m_{u_4}$ | $m_{d_4}$ | $m_H$ | $\Delta S_{\text{tot}}$ | $\Delta T_{\text{tot}}$ |
|-----------|-----------|-------|-------------------------|-------------------------|
| 310       | 260       | 115   | 0.15                    | 0.19                    |
| 310       | 260       | 200   | 0.19                    | 0.20                    |
| 330       | 260       | 300   | 0.21                    | 0.22                    |
| 400       | 350       | 115   | 0.15                    | 0.19                    |
| 400       | 340       | 200   | 0.19                    | 0.20                    |
| 400       | 325       | 300   | 0.21                    | 0.25                    |

- within 68% CL of electroweak ellipse
- generic feature  $m_{u_A} > m_{d_A}$  allows for  $u_4 \to d_4 W$
- $\Delta S <$  0 but dangerous  $\it U$  for Majorana neutrino [Kniehl, Kohrs]



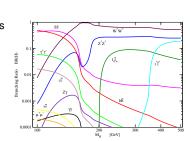
4th Generation

Higgs physics

## Higgs physics

#### Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]

- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]
- chiral fermions without Appelquist-Carazone decoupling


$$\Gamma_{H \to \gamma \gamma} = \frac{G_{\mu} \alpha^{2} m_{H}^{3}}{128 \sqrt{2} \pi^{3}} \left| \sum_{f} N_{c} Q_{f}^{2} A_{f}(\tau_{f}) + A_{W}(\tau_{W}) \right|^{2}$$

$$\Gamma_{H \to gg} = \frac{G_{\mu} \alpha^{2}_{s} m_{H}^{3}}{36 \sqrt{2} \pi^{3}} \left| \frac{3}{4} \sum_{f} A_{f}(\tau_{f}) \right|^{2} \quad \text{with} \quad \tau_{i} = \frac{m_{H}^{2}}{4 m_{i}^{2}}$$

$$A_{f}(\tau) = \frac{2}{\tau^{2}} \left[ \tau + (\tau - 1) f(\tau) \right]$$

$$A_{W}(\tau) = -\frac{1}{\tau^{2}} \left[ 2\tau^{2} + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau$$

(1) increase  $g_{ggH} o 3 imes g_{ggH}$  decrease  $g_{\gamma\gamma H} o 1/3 imes g_{\gamma\gamma H}$  light–Higgs BRs suppressed by H o jets

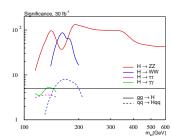


4tti Generation

Higgs physics

## Higgs physics

#### Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]


- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]
- chiral fermions without Appelquist-Carazone decoupling

$$\begin{split} & \Gamma_{H \to \gamma \gamma} = \frac{G_{\mu} \alpha^2 m_H^3}{128 \sqrt{2} \pi^3} \left| \sum_f N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2 \\ & \Gamma_{H \to gg} = \frac{G_{\mu} \alpha_s^2 m_H^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} \sum_f A_f(\tau_f) \right|^2 \quad \text{with} \quad \tau_i = \frac{m_H^2}{4 m_i^2} \\ & A_f(\tau) = \frac{2}{\tau^2} \left[ \tau + (\tau - 1) f(\tau) \right] \\ & A_W(\tau) = -\frac{1}{\tau^2} \left[ 2\tau^2 + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau \end{split}$$

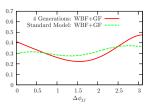
(1) increase  $g_{ggH} \rightarrow 3 \times g_{ggH}$ decrease  $g_{\gamma\gamma H} \rightarrow 1/3 \times g_{\gamma\gamma H}$ light–Higgs BRs suppressed by  $H \rightarrow$  jets

 $\sigma_{aa} BR_{ZZ} \rightarrow (5 \cdots 8) \sigma_{aa} BR_{ZZ}$ 

(2) factor 9 enhancement of  $gg \to H$  [Tevatron!?]  $\sigma_{ag} \, \mathsf{BR}_{\gamma\gamma} \to \sigma_{ag} \, \mathsf{BR}_{\gamma\gamma}$ 



Higgs physics


# Higgs physics

#### Dimension-5 Higgs couplings [e.g. SFitter-Higgs; got a hacked HDecay]

- loop effects of new particles [Arik, Arik, Cetin, Conca, Mailov, Sultansoy; Kribs, TP, Spannowsky, Tait]
- chiral fermions without Appelquist-Carazone decoupling

$$\begin{split} & \Gamma_{H \to \gamma \gamma} = \frac{G_{\mu} \alpha^2 m_H^3}{128 \sqrt{2} \pi^3} \left| \sum_f N_c Q_f^2 A_f(\tau_f) + A_W(\tau_W) \right|^2 \\ & \Gamma_{H \to gg} = \frac{G_{\mu} \alpha_s^2 m_H^3}{36 \sqrt{2} \pi^3} \left| \frac{3}{4} \sum_f A_f(\tau_f) \right|^2 \quad \text{with} \quad \tau_i = \frac{m_H^2}{4 m_i^2} \\ & A_f(\tau) = \frac{2}{\tau^2} \left[ \tau + (\tau - 1) f(\tau) \right] \\ & A_W(\tau) = -\frac{1}{\pi^2} \left[ 2\tau^2 + 3\tau + 3(2\tau - 1) f(\tau) \right] \quad \text{with} \quad f(\tau \to 0) \to \tau \end{split}$$

- (1) increase  $g_{ggH} \rightarrow 3 \times g_{ggH}$ decrease  $g_{\gamma\gamma H} \rightarrow 1/3 \times g_{\gamma\gamma H}$ light–Higgs BRs suppressed by  $H \rightarrow$  jets
- (2) factor 9 enhancement of  $gg \to H$  [Tevatron!?]  $\sigma_{gg} \, \mathsf{BR}_{\gamma\gamma} \to \sigma_{gg} \, \mathsf{BR}_{\gamma\gamma}$   $\sigma_{gg} \, \mathsf{BR}_{ZZ} \to (5 \cdots 8) \, \sigma_{gg} \, \mathsf{BR}_{ZZ}$
- (3) misleading WBF correlations
- (4) Higgs pair production the winner [Baur, TP, Rainwater]
- ⇒ if nothing else what a great straw man!



Tilman Plehn

4th Generation

Precision data

Higgs physics

# Higgs couplings

#### Coupling extraction at the LHC [Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

- light Higgs around 120 GeV: 10 main channels ( $\sigma \times BR$ ) [bb channel new]
- measurements:  $GF: H \rightarrow ZZ, WW, \gamma\gamma$

 $WBF: H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ 

 $VH: H \rightarrow b\bar{b}$  [Butterworth, Davison, Rubin, Salam]

 $t ar{t} H: H 
ightarrow \gamma \gamma, \emph{WW}, (\emph{b} ar{b}) ...$  [TP, Salam, Spannowsky]

- parameters: couplings  $W, Z, t, b, \tau, g, \gamma$  [plus masses]
- hope: cancel uncertainties

 $(WBF: H \rightarrow WW)/(WBF: H \rightarrow \tau\tau)$ 

 $(WBF: H \rightarrow WW)/(GF: H \rightarrow WW)...$ 

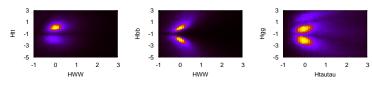
## Alternative best-fit points and error bars [Dührssen, Lafaye, TP, Rauch, Zerwas]

- all couplings varied around SM values  $g_{HXX} = g_{HXX}^{SM} (1 + \delta_{HXX})$
- $-\delta_{HXX}\sim -2$  means sign flip  $_{[g_{HWW}>0}$  fixed, only broken by loops]
- error bars for Standard Model hypothesis [smeared data point, 30fb<sup>-1</sup>]

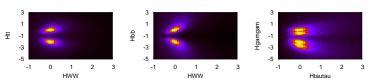
|                            | $\sigma_{symm}$ | $\sigma_{neg}$ | $\sigma_{pos}$ | $\sigma_{symm}$ | $\sigma_{neg}$ | $\sigma_{pos}$ |  |
|----------------------------|-----------------|----------------|----------------|-----------------|----------------|----------------|--|
| $\delta_{WWH}$             | $\pm 0.23$      | - 0.21         | +0.26          | ± 0.24          | - 0.21         | +0.27          |  |
| $\delta_{ZZH}$             | $\pm 0.50$      | -0.74          | + 0.30         | $\pm 0.44$      | -0.65          | +0.24          |  |
| $\delta_{t\bar{t}H}$       | ± 0.41          | -0.37          | +0.45          | $\pm 0.53$      | -0.65          | +0.43          |  |
| $\delta_{b\bar{b}H}$       | $\pm 0.45$      | -0.33          | +0.56          | $\pm 0.44$      | -0.30          | +0.59          |  |
| $\delta_{	au \bar{	au} H}$ | $\pm 0.33$      | -0.21          | +0.46          | $\pm 0.31$      | -0.19          | +0.46          |  |
| $\delta_{\gamma\gamma H}$  | _               | _              | _              | $\pm 0.31$      | -0.30          | +0.33          |  |
| $\delta_{ggH}$             | –               | _              | _              | $\pm 0.61$      | -0.59          | +0.62          |  |

Tilman Plehn

4th Generation


Precision data

Higgs physics


# SFitter — Higgs couplings at LHC

### Two-dimensional correlations and effective coupings

- (1) including effective  $g_{Hgg}$ 
  - sign of  $g_{Htt}$  fixed, correlated to  $g_{HWW}$  on other branch
- correlation of  $g_{Hbb}$  and  $g_{HWW}$  [loops and width]
- effective coupling  $g_{Hgg}$  accessible



- (2) including effective  $g_{H\gamma\gamma}$
- correlation of  $g_{Htt}$  and  $g_{HWW}$  on both branches
- still correlation of  $g_{Hbb}$  and  $g_{HWW}$  [width]
- effective coupling  $g_{H\gamma\gamma}$  more complex



# Tilman Plehn

4th Generation

Higgs physics

# A fourth generation at the LHC

- it's fun
- it's not ruled out
- it has many interesting faces

Tilman Plehn

4th Generation

Precision data

Higgs physics