$A_{CP}(K\pi), A_{FB}(K^*\ell^+\ell^-)$ and D^0 mixing as probe of 4th Generation

Mikihiko Nakao for the Belle collaboration

KEK, IPNS
mikihiko.nakao@kek.jp

at the Second Workshop on Beyond 3 Generation SM 2009.1.15, *Taipei*

4th generation and Belle physics

- Unitarity triangle does not close
- Many effects on loop processes $(A_{CP}(K\pi), A_{FB}(K^*\ell^+\ell^-), ...)$
- Large contributions to charm decays (D^0 mixing, CPV)

Belle/KEKB history — 1 ab^{-1} \bigcirc

(Belle S-W Lin *et al.,* Nature452,332(2008) 535MBB)

$$A_{CP} = \frac{N(\overline{B} \to f) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$$

 $A_{CP}(K^{+}\pi^{-}) = -0.094 \pm 0.018 \pm 0.008 = 300$ $A_{CP}(K^{+}\pi^{0}) = +0.07 \pm 0.03 \pm 0.01$ Differences:

- Color suppressed diagram
- EW penguin diagram

Both are small in SM, the latter could be large in NP

Sum rule

 $\delta_{K\pi} = A_{CP} \times \Gamma(K^+\pi^-) + A_{CP} \times \Gamma(K^0\pi^+) - 2A_{CP} \times \Gamma(K^+\pi^0) - 2A_{CP} \times \Gamma(K^0\pi^0)$

Branching fractions and $A_{CP}(B \rightarrow K^0 \pi^0)$

Branching fraction measurements (Belle PRL99,121601(2007) and Belle PRL98,181804(2007) 535MBB) $A_{CP}(K^0\pi^+) = +0.03 \pm 0.03 \pm 0.01$ $\mathcal{B}(K^0\pi^+) = (8.7 \pm 0.5 \pm 0.6) \times 10^{-6}$ $\mathcal{B}(K^+\pi^-) = (19.9 \pm 0.4 \pm 0.8) \times 10^{-6}$ $\mathcal{B}(K^+\pi^0) = (12.4 \pm 0.5 \pm 0.6) \times 10^{-6}$

$K^0\pi^0$ mode requires time-dependent measurement (Belle arxiv0809.4366(to appear in PRD), 657MBB)

$$A_{CP}(K^0\pi^0) = +0.14 \pm 0.13 \pm 0.06$$
$$\mathcal{B}(K^0\pi^0) = (8.7 \pm 0.5 \pm 0.6) \times 10^{-6}$$
$$\mathcal{S}(K^0\pi^0) = +0.67 \pm 0.31 \pm 0.08$$

 $A_{CP}(K^0\pi^0)$ violates the sum rule by 1.9 σ (but BaBar's result is in a opposite direction...)

$B \rightarrow K\pi$ prospects

- BF measurements are already systematics dominated
- A_{CP} measurements will be systematics dominated with ~ 10 ab⁻¹

$$b \rightarrow s \ell^+ \ell^-$$

 $\mathcal{B}(B \to X_s \gamma)$, $A_{FB}(B \to K^* \ell^+ \ell^-)$ and $\mathcal{B}(B \to X_s \ell^+ \ell^-)$ are direct probes of Wilson coefficients C_7 , C_9 and C_{10} as functions of $\hat{s}(=q^2/m_h^2)$

 $\begin{aligned} \mathcal{B}(B \to X_s \gamma) \propto |C_7|^2 \\ A_{FB}(B \to K^* \ell^+ \ell^-; \, \hat{s}) &= -C_{10} \xi(\hat{s}) \left[\text{Re}(C_9) F_1 + \frac{1}{\hat{s}} C_7 F_2 \right] \\ \frac{d\Gamma(B \to X_s \ell^+ \ell^-)}{d\hat{s}} &= \left(\frac{\alpha_{\text{em}}}{4\pi} \right)^2 \frac{G_F^2 m_b^5 \left| V_{ts}^* V_{tb} \right|^2}{48\pi^3} (1 - \hat{s})^2 \\ \times \left[(1 + 2\hat{s}) \left(|C_9|^2 + |C_{10}|^2 \right) + 4 \left(1 + \frac{2}{\hat{s}} \right) |C_7|^2 + 12 \text{Re} \left(C_7 C_9 \right) \right] + \text{corr.} \end{aligned}$

Key features:

- Size of C_7 from $\mathcal{B}(B \to X_s \gamma)$
- Zero crossing of $A_{FB}(B \to K^* \ell^+ \ell^-)$
- C_7C_9 term in $\mathcal{B}(B \to X_s \ell^+ \ell^-)$

(Belle J-T Wei *et al.*, PRL103,171801(2009), 657M $B\overline{B}$)

• Very small branching fraction $\sim 10^{-6}$ or less But branching fraction is not very predictive

- Various ratios (Forward-backward asymmetry, F_L , CPV, isospin, lepton flavor, etc)
- Three-body decay:
 - Observables as functions of q^2 ($q^2 = m_{\ell^+\ell^-}^2$)

 $A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$

Angular distributions to extract FB asymmetries

 $\begin{array}{l} K^* \text{ longitudinal polarization } F_L \text{ from kaon angle } \theta_K \\ & \frac{3}{2}F_L \cos^2 \theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2 \theta_K) \\ \text{Forward-backward asymmetry } A_{FB} \text{ from lepton angle } \theta_\ell \\ & \frac{3}{4}F_L(1 - \cos^2 \theta_\ell) + \frac{3}{8}(1 - F_L)(1 + \cos^2 \theta_\ell) + A_{FB} \cos \theta_\ell \end{array}$

$B \rightarrow X_{s}\ell^{+}\ell^{-}$ (Belle 657M $B\overline{B}$, preliminary)

• Sum-of-exclusive analysis $X_s = K + n\pi$ (n = 0..4) (sum of $K\ell^+\ell^-$, $K^*\ell^+\ell^-$, high-mass $X_s\ell^+\ell^-$) Updated with 4.5 times data and analysis improvements

- Backgrounds
 - Semileptonic *B* decays, continuum $q\overline{q}$
 - Leakage from J/ψ and ψ' veto
 - $B \rightarrow X_s \pi^+ \pi^-$ (double mis-id)
 - $\psi(3770), \psi(4040), \psi(4160) \rightarrow \ell^+ \ell^-$
 - $B \to X_c(l\nu) \to X_s \ell \nu$ (single mis-id + random slow π replacing ν)

· Mikihiko Nakao - $A_{CP}(K\pi)$, $A_{FB}(K^*\ell^+\ell^-)$ and D^0 mixing as probe of 4th Generation -

- $B \to X_s \ell^+ \ell^-$ results prefers SM-like signs ($C_7 C_9 < 0$)
- $A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$ prefers opposite signs? ($C_7 C_9 > 0$)

- SM short distance x, y are extremely small ($O(10^{-5})$)
- SM long distance could be $O(10^{-2})$
- Non SM effects could be $O(10^{-2})$

CPV — both in mixing and decay

- SM Mixing $A_M \le O(\arg(V_{cd}^* V_{ud})) \sim O(10^{-3})$
- SM Decay $A_D \leq O(\arg(V_{cs}^* V_{us})) \sim O(10^{-3})$ (in e.g. $D^0 \to K^+ K^-$)
- \bullet Interference between mixing and decay ϕ

Observable are combinations of x, y, A_M , A_D and ϕ

- Decays to CP eigenstate (e.g. K^+K^-) Lifetime: $y_{CP} = \frac{\tau(D^0 \to K^-\pi^+)}{\tau(D^0 \to K^-K^+)} - 1 = y\cos\phi - \frac{A_M}{2}x\sin\phi$
- Wrong sign semileptonic decays Any mixing, sensitive to $R_M = \frac{P(D^0 \to K^{(*)+}\ell^-\overline{\nu})}{P(D^0 \to K^{(*)-}\ell^+\nu)} = \frac{x^2 + y^2}{2}$
- Wrong sign hadronic decays $(D^0 \rightarrow K^+\pi^-)$ Complication due to doubly Cabibbo-suppressed decays, Sensitive to $x'^2 = (x \cos \delta + y \sin \delta)^2$ and $y' = y \cos \delta - x \sin \delta$
- Time-dependent Dalitz analysis $D \rightarrow K_S^0 \pi^+ \pi^-$ — many involved modes $K^{*\pm} \pi^{\mp}$, $K_S^0 \rho^0$, ... Direct extraction of x, y (and p/q)

D^0 mixing — y_{CP}

Generation

D^0 mixing y_{CP} in $K^+K^-K_S^0$

Lifetime difference: $D^0 \to \phi K^0_S \lor S D^0 \to [a^0_0, f^0_0, f^0_2] K^0_S$ (CP-) (CP+) (Belle PRD80,052006(2009) 673 fb⁻¹)

Dalitz analysis of $K^+K^-K_S^0$ (with flavor specific $[a_0^+, f_0^+, f_2^+]K^-$)

$$y_{CP} = \frac{1}{f_{ON} - f_{OFF}} \left(\frac{\tau_{OFF} - \tau_{ON}}{\tau_{OFF} + \tau_{ON}} \right)$$
$$= (0.11 \pm 0.61 \pm 0.52)\%$$

Wrong sign measurements

Leptonic $(D^0 \to K^+ \ell^- \overline{\nu})$ (Belle PRD77,112003(2008) 492 fb⁻¹)

•
$$\Delta M = M(D^0 \pi_{slow}^+) - M(D^0)$$

• Missing neutrino — kinematic constraints p_{miss} , M_{miss} , M_{D^0}

$$R_M(\sim \frac{x^2+y^2}{2}) < 6.1 \times 10^{-4}$$

Hadronic ($D^0 \rightarrow K^+ \pi^-$) (Belle PRL96,151801(2006) 400 fb⁻¹)

 Large DCS component, precision time measurement

$$x'^2 < 7.2 \times 10^{-4}, y' \in [-9.9, 6.8] \times 10^{-3}$$

D⁰ mixing — time-dependent Dalitz

D mixing/CPV status and prospects

B. Golob at FPCP09

Summary

- Many intriguing results from Belle, hopefully useful hints for new physics, including 4th generation quarks
- Still some more data to be analyzed by Belle
- Belle II future seems to be bright

Backup

 $\mathcal{B}(B \to X_s \gamma)$

- The most precise $B \rightarrow X_s \gamma$ measurement
- HFAG: $(3.57 \pm 0.24) \times 10^{-4}$ vs SM $(3.15 \pm 0.23) \times 10^{-4}$ ($E_{\gamma} > 1.6$ GeV)
- Systematic error is dominated by off-resonance subtraction and *B* backgrounds other than $B \to \pi^0/\eta$ (syst~stat for $E_{\gamma} > 2$ GeV)

$B \rightarrow X_s \ell^+ \ell^-$ by Belle — table

– p.24

 $A_{CP}(K\pi), A_{FB}(K^*\ell^+\ell^-)$ and D^0 mixing as probe of 4th Generation — Mikihiko Nakao –

bin	$N_{ m sig}$	eff.(%)	$\mathscr{B}(10^{-7})$	-
$M(X_s) (\text{GeV}/c^2)$				
(0.4, 0.6)	$104.4 \pm 11.5 \pm 1.8$	$8.44^{+0.86}_{-1.09}$	$4.7 \pm 0.5 {}^{+0.5}_{-0.6}$	
(0.6, 0.8)	$0.4\pm3.0\pm0.2$	$3.86^{+0.39}_{-0.50}$	$0.0 \pm 0.3 \substack{+0.6 \\ -0.0}$	Q
(0.8, 1.0)	$79.0 \pm 11.6 \pm 0.5$	$3.89^{+0.40}_{-0.50}$	$7.7 \pm 1.1 \substack{+0.8 \\ -1.0}$	
(1.0, 1.4)	$23.7 \pm 10.5 \pm 0.3$	$1.68^{+0.17}_{-0.22}$	$5.4 \pm 2.4 {}^{+0.6}_{-0.7}$	SUI
(1.4, 2.0)	$32.5 \pm 16.5 \pm 0.9$	$0.99^{+0.10}_{-0.13}$	$12.5 \pm 6.3 {}^{+1.3}_{-1.7}$	
Sum (0.4, 2.0) for $X_s \ell^+ \ell^-$			$30.3 \pm 6.9 {}^{+1.7}_{-2.1}$	-
(Sum (0.4, 2.0) for $X_s e^+ e^-$			$40.4 \pm 9.8 \substack{+2.8 \\ -3.4}$)	
(Sum (0.4, 2.0) for $X_s \mu^+ \mu^-$			$18.4 \pm 8.8 {}^{+1.5}_{-1.7}$)	_
$q^2 (\text{GeV}^2/c^2)$				-
(0.04, 1.0)	$36.1 \pm 7.8 \pm 0.1$	$2.40^{+0.33}_{-0.38}$	$5.7 \pm 1.2 {}^{+0.8}_{-0.9}$	
(1.0, 6.0)	$74.0 \pm 15.3 \pm 0.4$	$3.48^{+0.47}_{-0.55}$	$8.1 \pm 1.7^{+1.1}_{-1.3}$	
(6.0, 14.4)	$64.9 \pm 16.6 \pm 0.3$	$2.20^{+0.30}_{-0.35}$	$11.2 \pm 2.9^{+1.5}_{-1.8}$	
(14.4, 25.0)	$62.8 \pm 11.0 \pm 2.3$	$7.44^{+1.01}_{-1.17}$	$3.2 \pm 0.6 \pm 0.5$	