

Direct and Indirect Probes for New Heavy Fermions at D0

Elemér Nagy

CPPM and Fermilab

The Tevatron

B3G WS 14-Jan-2010

Run II Integrated Luminosity

19 April 2002 - 3 January 2010

Present talk includes analyses with 1 - 5.4 fb⁻¹ data

B3G WS 14-Jan-2010

The D0 Experiment

510 physicists from 89 institutes of 18 countries

B3G WS 14-Jan-2010

The D0 Detector

Charged track reconstruction in central tracker system: SMT + CFT in 2T solenoid field

Central Preshower (CPS) helps photon and electron pointing disentangle em and hadronic jets

Reconstruction of em and hadronic jets in a liquid argon calorimeter

Muon identification using scintillators and drift tubes in a 1.2 T toroidal field. Provides also timing information

Direct searches for new heavy fermions

In this talk we consider searches for long-lived new particles

Long-lived parents decaying into electron or photon pairs Limit of a quasi MI search interpreted as limit on $M_{b'}$

Limits set in the SUSY (GMSB, AMSB,...) framework,

Search for long-lived b' b'→Z+b

If $m_{b'} < m_t \rightarrow b'$ can travel even several meters The displaced vertex is reconstructed by the tracker (CDF) or using the calorimeter and CPS (D0)

Two $p_T > 20$ GeV em cluster selected in the calorimeter The central preshower (CPS) provides photon (or high pT electron) pointing The distance R between their intersection and the PV in the r-Φ plane determined

DØ 1.1 fb⁻¹

R_s (cm)

Cross section x BR limits

GMSB:
$$\chi_1^0 \rightarrow Z + \tilde{G}$$

The acceptance doesn't depend significantly on the original fermion's $(b', \chi,...)$ mass

$$p \overline{p} \rightarrow b' b' \rightarrow Zb + Zb \rightarrow e^+ e^- + X$$

1

Several meters of lifetime have been excluded for b' \rightarrow Z+b (m_{b'} < m_t)

CDF's published result is complementary. Displaced $Z \rightarrow \mu \mu$ decays have been studied using tracker information

If t' is vectorlike t' \rightarrow Z+t may exist

t' can be also long-lived

if mass mixing with the top quark is negligible (sin $\theta_1 < 10^{-8}$)

$$L = 3 \left(\frac{10^{-8}}{\sin \theta_L}\right)^2 \left(\frac{450 \text{ GeV}}{m_{t'}}\right)^3 \beta_{t'} [\text{cm}]$$

Production can be enhanced by a G' massive color octet field (see later)

B3G WS 14-Jan-2010

Search for Charged Massive long-lived (Stable) Particles

These CMSP's appear as muons in the detector, but they are slower: v~p/E Speed significance (sps): $(1-v)/\sigma_v$ σ_t ~2-3 ns in D0 muon detector

Select: 2 muons p_T >20 GeV at least 1 muon isolated cosmic ray veto sps > 0 for both muon cut optimized in the $M_{\mu\mu}$ vs sps₁*sps₂ plane depending on the CMSP mass

Background are muons of mismeasured time: estimated from data $Z \rightarrow \mu \mu$ (sps<0)

Data is compatible with expectation of the SM Observed 1-2 events (depending on M_{CMSP}) Typical background ~2 events for M_{CMSP} > 80 GeV

For long-lived chargino pair production in AMSB

Indirect searches for new heavy fermions

in SM Higgs production

Search for H→WW*

Search for G'→tt'→ttH→ttbb

B3G WS 14-Jan-2010

Search for H→WW*

Sensitive to > 3 SM generation since

- additional heavy fermion (F) loops in the dominant gg-tusion process enhances
 ~9 times the Higgs production cross section
- the WW* decay is the best to study the gg-fusion production the bb and gg final states are swamped by the QCD background

The WW* decay is dominant at high Higgs masses: $M_H > 135 \text{ GeV}$

Most recent D0 result used 5.4 fb⁻¹

(all data before the last summer shutdown)

Opposite sign (OS) charged leptons and MET

ee, eµ and µµ combinations (also from τ decays)

Will be considered later also: charged lepton + MET + jet-pair

Other final states (production and decay mechanisms) also considered but they are smaller:

W/Z associate production (Higgs Strahlung) ~ 10 smaller

Vector Boson (W/Z) Fusion (VBF) $q_1q_2 \rightarrow (V^*V'^*)q_3q_4 \rightarrow Hq_3q_4$ ~ 2 x smaller than Higgs Strahlung

Event selection

Final state		еµ	ee	μμ
Cut 0	Pre- selection	lepton ID, leptons with opposite charge and $p_T^{\mu} > 10$ GeV and $p_T^e > 15$ GeV invariant mass $M_{\ell\ell} > 15$ GeV $\mu\mu: \Delta \mathcal{R}(\mu, \text{jet}) > 0.1$ and $p_T^{\mu} > 20$ GeV for the leading μ		
Cut 1	$\Delta \phi(\ell, \ell) \text{ (rad)}$	< 2.0	< 2.0	< 2.0
Cut 2	Missing Transverse Energy ${\not\!\!\!E}_T ~({\rm GeV})$	> 20	> 20	> 25
Cut 3	E_T^{Scaled}	> 6	> 6	
Cut 4	$M_T^{min}(\ell, \not\!\!E_T)$ (GeV)	> 20	> 30	> 20

$$E_T^{\text{Scaled}} = \frac{E_T}{\sqrt{\sum_{\text{jets}} \left(\Delta E^{\text{jet}} \cdot \sin \theta^{\text{jet}} \cdot \cos \Delta \phi \left(\text{jet}, E_T\right)\right)^2}} \qquad \qquad M_T(l, E_T) = \sqrt{2p_T^l E_T \left(1 - \cos \Delta \phi (l, E_T)\right)}$$

B3G WS 14-Jan-2010

Best discriminating variable: $\Delta \phi(l^+, l^-)$

 $S_H = 0 \rightarrow$ the leptons prefer the same direction

Good agreement after final selection

NN for final discrimination between s/b

D0 all channels combined

CDF has obtained comparable limit on SM Higgs cross section (4.8 fb⁻¹)

Approximate sensitivity for a 4^{th} generation fermion can be obtained by a line at ~9 x SM

Determination of a precise limit on 4th generation fermions in a combined CDF-D0 analysis is underway

Search for t' in Higgs production

Proposed by B.Dobrescu, K.Kong, R.Mahbubani (JHEP 0906:001,2009, arXiv:0902.0792v2) Assuming: extended SU(3)₁xSU(3)₂ gauge sector of G₁ and G₂ color octet spin=1 fields, with coupling strength of h₁ and h₂ ($r = h_1/h_2$ relative strength) spontaneously broken to massless G (gluon) and massive G' fields t' vector like singlet of mass-mixing s_L = sin θ_L with top quark

Increases t't' pair production wrt gluon s-channel process (may explain CDF excess)

Search was carried out using 1 fb⁻¹ dataset

B3G WS 14-Jan-2010

Assuming W \rightarrow Iv (I = e,µ) and W \rightarrow qq decays giving rise to Ivqqbbbb final states one selects events with e/µ (p_T > 20 GeV) MET > 20 GeV (e+jets) or > 25 GeV (µ+jets) >=3 jets (p_T > 20 GeV) applying b-tag

b-tagging

Uses the fact that b-quarks has non-negligible finite life time Search for secondary vertex

Calculate jet lifetime probability (JLIP) from impact parameters Combine these informations in a Neural Network (NNipager

Background: tt, W+jets and multijet

Separated from signal using (b-tagged) jet multiplicity

B3G WS 14-Jan-2010

E. Nagy - New He

Select 24 sub-samples Electrons or muons 3,4,>4 jets 0,1,2,>3 b-tag

 $\sigma_{tt},\,\sigma_{ttH,} and\,\sigma_{W+j}$ fitted to the number of observed events

Data agrees with SM background:

 σ_{tt} agrees with SM value σ_{ttH} is compatible with 0

Limit obtained assuming that the event kinematics of $G \rightarrow ttH$ and $G' \rightarrow tt' \rightarrow ttH$ are the same

DØ Run II Preliminary (1fb⁻¹)

Summary

- Direct and indirect searches were presented for new heavy fermions at D0
- No such fermions have been yet discovered
- Limits on production cross sections, masses and lifetimes have been shown together with the corresponding CDF results
- Some of the limits were directly given in terms of possible 4th generation fermions
- More results on searches for heavy fermions will be coming soon

More details can be obtained from the D0 and CDF public web pages: http://www-d0.fnal.gov/Run2Physics/WWW/results.htm http://www-cdf.fnal.gov/physics/physics.html

B3G WS 14-Jan-2010

Thanks

Help from the Physics Group Conveners at D0

Gustaaf Brooijmans, Arnaud Duperrin (New Phenomena) Wade Fisher, Aurelio Juste, Krisztian Peters (Higgs Physics) Frederic Deliot, Aran Garcia-Bellido, Christian Schwanenberger (top Physics)

and from the analysers

is greatly appreciated!

Backup material

CHAMP Search for charged, massive stable particles (stop)

Select: 2 high p_T (p_T>40 GeV) slow (v < 0.9) penetrating (muon-like) tracks Reject cosmics Calculate mass: M²=p²(1/v²-1)

1 event remains beyond M > 100 GeV Distribution agrees with bg prediction

Determine: $v = d_{TOF}/(t_{TOF}-t_0)$ t_0 from $p_T < 20$ GeV particles in TOF and in COT track residuals

Estimate background by convoluting p^2 and $1/v^2$ -1 distributions of particles with 20 < pT < 40 GeV (mainly W \rightarrow Iv)

PRL 103, 021802 (2009)

Limit on tt_{bar} Resonances

E scale: 75 GeV

Event with 5 jets out of which 3 b-tagged

Artificial Neural Network

The neuron response function parameters are optimized by minimizing an error function which requires that the output value of signal events is close to 1 and that of the background events is close to 0

The Bayesian limit setting method

Calculates Bayesian posterior probability of R, p(R|N) with a flat prior $\pi(R)$ =const where R=($\sigma \times BR$)/($\sigma \times BR$)_{SM} and N is the ensemble of the observed number of events in all bins of the final variable distributions in all analysis channels

Determine $R_{0.95}$ defined as

$$\int_{0}^{R_{0.95}} p(R|N) dR = 0.95$$

Calculation of the Bayesian posterior probability p(R|N)

Combined likelihood with flat prior $\pi(R)$ and Gaussian $\pi(\theta_k)$ of the nuisance parameters θ_k :

$$\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}, \vec{\theta}) \times \pi(\vec{\theta}) = \prod_{i=1}^{N_C} \prod_{j=1}^{N_{bins}} \mu_{ij}^{n_{ij}} e^{-\mu_{ij}} / n_{ij}! \times \prod_{k=1}^{n_{np}} e^{-\theta_k^2/2}$$
$$\mu_{ij} = \mathsf{R} \mathsf{s}_{ij} + \mathsf{b}_{ij}$$

 \boldsymbol{s}_{ij} and \boldsymbol{b}_{ij} are the expected SM signal and background in channel i and bin j

p(R|N) is the integral of the likelihood \mathcal{L} over all variables except R

B3G WS 14-Jan-2010

The semi-frequentist or CLs limit setting method

Log-Likelihood-Ratio (LLR) as test statistics:

$$LLR = -2In \frac{P(N | H_1)}{P(N | H_0)}$$

$\rm H_{0}$ and $\rm H_{1}$ - test hypotheses of background w/o and w/ signal

- N ensemble of number of events
- P Poissonian pdf of N: $P = e^{-\mu}\mu^N/N!$ includes pdf of nuisance parameters θ: $exp[-\frac{(\theta - \theta_0)^2}{2\sigma_0^2}]$

Profiling:

LLR is minimized wrt the nuisance parameters

LLR_{obs} = LLR(N=Data) LLR_b = LLR(N=Background) LLR_{sb} = LLR(N=Signal+Background)

Confidence levels: $1-CL_b = p(LLR_b < LLR_{obs}|H_0)$ $CL_{sb} = p(LLR_{sb} > LLR_{obs}|H_1)$ $CL_s = CL_{sb}/CL_b$

A signal R=($\sigma x BR$)/($\sigma x BR$)_{SM} is excluded @ 95% CL if CL_s(R)= 0.05 i.e. 1-CL_s(R)= 0.95

It has been checked that the Bayesian and CLs methods give comparable results (~10%)

B3G WS 14-Jan-2010

$H \rightarrow \gamma \gamma$ search

Perspectives of the SM Higgs searches at the Tevatron

B3G WS 14-Jan-2010