How much space is left for a new family

Alexander Lenz
University of Regensburg

Mixing with the 4th Family I

exploratory study in collaboration with
Markus Bobrowski, Johann Riedl, Jürgen Rohrwild; arXiv:0902.4883, PRD arXiv:0904.3971

As in any extension of the SM: more parameters appear

Add a complete 4th family (b', $\left.\mathrm{t}^{\prime}, l^{-}, \nu^{\prime}\right) \Rightarrow$ new parameters:

■ Quark masses: 2
■ Lepton masses: 2

- $V_{C K M 4}: 3$ angles +2 phases
- $V_{P M N S 4}: 3$ angles +2 phases + Majorana-phases
\Rightarrow at least 14 new parameters
"Rome was not built in a day" : Start with flavor bounds on $V_{C K M 4}$

Mixing with the 4th Family II

The general form of $V_{C K M 4}$ reads

$$
V_{C K M 4}=\left(\begin{array}{cccc}
V_{u d} & V_{u s} & V_{u b} & V_{u b^{\prime}} \\
V_{c d} & V_{c s} & V_{c b} & V_{c b^{\prime}} \\
V_{t d} & V_{t s} & V_{t b} & V_{t b^{\prime}} \\
V_{t^{\prime} d} & V_{t^{\prime} s} & V_{t^{\prime} b} & V_{t^{\prime} b^{\prime}}
\end{array}\right)
$$

- What tree-level constraints do we have?
- What can we say about the mixing with the 4th family, if we assume $V_{C K M 4}$ to be unitary?

Mixing with the 4th Family III

Tree-level constraints

$V_{u d}$	$=0.97418$	± 0.00027	
Nuclear Beta decay			
$V_{u s}$	$=0.2255$	± 0.0019	
Semileptonic K-decay			
$V_{u b}$	$=0.00393$	± 0.00036	
Semileptonic B-decay			
$V_{c d}$	$=0.230$	± 0.011	
$V_{c s}=1.04$	± 0.06	Semileptonic D-decay	
$V_{c b}=0.0412$	± 0.0011	Semi-/Leptonic D-decay	
$V_{t b}>0.74$			Singleptonic B-decay

Mixing with the 4th Family IV

From the unitarity of $V_{C K M 4}$ one gets $\left(\lambda:=V_{u s}=0.2255\right)$

$$
\begin{aligned}
\left|V_{u b^{\prime}}\right|^{2} & =0.0001 \pm 0.0014 \\
& \Rightarrow \text { Error:0.037 } \approx 0.74 \cdot \lambda^{2} \approx 3.3 \cdot \lambda^{3} \\
\left|V_{t d}\right|^{2}+\left|V_{t^{\prime} d}\right|^{2} & =-0.0020 \pm 0.0055 \\
& \Rightarrow \text { Error: } 0.074 \propto 1.5 \cdot \lambda^{2} \\
\left|V_{t s}\right|^{2}+\left|V_{t^{\prime} s}\right|^{2} & =-0.13 \pm 0.13 \\
& \Rightarrow \text { Error: } 0.36 \approx 1.6 \cdot \lambda^{1} \\
\left|V_{c b^{\prime}}\right|^{2} & =-0.14 \pm 0.18 \\
& \Rightarrow \text { Error: } 0.42 \approx 1.9 \cdot \lambda^{1} \\
\left|V_{t^{\prime} b}\right|^{2} & <0.45 \\
& \Rightarrow\left|V_{t^{\prime} b}\right|<0.67=0.67 \cdot \lambda^{0}
\end{aligned}
$$

Mixing with the 4th Family V

There are many exact parametrizations of $V_{C K M 4}$ in the literature
We use the one by Botella and Chau / Fritzsch and Plankl
We have now the following parameters:
■ The angles $\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}$ with $s_{i j}:=\sin \theta_{i j}, c_{i j}:=\cos \theta_{i j}$

- The CP-violating phases $\delta_{13}, \delta_{14}, \delta_{24}$

$$
V_{C K M 4}=
$$

$c_{12}{ }^{c} 13{ }^{c} 14$
$c_{13} c_{14}{ }^{s} 12$
$c_{14} s_{13} e^{-i \delta_{13}}$
$s_{14} e^{-i \delta_{14}}$
$-c_{23} c_{24} s_{12}-c_{12} c_{24} s_{13} s_{23} e^{i \delta_{13}}$
$-c_{12} c_{13} s_{14} s_{24} e^{i\left(\delta_{14}-\delta_{24}\right)}$
$c_{12} c_{23} c_{24}-c_{24} s_{12} s_{13} s_{23} e^{i \delta_{13}}$
$c_{13}{ }^{c_{24} s_{23}}$
$c_{14} s_{24} e^{-i \delta_{24}}$
$-c_{12} c_{23} c_{34} s_{13} e^{i \delta_{13}}+c_{34} s_{12} s_{23}$
$-c_{12} c_{34} s_{23}-c_{23} c_{34} s_{12} s_{13} e^{i \delta_{13}}$
$c_{13}{ }^{c_{23}}{ }^{c} 34$
$c_{14} c_{24}{ }^{s} 34$
$-c_{12} c_{13} c_{24}{ }^{s} 14^{s} 34 e^{i \delta_{14}}$
$+c_{23^{s}}^{12^{s}{ }_{24}{ }^{s} 34} e^{i \delta_{24}}$
$-c_{12} c_{23} s_{24} s_{34} e^{i \delta_{24}}$
$-c_{13} c_{24^{s}} 12^{s_{14}}{ }^{s_{34}} e^{i \delta_{14}}$
$-c_{13} s_{23} s_{24} s_{34} e^{i \delta_{24}}$
$+c_{12} s_{13} s_{23} s_{24} s_{34} e^{i\left(\delta_{13}+\delta_{24}\right)}$
$+s_{12} s_{13} s_{23} s_{24} s_{34} e^{i\left(\delta_{13}+\delta_{24}\right)}$
$-c_{12} c_{13} c_{24} c_{34}{ }^{s} 14 e^{i \delta_{14}}$
$+c_{12} c_{23}{ }^{s} 13^{s} 34 e^{i \delta_{13}}$
$+c_{23} c_{34} s_{12} s_{24} e^{i \delta_{24}}-s_{12} s_{23}{ }^{s} 34$
$-c_{12} c_{23} c_{34} s_{24} e^{i \delta_{24}}+c_{12} s_{23} s_{34}$
$c_{14} c_{24}{ }^{c} 34$
$+c_{12} c_{34} s_{13} s_{23} s_{24} e^{i\left(\delta_{13}+\delta_{24}\right)}$

$$
-c_{13} c_{24} c_{34} s_{12} s_{14} e^{i \delta_{14}}
$$

$$
+c_{23} s_{12} s_{13} s_{34} e^{i \delta_{13}}
$$

$$
\begin{gathered}
-c_{13} c_{23} s_{34} \\
-c_{13} c_{34} s_{23} s_{24} e^{i \delta_{24}} \\
-c_{24} c_{34} s_{13} s_{14} e^{i\left(\delta_{14}-\delta_{13}\right)}
\end{gathered}
$$

$$
+c_{34} s_{12} s_{13} s_{23} s_{24} e^{i\left(\delta_{13}+\delta_{24}\right)}
$$

Mixing with the 4th Family VI

Strategy

1. Create randomly 10^{10} data points for

- The angles $\theta_{12}, \theta_{13}, \theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}$
- The CP-violating phases $\delta_{13}, \delta_{14}, \delta_{24}$
- The mass m_{t}^{\prime} (set $m_{b}^{\prime}=m_{t}^{\prime}-55 \mathrm{GeV}$)

Calculate elements of all $V_{C K M 4}$ elements exactly!
2. Check if tree level constraints are full-filled
3. Check if FCNC constraints are full-filled
$\Rightarrow 10^{7}\left(10^{5}\right)$ data points survive

Mixing with the 4th Family VII

- K-Mixing:

$$
\operatorname{Re}\left(\Delta_{K}\right)=1 \pm 0.5(0.25) \quad \operatorname{Im}\left(\Delta_{K}\right)=0 \pm 0.3(0.15)
$$

- B_{d}-Mixing:

$$
\left|\Delta_{B_{d}}\right|=1 \pm 0.3(0.1) \quad \operatorname{Arg}\left(\Delta_{B_{d}}\right)=0 \pm 10^{\circ}\left(5^{\circ}\right)
$$

- B_{s}-Mixing:

$$
\left|\Delta_{B_{s}}\right|=1 \pm 0.3(0.1) \quad \operatorname{Arg}\left(\Delta_{B_{s}}\right)=\text { free }
$$

- $b \rightarrow s \gamma$

$$
\Delta_{b \rightarrow s \gamma}=1 \pm 0.15(0.07)
$$

Mixing with the 4th Family VIII

Allowed Parameters: θ_{34} vs. θ_{24}

Mixing with the 4th Family IX

Allowed Parameters: θ_{24} vs. θ_{14}

Mixing with the 4th Family X

Allowed Parameters: δ_{14} vs. δ_{13}

Mixing with the 4th Family XI

Allowed Parameters: Im $V_{t d}$ vs. Re $V_{t d}$

12

10

8

6

4

2

0

2

Mixing with the 4th Family XII

Allowed Parameters: Im $V_{t s}$ vs. Re $V_{t s}$

Mixing with the 4th Family XIII

Allowed Parameters: Im $V_{t b}$ vs. Re $V_{t b}$

14

12

10

8

6

4

2

0
-2
0.75
0.85
0.9
0.95

1

Mixing with the 4th Family XIV

Result:

■ As expected: most points belong to SM3 like parameters

- Unexpected: large mixing not yet excluded
$V_{t d}, V_{t s}, V_{t b}$ can differ considerably from SM3-fit values

Ultraconservative allowed ranges

$$
\begin{aligned}
\theta_{14} & \leq 0.04 \approx 1.27 \lambda^{2} \\
\theta_{24} & \leq 0.25 \approx 0.9 \lambda^{1} \\
\theta_{34} & \leq 0.8 \approx 0.8 \lambda^{0} \\
\delta_{14}, \delta_{24} & \leq 2 \pi
\end{aligned}
$$

No "nice" Wolfenstein expansion possible

Mixing with the 4th Family XV

Unexpected regions in the allowed parameter space

$$
\begin{aligned}
x_{14}=0.8617, & y_{14}=0.8838 \\
\theta_{24}=0.08367, & \theta_{34}=0.5574, \quad \delta_{24}=0.3149 \\
m_{t}=160 \mathrm{GeV}, & m_{t^{\prime}}=503.3 \mathrm{GeV}, \quad m_{c}=1.2 \mathrm{GeV}
\end{aligned}
$$

leads to

$$
\begin{aligned}
\Delta_{K} & =1.012+0.139 i \\
\Delta_{B_{d}} & =0.718-0.040 i=0.72 e^{i 3.2^{\circ}} \\
\Delta_{B_{s}} & =0.6393-0.5353 i=0.834 e^{-i 39.9^{\circ}} \\
\Delta_{b \rightarrow s \gamma} & =1.041
\end{aligned}
$$

and

$$
\begin{array}{rlll}
\left|V_{t d}\right| & =0.012 & \text { vs. } & 0.00874 \pm 0.0004 \\
\left|V_{t s}\right| & =0.08 & \text { vs. } & 0.0407 \pm 0.0010 \\
\left|V_{t b}\right| & =0.84 & \text { vs. } & 0.99913 \pm 0.0004
\end{array}
$$

Mixing with the 4th Family XVI

Why is this not seen in CKM-Fits?

Mixing with the 4th Family XVII

Why is this not seen in CKM-Fits?

Nature might be nasty
Large Effects cancel and imitate the SM3 result

Mixing with the 4th Family XVIII

Why is this not seen in CKM-Fits?
Split up the contributions as

$$
\frac{M_{12}^{S M 4}}{M_{12}^{S M 3}}=1+\left(\frac{M_{12}^{t, V C K M 4}}{M_{12}^{t, V C K M 3}}-1\right)+\frac{M_{12}^{t^{\prime}, V C K M 4}}{M_{12}^{t, V C K M 3}}
$$

With our previous example we obtain

$$
\begin{aligned}
\frac{M_{B_{s}, 12}^{S M 4}}{M_{B_{s} 12}^{S M 3}} & =1+(1.48304-0.986885 I)+(-1.84369+0.451341 I) \\
& =0.6393-0.5353 i=0.834 e^{-i 39.9^{\circ}}
\end{aligned}
$$

Nature might be nasty
Large Effects cancel and imitate the SM3 result

New Physics in B_{s} mixing? I

A.L., Nierste, hep-ph/0612167

$$
\Gamma_{12, s}=\Gamma_{12, s}^{\mathrm{SM}}, \quad M_{12, s}=M_{12, s}^{\mathrm{SM}} \cdot \Delta_{s} ; \quad \Delta_{s}=\left|\Delta_{s}\right| e^{i \phi_{s}^{\Delta}}
$$

$$
\begin{aligned}
& \Delta M_{s}=2\left|M_{12, s}^{\mathrm{SM}}\right| \cdot\left|\Delta_{s}\right| \\
& \Delta \Gamma_{s}=2\left|\Gamma_{12, s}\right| \cdot \cos \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right) \\
& \frac{\Delta \Gamma_{s}}{\Delta M_{s}}=\frac{\left|\Gamma_{12, s}\right|}{\left|M_{12, s}^{\mathrm{SM}}\right|} \cdot \frac{\cos \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right)}{\left|\Delta_{s}\right|} \\
& a_{f s}^{s}= \frac{\left|\Gamma_{12, s}\right|}{\left|M_{12, s}^{\mathrm{SM}}\right|} \cdot \frac{\sin \left(\phi_{s}^{\mathrm{SM}}+\phi_{s}^{\Delta}\right)}{\left|\Delta_{s}\right|} \\
& \sin \left(\phi_{s}^{\mathrm{SM}}\right) \approx 1 / 240
\end{aligned}
$$

For $\left|\Delta_{s}\right|=0.9$ and $\phi_{s}^{\Delta}=-\pi / 4$ one gets the following bounds in the complex Δ-plane:

New Physics in B_{s} Mixing II

Current exp. bounds:

- ΔM_{s}
- Dimuonasymmetry
- $A_{s l}^{s}$ direct
- $\Delta \Gamma, \Phi_{s}\left(B_{s} \rightarrow J / \Psi \Phi\right)$ combined tagged number in progress

Analyses

- A. L., U. Nierste, CKMfitter in preparation

■ UT-Fit, arXiv:0803.0659, 3.7σ deviation

New Physics in B_{s} Mixing III

TeVatron is trying hard to find new physics before LHC: see talk by D. Zieminska

Current consensus: 2.2-2.9 σ deviation from SM: CKMfitter, HFAG, UTfit

New Physics in B_{s} mixing = 4th family? I

Only Tree-level Bounds: Im $\Delta_{B_{s}}$ vs. $\operatorname{Re} \Delta_{B_{s}}$

New Physics in B_{s} mixing = 4th family? II

Tree-level+ $b \rightarrow s \gamma: \operatorname{Im} \Delta_{B_{s}}$ vs. $\operatorname{Re} \Delta_{B_{s}}$

New Physics in B_{s} mixing = 4th family? III

New Physics in B_{s} mixing $=$ 4th family? IV

All bounds: Im $\Delta_{B_{s}}$ vs. $\operatorname{Re} \Delta_{B_{s}}$

New Physics in B_{s} mixing = 4th family? V

All bounds but $b \rightarrow s \gamma: \operatorname{Im} \Delta_{B_{s}}$ vs. $\operatorname{Re} \Delta_{B_{s}}$

Why exploratory?

■ QCD in $b \rightarrow s \gamma$ naive - only CKM times Inami-Lim Determine full $\mathcal{H}_{\text {eff }}$ for SM4
■ Many Flavor observables missing
Include more flavor observables, e.g. $B_{s} \rightarrow \mu \mu, \ldots$
■ No electro-weak observable included Include S,T,U - R_{b}
Include full dependence on $V_{C K M}$ (typically $V_{t b}=1$)
Chanowitz excluded 3 of our numerous unexpected data points
Work in progress with M. Bobrowski, J. Rohrwild, J. Riedl, O. Eberhardt thanks to J. Erler for many explanations

■ Our approach has no statistical meaning yet Make a fit - like the CKMfit

Collaboration with H. Lacker and U. Nierste

Wishlist

What do we need to constrain $V_{C K M 4}$ further?

- More precise determination of $V_{c d}$ and $V_{c s}$ - Need e.g. $f_{D_{s}}, D \rightarrow K$ form factor
- More precise determination of $V_{t b}$ - Single top production at TeVatron
- Tree level determination of $V_{t d}$ and $V_{t s}$ possible?
- Precise determination of all mixing quantities

Final Experimental work

- Find fourth family

SM predictions for Γ_{12} in D-mixing I

in collaboration with M. Bobrowski, J. Riedl, J. Rohrwild; arXiv:0904.3971

$$
\begin{gathered}
\Gamma_{12}=-\lambda_{s}^{2} \Gamma_{s s}-\lambda_{s} \lambda_{d} \Gamma_{s d}-\lambda_{d}^{2} \Gamma_{d d} \\
\text { with } \lambda_{d}+\lambda_{s}+\lambda_{b}=0 \text { and } \lambda_{x}=V_{c x} V_{u x}^{*} .
\end{gathered}
$$

If $\lambda_{b} \approx 0 \Rightarrow \Gamma_{12}$ real and vanishes in the $\operatorname{SU}(3)_{F}$ limit
GIMcancellations : $\Gamma_{12}=-\lambda_{s}^{2}\left(\Gamma_{s s}-2 \Gamma_{s d}+\Gamma_{d d}\right)+2 \lambda_{s} \lambda_{b}\left(\Gamma_{s d}-\Gamma_{d d}\right)-\lambda_{b}^{2} \Gamma_{d d}$

■ not zero in $\operatorname{SU}(3)_{F}$ limit

■ $\Gamma_{12} \propto \lambda_{s}^{2} m_{s}^{6} / m_{c}^{6}+2 \lambda_{s} \lambda_{b} m_{s}^{2} / m_{c}^{2}-\lambda_{b}^{2} 1$
■ $y_{D} \in[0.3,1.5] \cdot 10^{-6} \Rightarrow$ much smaller than experiment $\left(7 \cdot 10^{-3}\right)$, but large phase $(\mathcal{O}(1))$ possible

SM predictions for Γ_{12} in D-mixing II

Idea: higher orders in HQE might be dominant if GIM is less pronounced

naive expectation for a single diagram:

y_{D}	no GIM	with GIM
$D=6,7$	$2 \cdot 10^{-2}$	$5 \cdot 10^{-7}$
$D=9$	$5 \cdot 10^{-4}$	$? ? ?$
$D=12$	$2 \cdot 10^{-5}$	$? ? ?$

? Can one obtain $y_{D}^{E x p .}$?
?How big can ϕ be?

SM4 predictions for Γ_{12} in D-mixing

Overseen: Large Effects in Γ_{12} in D-mixing due to NP possible!

$$
\Gamma_{12}=-\lambda_{s}^{2}\left(\Gamma_{s s}-2 \Gamma_{s d}+\Gamma_{d d}\right)+2 \lambda_{s}\left(\lambda_{b}+\lambda_{b^{\prime}}\right)\left(\Gamma_{s d}-\Gamma_{d d}\right)-\left(\lambda_{b}+\lambda_{b^{\prime}}\right)^{2} \Gamma_{d d}
$$

