How much space is left for a new family

Alexander Lenz

University of Regensburg

Mixing with the 4th Family I

exploratory study in collaboration with Markus Bobrowski, Johann Riedl, Jürgen Rohrwild; arXiv:0902.4883, PRD arXiv:0904.3971

As in any extension of the SM: more parameters appear

Add a complete 4th family (b', t', l^- ', ν') \Rightarrow new parameters:

- Quark masses: 2
- Lepton masses: 2
- V_{CKM4} : 3 angles + 2 phases
- V_{PMNS4} : 3 angles + 2 phases + Majorana-phases
- \Rightarrow at least 14 new parameters

"Rome was not built in a day": Start with flavor bounds on V_{CKM4}

Mixing with the 4th Family II

The general form of V_{CKM4} reads

$$V_{CKM4} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$$

- What tree-level constraints do we have?
- What can we say about the mixing with the 4th family, if we assume V_{CKM4} to be unitary?

Mixing with the 4th Family III

Tree-level constraints

V_{ud}	=	0.97418	\pm	0.00027	Nuclear Beta decay
V_{us}	=	0.2255	\pm	0.0019	Semileptonic K-decay
V_{ub}	=	0.00393	\pm	0.00036	Semileptonic B-decay
V_{cd}	=	0.230	\pm	0.011	Semileptonic D-decay
V_{cs}	=	1.04	\pm	0.06	Semi- /Leptonic D-decay
V_{cb}	=	0.0412	\pm	0.0011	Semileptonic B-decay
V_{tb}	>	0.74			Single Top-production

Mixing with the 4th Family IV

From the unitarity of V_{CKM4} one gets ($\lambda := V_{us} = 0.2255$)

$$|V_{ub'}|^2 = 0.0001 \pm 0.0014$$

$$\Rightarrow \text{ Error: } 0.037 \approx 0.74 \cdot \lambda^2 \approx 3.3 \cdot \lambda^3$$

$$V_{td}|^2 + |V_{t'd}|^2 = -0.0020 \pm 0.0055$$

$$\Rightarrow \text{ Error: } 0.074 \propto 1.5 \cdot \lambda^2$$

$$V_{ts}|^2 + |V_{t's}|^2 = -0.13 \pm 0.13$$

$$\Rightarrow \text{ Error: } 0.36 \approx 1.6 \cdot \lambda^1$$

$$|V_{cb'}|^2 = -0.14 \pm 0.18$$

$$\Rightarrow \text{ Error: } 0.42 \approx 1.9 \cdot \lambda^1$$

$$|V_{t'b}|^2 < 0.45$$

$$\Rightarrow |V_{t'b}| < 0.67 = 0.67 \cdot \lambda^0$$

Mixing with the 4th Family V

There are many exact parametrizations of V_{CKM4} in the literature

We use the one by Botella and Chau / Fritzsch and Plankl

We have now the following parameters:

- The angles $\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}$ with $s_{ij} := \sin \theta_{ij}, c_{ij} := \cos \theta_{ij}$
- The CP-violating phases $\delta_{13}, \delta_{14}, \delta_{24}$

 $V_{CKM4} =$

($c_{12}c_{13}c_{14}$	$c_{13}c_{14}s_{12}$	$c_{14}s_{13}e^{-i\delta_{13}}$	$s_{14}e^{-i\delta_{14}}$
	$\begin{array}{r} -c_{23}c_{24}s_{12} - c_{12}c_{24}s_{13}s_{23}e^{i\delta_{13}} \\ -c_{12}c_{13}s_{14}s_{24}e^{i(\delta_{14}-\delta_{24})} \end{array}$	$c_{12}c_{23}c_{24} - c_{24}s_{12}s_{13}s_{23}e^{i\delta_{13}} \\ -c_{13}s_{12}s_{14}s_{24}e^{i(\delta_{14}-\delta_{24})}$	$\scriptstyle c_{13}c_{24}s_{23}\\ -s_{13}s_{14}s_{24}e^{-i(\delta_{13}+\delta_{24}-\delta_{14})}$	$c_{14}s_{24}e^{-i\delta_{24}}$
	$\begin{array}{r} -c_{12}c_{23}c_{34}s_{13}e^{i\delta_{13}} + c_{34}s_{12}s_{23} \\ -c_{12}c_{13}c_{24}s_{14}s_{34}e^{i\delta_{14}} \\ +c_{23}s_{12}s_{24}s_{34}e^{i\delta_{24}} \\ +c_{12}s_{13}s_{23}s_{24}s_{34}e^{i(\delta_{13}+\delta_{24})} \end{array}$	$\begin{array}{c} -c_{12}c_{34}s_{23} - c_{23}c_{34}s_{12}s_{13}e^{i\delta_{13}} \\ -c_{12}c_{23}s_{24}s_{34}e^{i\delta_{24}} \\ -c_{13}c_{24}s_{12}s_{14}s_{34}e^{i\delta_{14}} \\ +s_{12}s_{13}s_{23}s_{24}s_{34}e^{i(\delta_{13}+\delta_{24})} \end{array}$	$\begin{array}{c} c_{13}c_{23}c_{34} \\ -c_{13}s_{23}s_{24}s_{34}e^{i\delta_{24}} \\ -c_{24}s_{13}s_{14}s_{34}e^{i(\delta_{14}-\delta_{13})} \end{array}$	$c_{14}c_{24}s_{34}$
	$\begin{array}{r} -c_{12}c_{13}c_{24}c_{34}s_{14}e^{i\delta_{14}} \\ +c_{12}c_{23}s_{13}s_{34}e^{i\delta_{13}} \\ +c_{23}c_{34}s_{12}s_{24}e^{i\delta_{24}} - s_{12}s_{23}s_{34} \\ +c_{12}c_{34}s_{13}s_{23}s_{24}e^{i(\delta_{13}+\delta_{24})} \end{array}$	$\begin{array}{r} -c_{12}c_{23}c_{34}s_{24}e^{i\delta_{24}} + c_{12}s_{23}s_{34} \\ -c_{13}c_{24}c_{34}s_{12}s_{14}e^{i\delta_{14}} \\ +c_{23}s_{12}s_{13}s_{34}e^{i\delta_{13}} \\ +c_{34}s_{12}s_{13}s_{23}s_{24}e^{i(\delta_{13}+\delta_{24})} \end{array}$	$\begin{array}{r} -c_{13}c_{23}s_{34} \\ -c_{13}c_{34}s_{23}s_{24}e^{i\delta}24 \\ -c_{24}c_{34}s_{13}s_{14}e^{i(\delta_{14}-\delta_{13})} \end{array}$	$c_{14}c_{24}c_{34}$

Mixing with the 4th Family VI

Strategy

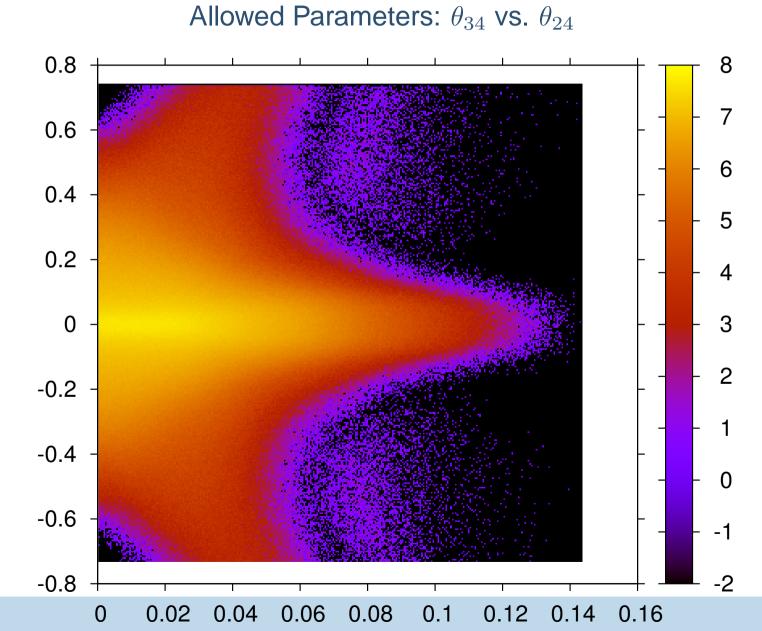
- 1. Create randomly 10^{10} data points for
 - The angles $\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}$
 - The CP-violating phases $\delta_{13}, \delta_{14}, \delta_{24}$
 - The mass m'_t (set $m'_b = m'_t 55 \text{ GeV}$)
 - Calculate elements of all V_{CKM4} elements exactly!
- 2. Check if tree level constraints are full-filled
- 3. Check if FCNC constraints are full-filled

 $\Rightarrow 10^7 (10^5)$ data points survive

Mixing with the 4th Family VII

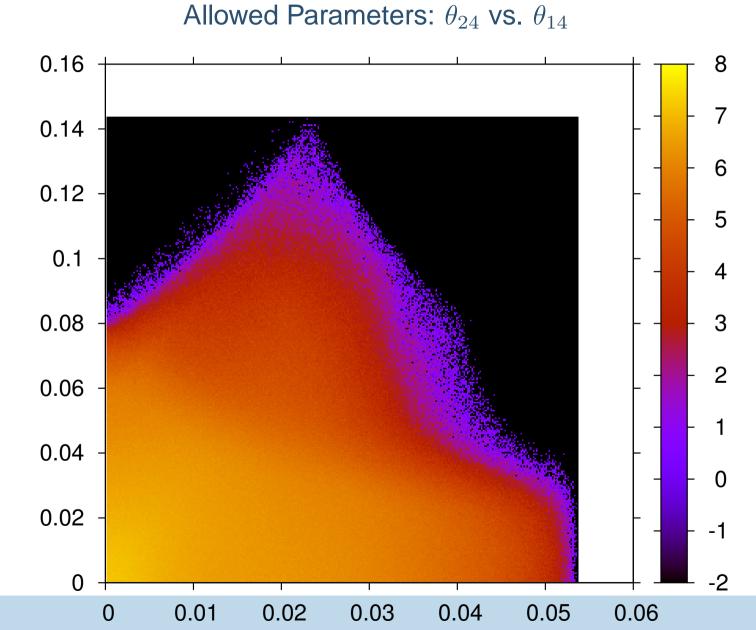
Bounds from FCNC: $\begin{array}{c} \underline{b} \\ \underline{d} \\ \underline{d}$

• *K*-Mixing: $Re(\Delta_K) = 1 \pm 0.5 (0.25)$ $Im(\Delta_K) = 0 \pm 0.3 (0.15)$

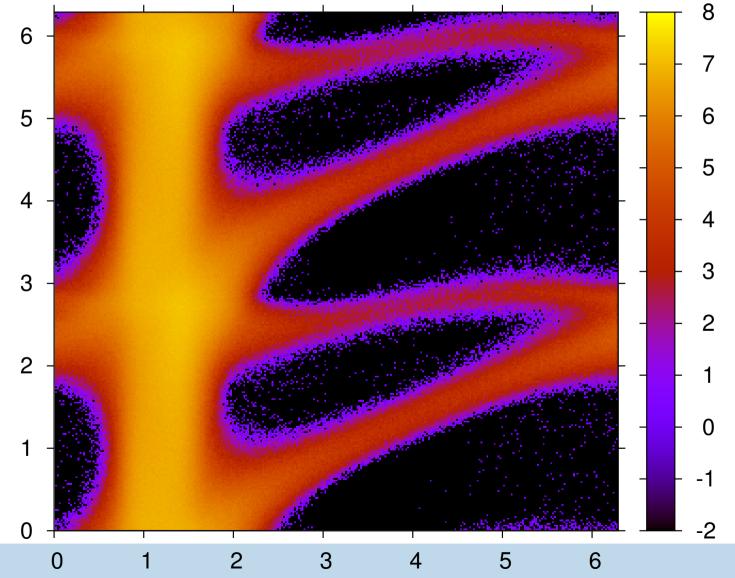

• B_d -Mixing: $|\Delta_{B_d}| = 1 \pm 0.3 (0.1)$ $Arg(\Delta_{B_d}) = 0 \pm 10^\circ (5^\circ)$

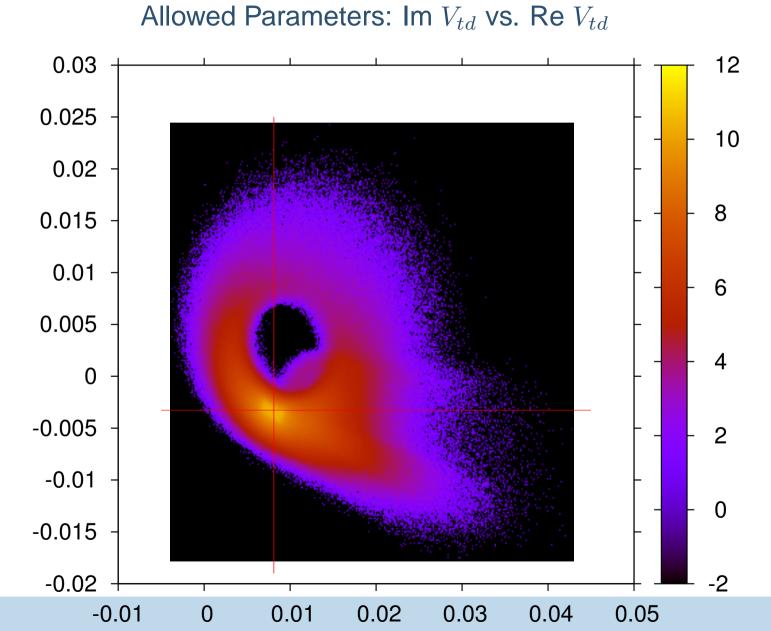
• B_s -Mixing: $|\Delta_{B_s}| = 1 \pm 0.3 (0.1)$ $Arg(\Delta_{B_s}) =$ free

 $\bullet b \to s\gamma \qquad \qquad \Delta_{b \to s\gamma} = 1 \pm 0.15 \,(0.07)$

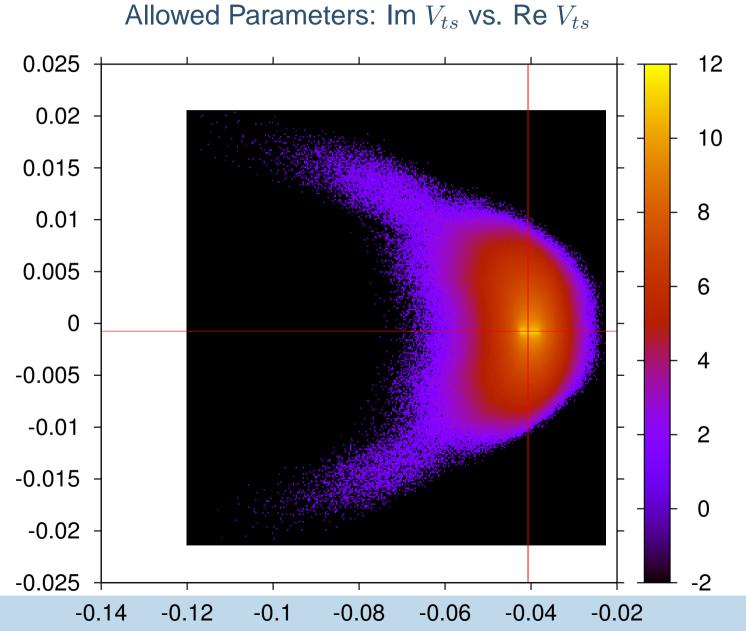


Mixing with the 4th Family VIII


Mixing with the 4th Family IX


Mixing with the 4th Family X

Allowed Parameters: δ_{14} vs. δ_{13}



Mixing with the 4th Family XI

Mixing with the 4th Family XII

January 14, 2009, Taipei - p. 13/32

Mixing with the 4th Family XIII

Allowed Parameters: Im V_{tb} vs. Re V_{tb} 14 0.0006 12 0.0004 10 0.0002 8 0 6 4 -0.0002 2 -0.0004 0 -0.0006 -2 0.75 0.85 0.9 0.95 0.8

Mixing with the 4th Family XIV

Result:

- As expected: most points belong to SM3 like parameters
- Unexpected: large mixing not yet excluded

 V_{td}, V_{ts}, V_{tb} can differ considerably from SM3-fit values

Ultraconservative allowed ranges

$$\begin{array}{rcl} \theta_{14} & \leq & 0.04 \approx 1.27\lambda^2 \\ \theta_{24} & \leq & 0.25 \approx 0.9\lambda^1 \\ \theta_{34} & \leq & 0.8 \approx 0.8\lambda^0 \\ \delta_{14}, \delta_{24} & \leq & 2\pi \end{array}$$

No "nice" Wolfenstein expansion possible

Mixing with the 4th Family XV

Unexpected regions in the allowed parameter space

$$\begin{aligned} & \pmb{x_{14}} = 0.8617, \qquad \pmb{y_{14}} = 0.8838 \\ & \theta_{24} = 0.08367, \qquad \theta_{34} = 0.5574, \quad \delta_{24} = 0.3149, \\ & m_t = 160 \; \text{GeV}, \qquad m_{t'} = 503.3 \; \text{GeV}, \quad m_c = 1.2 \; \text{GeV} \end{aligned}$$

leads to

$$\Delta_{K} = 1.012 + 0.139i$$

$$\Delta_{B_{d}} = 0.718 - 0.040i = 0.72 e^{i3.2^{\circ}}$$

$$\Delta_{B_{s}} = 0.6393 - 0.5353i = 0.834 e^{-i39.9^{\circ}}$$

$$\Delta_{b \to s\gamma} = 1.041$$

and

$ V_{td} $	=	0.012	VS.	0.00874 ± 0.0004
$ V_{ts} $	=	0.08	VS.	0.0407 ± 0.0010
$ V_{tb} $	=	0.84	VS.	0.99913 ± 0.0004

Mixing with the 4th Family XVI

Why is this not seen in CKM-Fits?

Mixing with the 4th Family XVII

Why is this not seen in CKM-Fits?

Nature might be nasty Large Effects cancel and imitate the SM3 result

Mixing with the 4th Family XVIII

Why is this not seen in CKM-Fits?

Split up the contributions as

$$\frac{M_{12}^{SM4}}{M_{12}^{SM3}} = 1 + \left(\frac{M_{12}^{t,VCKM4}}{M_{12}^{t,VCKM3}} - 1\right) + \frac{M_{12}^{t',VCKM4}}{M_{12}^{t,VCKM3}}$$

With our previous example we obtain

$$\frac{M_{B_s,12}^{SM4}}{M_{B_s12}^{SM3}} = 1 + (1.48304 - 0.986885I) + (-1.84369 + 0.451341I)$$
$$= 0.6393 - 0.5353i = 0.834 e^{-i39.9^{\circ}}$$

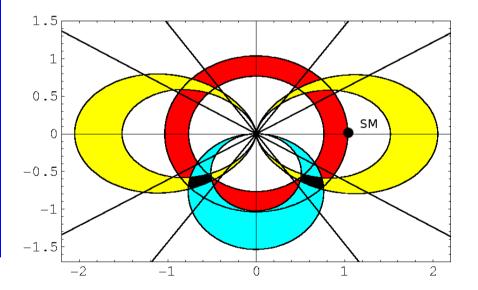
Nature might be nasty Large Effects cancel and imitate the SM3 result

New Physics in B_s mixing? I

A.L., Nierste, hep-ph/0612167

$$\Gamma_{12,s} = \Gamma_{12,s}^{\mathrm{SM}}, \qquad M_{12,s} = M_{12,s}^{\mathrm{SM}} \cdot \Delta_s; \qquad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Delta M_s = 2|M_{12,s}^{\rm SM}| \cdot |\Delta_s|$$


$$\Delta \Gamma_s = 2|\Gamma_{12,s}| \cdot \cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)$$

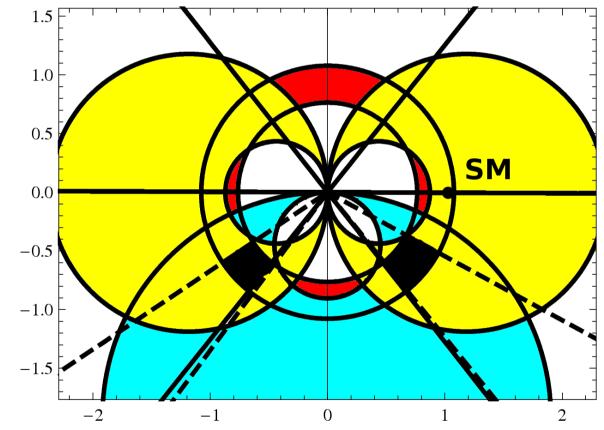
$$\frac{\Delta \Gamma_s}{\Delta M_s} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$a_{fs}^s = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\sin\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$\sin(\phi_s^{\rm SM}) \approx 1/240$$

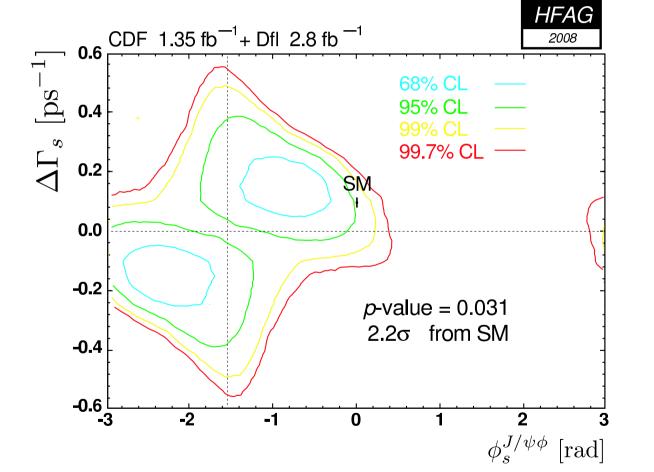
For $|\Delta_s| = 0.9$ and $\phi_s^{\Delta} = -\pi/4$ one gets the following bounds in the complex Δ -plane:

New Physics in B_s Mixing II

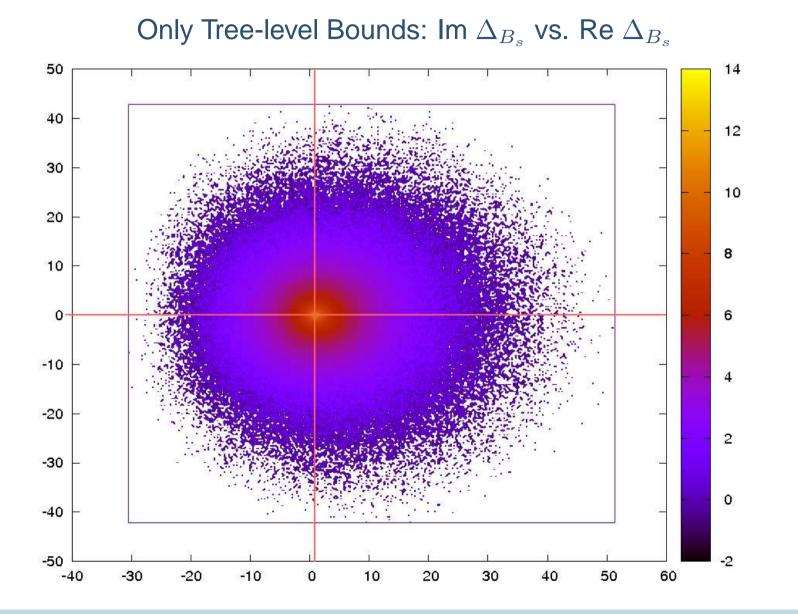

Current exp. bounds:

$\blacksquare \Delta M_s$

- Dimuonasymmetry
- A_{sl}^s direct
- $\Delta\Gamma, \Phi_s \ (B_s \to J/\Psi\Phi)$ combined tagged number in progress

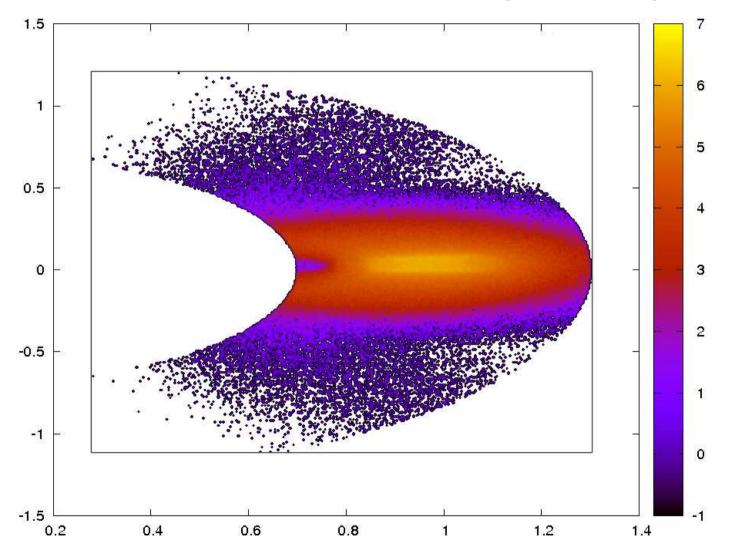

Analyses

- A. L., U. Nierste, CKMfitter in preparation
- UT-Fit, arXiv:0803.0659,
 3.7 σ deviation

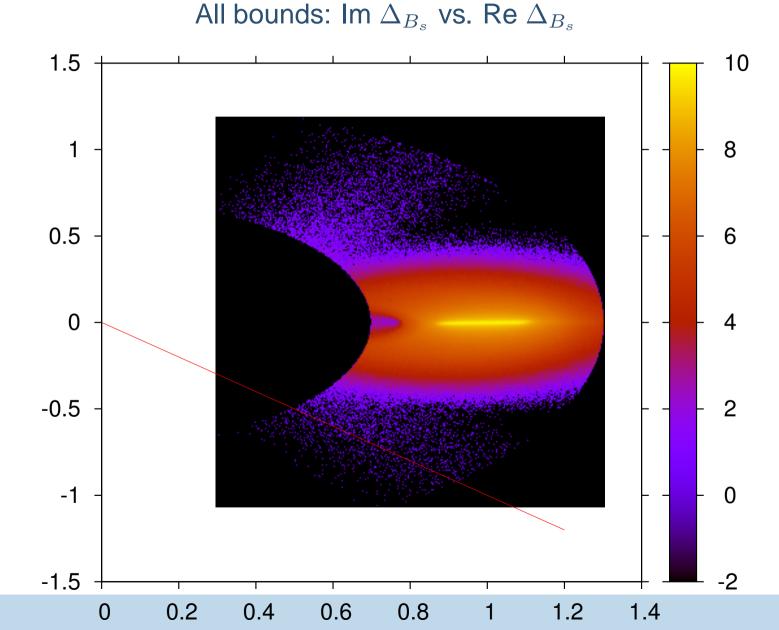

TeVatron is trying hard to find new physics before LHC: see talk by D. Zieminska

Current consensus: 2.2-2.9 σ deviation from SM: CKMfitter, HFAG, UTfit

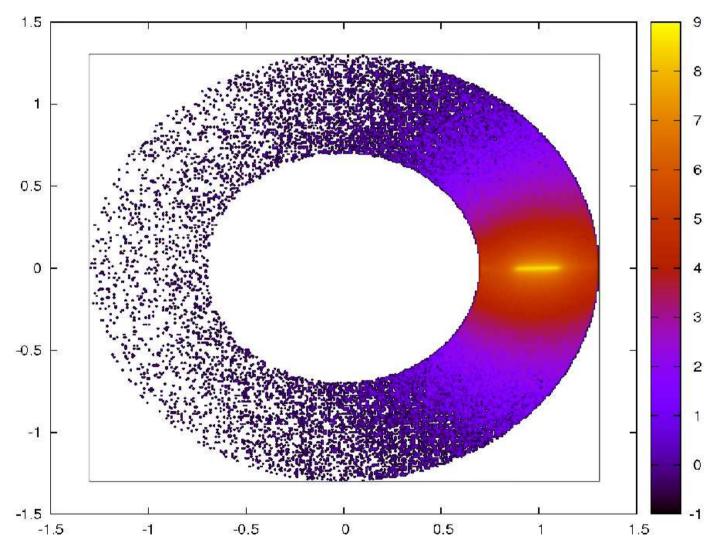
New Physics in B_s **mixing = 4th family? I**



Tree-level+ $b \rightarrow s\gamma$: Im Δ_{B_s} vs. Re Δ_{B_s} -2 -4 -6 -8 -2


New Physics in B_s **mixing = 4th family? III**

Tree-level+ $b \rightarrow s\gamma + \Delta M_s$: Im Δ_{B_s} vs. Re Δ_{B_s}


New Physics in B_s **mixing = 4th family? IV**

New Physics in B_s **mixing = 4th family? V**

All bounds but $b \to s\gamma$: Im Δ_{B_s} vs. Re Δ_{B_s}

Why exploratory?

- QCD in $b \rightarrow s\gamma$ naive only CKM times Inami-Lim Determine full \mathcal{H}_{eff} for SM4
- Many Flavor observables missing
 Include more flavor observables, e.g. $B_s \rightarrow \mu\mu$, ...
- No electro-weak observable included Include S,T,U — R_b Include full dependence on V_{CKM} (typically V_{tb} = 1) Chanowitz excluded 3 of our numerous unexpected data points Work in progress with M. Bobrowski, J. Rohrwild, J. Riedl, O. Eberhardt thanks to J. Erler for many explanations
- Our approach has no statistical meaning yet Make a fit - like the CKMfit Collaboration with H. Lacker and U. Nierste

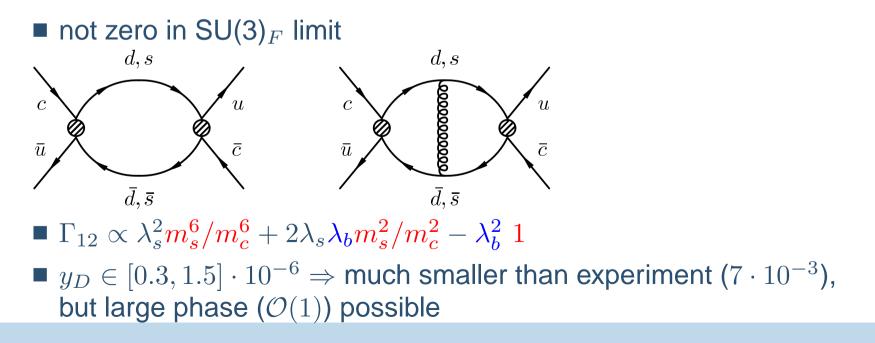
What do we need to constrain V_{CKM4} further?

- More precise determination of V_{cd} and V_{cs} Need e.g. f_{D_s} , $D \to K$ form factor
- More precise determination of V_{tb} Single top production at TeVatron
- Tree level determination of V_{td} and V_{ts} possible?
- Precise determination of all mixing quantities

Final Experimental work

• Find fourth family

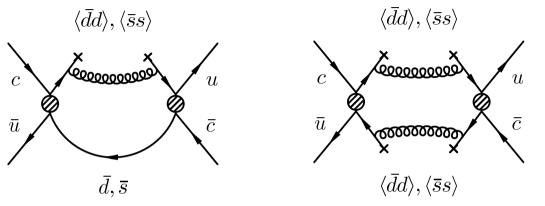
SM predictions for Γ_{12} in D-mixing I


in collaboration with M. Bobrowski, J. Riedl, J. Rohrwild; arXiv:0904.3971

$$\Gamma_{12} = -\lambda_s^2 \Gamma_{ss} - \lambda_s \lambda_d \Gamma_{sd} - \lambda_d^2 \Gamma_{dd}$$

with
$$\lambda_d + \lambda_s + \lambda_b = 0$$
 and $\lambda_x = V_{cx}V_{ux}^*$.

If $\lambda_b \approx 0 \Rightarrow \Gamma_{12}$ real and vanishes in the SU(3)_F limit


 $GIM cancellations: \Gamma_{12} = -\lambda_s^2 \left(\Gamma_{ss} - 2\Gamma_{sd} + \Gamma_{dd}\right) + 2\lambda_s \lambda_b \left(\Gamma_{sd} - \Gamma_{dd}\right) - \lambda_b^2 \Gamma_{dd}$

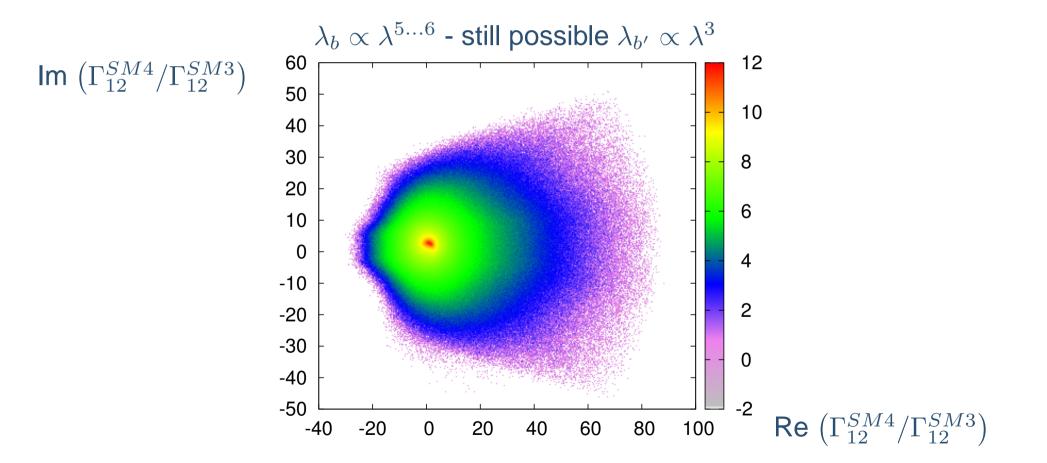
SM predictions for Γ_{12} in D-mixing II

Idea: higher orders in HQE might be dominant if GIM is less pronounced

naive expectation for a single diagram:

y_D	no GIM	with GIM	
D = 6, 7	$2 \cdot 10^{-2}$	$5 \cdot 10^{-7}$	
D = 9	$5 \cdot 10^{-4}$???	
D = 12	$2 \cdot 10^{-5}$???	

? Can one obtain $y_D^{Exp.}$?


?How big can ϕ be?

SM4 predictions for Γ_{12} in D-mixing

Overseen: Large Effects in Γ_{12} in D-mixing due to NP possible!

 $\Gamma_{12} = -\lambda_s^2 \left(\Gamma_{ss} - 2\Gamma_{sd} + \Gamma_{dd} \right) + 2\lambda_s (\lambda_b + \lambda_{b'}) \left(\Gamma_{sd} - \Gamma_{dd} \right) - (\lambda_b + \lambda_{b'})^2 \Gamma_{dd}$

