4th gen quarks at ATLAS

Direct Searches

Daniel Whiteson, UC Irvine 4th gen Jan 14, 2010

Motivation

4th generation

A Natural SM extension.

Source: AAAS

Tevatron searches

<u>t</u>′ m > 311 GeV

Cross-sections

LHC has much larger rates for heavy quarks

t' topologies

<u>1st/2nd gen decay</u>

<u>3rd gen decay</u>

Mixing possibilities

What does the CKM tell us?

$CKM_{4 \times 4}$	=	0.97377 ± 0.00027	0.2257 ± 0.0021	0.00431 ± 0.00030	< 0.044
		0.230 ± 0.011	0.957 ± 0.095	0.0416 ± 0.0006	< 0.46
		0.0074 ± 0.0008	0.0406 ± 0.0027	> 0.78	< 0.47
		< 0.063	< 0.46	< 0.47	> 0.57

From ATLAS SN-ATLAS-2008-069

Constraints on 4th gen mixing are fairly weak!

Signatures

Top-like:Wq WqDilepton:Ivq IvqLepton+jets:Ivq qqqAll-hadronic:qqq qqq

b-tags can probe flavor mixing

b' topologies

Top-like: WqWq

Signatures

Top-like+2W: WWb WWbDilepton:lvqqb lvqqbhalf-time same-charge!Lepton+jets:lvqqb qqqqbAll-hadronic:qqqqb qqqqb

backgrounds

t',b': Top-like I+jets top pairs W+jets Misidentified leptons (from multi-jets)

<u>t',b': Top-like dilepton</u>

top pairs Z+jets WW,WZ,ZZ,WY Misidentified leptons (from W+jets) <u>b': same-charge lepton</u> WZ,ZZ,WY

Misidentified lepton

(from W/Z+jets)

LHC-specific backgrounds

At Tevatron, true same-charge leptons are rare Primarily from trilepton processes

pp nature of LHC beams offers new background with true same-sign dileptons

ATLAS

ATLAS TDR

Mixing to 3rd generation

Light jet decays

Studies with parametric detector simulation.

From ATLAS SN-ATLAS-2008-069

b'

<u>Same-charge dileptons</u> Extend CDF approach Use W,t mass fitting

Hadronic W's

Angles between decay products becomes small

In hadronic mode, jets merge into one.

Leptonic W's

Similarly small angles for leptonic decay

Collinear approximation

Use lepton angle to resolve t' mass underconstraint in dilepton channel

Speaker's own plots Not ATLAS result

Conclusions

Fourth generation quark searches are important

ATLAS will have great discovery/exclusion power

Expect results competitive with Tevatron soon.