The Great Collider in China A Future Accelerator to Study the Higgs Boson and to Explore Nature at the Energy Frontier

XinChou Lou Institute of High Energy Physics, Beijing & University of Texas at Dallas

Outline

- Elementary particle physics an introduction
- > The Higgs boson: basics, discovery, study
- > The need for new lepton colliders
- > Lepton colliders: options, progress, issues, ...
- > The Great Collider in China: ee and pp options
- Future prospects

- The Standard Model building blocks, interactions, the Higgs boson
- Beyond the Standard Model (BSM)

The Standard Model and the need for the Higgs boson

generation particle	Ι	II	III	gauge bosons	
Quarks	u (0.005)	c (1.5)	t (180)	gluon 1	
(mass / strength)	d (0.01)	s (0.2)	b (4.7)	γ 1/1,000	
Leptons	e (.0005)	μ (0.106)	τ (1.777)	Z ⁰ 1/10,000	91 GeV
(mass/ strength)	ν _e <7×10 ⁻⁹	ν _μ <.0003	ν _τ <0.03	W±	80.4 Ge

In the Standard Model – particle masses are symmetric to begin with; the data disagree

The Higgs field causes the spontaneous symmetry breaking , through which bosons and fermions acquire different masses 10/16/2017

Physics: forces and potentials, and consequences

Physics: forces and potentials, and consequences

The Higgs Boson

The Higgs Mechanism

Standard Model $SU(2)_L \times U(1)_Y$

\Rightarrow masses are provided to W, Z & elementary matter particles

The Higgs Boson

The story begins in $1964 \ldots$

with Englert and Brout; Higgs; Hagen, Guralnik and Kibble

VOLUME 13, NUMBER 9

PHYSICAL REVIEW LETTERS

31 August 1964

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

19 October 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Volume 13, Number 20

PHYSICAL REVIEW LETTERS

16 November 1964

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

The Higgs Boson

The Standard Model and the need for the Higgs boson

The mass symmetry is broken by the introduction of the Higgs boson, through the so-called Spontaneous Symmetry Breaking process – proposed in 1964 by Higgs, Kibble, Guralnik, Engler & Brout

The Higgs Mechanism –

- > 1 complex pair of scalar fields with a non trivial potential;
- interactions to all matter particles;
- I new particle = the Higgs boson, H a neutral scalar, with spin =0; a very simple particle SM does not predict its mass

 \Rightarrow masses are provided to W, Z & elementary matter particles

More on the Higgs Boson

Beyond the Standard Model (BSM) many variations

Extension beyond the SM – Minimal Supersymmetric SM (MSSM):
 ⇒ two parirs of complex fields, several Higgs bosons
 (h⁰, H⁰) neutral scalars; A⁰ neutral pseudoscalar;, H[±] a charged scalar

Standard Model $SU(2)_L \times U(1)_Y$

two pairs of complex potential
$$\Phi_a = \left\{ \frac{\phi_a^+}{\frac{\upsilon_a + h_a + i\eta_a}{\sqrt{2}}} \right\}$$
, a=1,2

For complex SU(2) doublet, there are 8 fields, three eaten by W^{+/-} Z
 There are five left : H, h (CP-even), A (CP-odd), H^{+/-}

• Extension beyond the MSSM \Rightarrow richer spectra of scalar and pseudoscalar particles

July 4, 2012 was a milestone in the history of particle physics – Higgs was discovered at both ATLAS and CMS at CERN.

Discovery of new particle at the Large Hadron Collider

Does it interact with dark matter/new particles/new physical world?
 Is the Higgs a portal to the new world?

- > Is the Higgs boson observed at the LHC what SM expects?
- > Will the Higgs boson reveal any new BSM physics?
- > Is SM right?
- > Why the Higgs boson is so light? Is it composite?
- > Are there more Higgs bosons?

precision on the Higgs needs better than 1% precision

Does Naturalness hold?

hierarchy, light Higgs boson

- What about Dark Matter?
- Super-symmetry what is the scale? super partners, easy to incorporate gravity

Examine the H(125)

Is the Higgs the one predicted by the Standard Model?

Look at its production

Look at its decays

Look at its mass, J^{PC}, and EW phase transition, ...

Examine the H(125)

Roughly agree with Standard Model

The Need for New lepton (e⁺e⁻) Accelerators

- Need to have clean Higgs events to study it
- Simple kinematics of the e⁺e⁻ collider offers that and to address many of the crucial physics questions
- The e⁺e⁻ collider can be upgraded to a 100 TeV pp collider as a discovery machine (circular collider)

Higgs event at the LHC

g ососо Н

 $pp \rightarrow H$ + Anything mostly through gg fusion

 initial kinematic is not known
 background noise very high
 pile-up of multiple pp annihilation events
 unable to detect many H decays

"messy"

Electron-positron Collider

clean H events produced

Kinematics are very simple

 $e^+e^- \rightarrow ZH$

 $\mathbf{Z} \rightarrow \mu^+ \mu^-$, $\mathbf{H} \rightarrow \mathbf{Anything}$, momentum-energy vector $(\vec{\mathbf{P}}_i, \mathbf{E}_i) = (\vec{\mathbf{0}}, \mathbf{E}_{cm})$ $(\vec{\mathbf{P}}_f, \mathbf{E}_f) = (\vec{\mathbf{P}}_Z + \vec{\mathbf{P}}_H, \mathbf{E}_Z + \mathbf{E}_H)$

$$\Rightarrow (\vec{\mathbf{P}}_H, \mathbf{E}_H) = (-\vec{\mathbf{P}}_Z, [\mathbf{E}_{cm} - \mathbf{E}_Z]), \ \mathbf{M}_H^2 = \mathbf{E}_H^2 - \mathbf{P}_H^2$$

✓ Can measure H w/o directly detecting it 1∞/16**Clean environment for studying H**

Beyond the LHC, future facilities

http://www.linearcollider.org/ILC

http://clic-study.web.cern.ch/

Three of the many future accelerator choices

- A few words about particle accelerators
- The International Linear Collider (ILC) in Japan
- FCC at CERN in Switzerland
- CEPC-SppC in China

Particle Accelerators

There are two basic types: linear accelerators and circular accelerators

LINEAR ACCELERATOR

A linear particle accelerator (also called a linac) is an linear electrical device for the acceleration of subatomic particles. The design of a linac depends on the type of particle that is being accelerated: electron, proton or ion.

Easy to accelerate; large and loses beams after collision

CIRCULAR ACCELERATOR

In the circular accelerator, particles move in a circle until they reach sufficient energy. The particle track is typically bent into a circle using electromagnets.

Advantage:

- ✓ allows continuous acceleration
- \checkmark can store beams for longer experiment
- ✓ is relatively smaller than a linear accelerator of comparable power.

Disadvantage:

synchrotron radiation energy loss large

- Energy loss per turn for a single particle in an isomagnetic lattice with bending radius ρ

$$\Delta E[\text{GeV}] = C_{\gamma} \frac{E^4[\text{GeV}^4]}{\rho[\text{m}]}$$

Radiated Power

$$P_{\gamma}[MW] = 8.8575 \times 10^{-2} \frac{E^{4}[GeV^{4}]}{\rho[m]} I[A] \qquad \begin{array}{c} C=27km \text{ (LHC tunnel)} \\ E=500GeV, I=10mA \\ \Rightarrow P=13 \text{ GW} \end{array}$$

Circular Accelerator

No major energy loss due to synchrotron radiation

The World HEP Planning – a Circle

Linear e⁺e⁻ Collider as a Higgs Factory

Damping Rings

31 km

- 2-ns laser pulses to eject electrons from a photocathode
- e accelerated to 5 GeV in a 370-meter linac stage
- e beams ~ nm emittance (horizontal)

Main Linac

http://www.linearcollider.org/ILC

Main Linac

Energy ~ 250 – 1,000 GeV Cost ~US\$6.75 billion (?) Japan willing to pay 50%

Construction 2015-16 Commission >2026

TDR Technical Volumes

International Linear e⁺e⁻ Collider

Sachio Komamiya

Lyn Evans

International Linear e⁺e⁻ Collider

Stage		500		5	00 LumiU	Р
\sqrt{s} [GeV]	500	350	250	500	350	250
$\int \mathscr{L} dt [\mathrm{fb}^{-1}]$	1000	200	500	4000	-	-
time [years]	5.5	1.3	3.1	8.3	-	-
$\int \mathscr{L} dt [\mathrm{fb}^{-1}]$	500	200	500	3500	-	1500
time [years]	3.7	1.3	3.1	7.5	-	3.1
	Stage \sqrt{s} [GeV] $\int \mathcal{L} dt$ [fb ⁻¹] time [years] $\int \mathcal{L} dt$ [fb ⁻¹] time [years]	Stage \sqrt{s} [GeV]500 $\int \mathcal{L} dt$ [fb ⁻¹]1000time [years]5.5 $\int \mathcal{L} dt$ [fb ⁻¹]500time [years]3.7	Stage 500 \sqrt{s} [GeV] 500 350 $\int \mathcal{L} dt$ [fb ⁻¹] 1000 200 time [years] 5.5 1.3 $\int \mathcal{L} dt$ [fb ⁻¹] 500 200 time [years] 3.7 1.3	Stage 500 \sqrt{s} [GeV] 500 350 250 $\int \mathcal{L} dt$ [fb ⁻¹] 1000 200 500 time [years] 5.5 1.3 3.1 $\int \mathcal{L} dt$ [fb ⁻¹] 500 200 500 time [years] 3.7 1.3 3.1	Stage 500 5 \sqrt{s} [GeV] 500 350 250 500 $\int \mathscr{L} dt$ [fb ⁻¹] 1000 200 500 4000 time [years] 5.5 1.3 3.1 8.3 $\int \mathscr{L} dt$ [fb ⁻¹] 500 200 500 3500 time [years] 3.7 1.3 3.1 7.5	Stage 500 500 LumiU \sqrt{s} [GeV] 500 350 250 500 350 $\int \mathcal{L} dt$ [fb ⁻¹] 1000 200 500 4000 - time [years] 5.5 1.3 3.1 8.3 - $\int \mathcal{L} dt$ [fb ⁻¹] 500 200 500 3500 - time [years] 3.7 1.3 3.1 7.5 -

Higgs Couplings model independent

Integrated Luminosities [fb]

FCC: Future Circular Collider at CERN

CERN, Geneva

Design, cost, physics reaches understudy; Conceptual Design Report due 2017

CLIC: Compact Linear Collider at CERN

CERN, Geneva

CDR completed; 2018 decision, 2024-25 construction starts P_{tot} = 852 MW;

The Great Collider in China

- China is inspired to consider a new collider the Higgs boson, interactions
- Nobel Laureate David Gross names it the great collider
 - The CEPC and SppC projects

The R&D program Funding and support Site selection IAC and International collaboration Reach-out & engagement with the public

Phase 1: e^+e^- Higgs (Z) factorytwo detectors, 1M ZH events in 10yrs $E_{cm} \approx 240 \text{GeV}$, luminosity $\sim 2 \times 10^{34}$ $cm^{-2}s^{-1}$, can also run at the Z-polePrecision measurement of the Higgs boson (and the Z boson)Higgs precision1% or better

Phase 2: a discovery machine; pp collision with E_{cm} ≈ 50-100 TeV; ep, HI options **Discovery machine for BSM**

favored post BEPCII accelerator based particle physics program in China

How do they stack up against each other?

	CEPC	ILC	CLIC	Muon collider
E _{cm} (ee) GeV	90-350	90-500	3 TeV	~4 TeV
Luminosity	high	high	high	Х?
Upgrade to pp ?	Yes (50-100 TeV)	No	No	?
Cost	medium	high	high	medium- high

CEPC Organization

- Institution Board and Steering Committee formed in the kick-off meeting in September 2013; conveners appointed for the three working groups: Accelerator, Theory and Detector & Physics
 - Find out more: <u>http://cepc.ihep.ac.cn/index.html</u>
- International workshops and regular group meetings to coordinate efforts
- Schools and hand-on tutorials to train students important to inspire more young people to directly participate in the activities
- The CEPC management was reorganized in May 2015, after the preCDR, to move forward with the CDR process;

Baseline CEPC

> Baseline design & options for the Conceptual Design Report

circumference=100km, E_{cm} =240 GeV, power per beam \leq 30MW, design luminosity ~2×10³⁴cm⁻²s⁻¹ (240 GeV) 1×10³⁴cm⁻²s⁻¹ (91 GeV)

two layouts:

double ring as the default; advanced local double ring as an option

two independent detectors

Benefits

mature technologies, Z+ZH program high energy pp option γ synchrotron light source (?)

CEPC two shcemes towards CDR

CEPC Advanced Partial Double Ring Option II

CEPC Baseline Design

Better performance for Higgs and Z compared with alternative scheme, without bottle neck problems, but with higher cost **CEPC Alternative Design**

Lower cost and reaching the fundamental requirement for Higgs and Z luminosities, under the condition that sawtooth and beam loading effects be solved

SppC Accelerator Design considerations

- Main constraint: high-field superconducting dipole magnets
 - 50 km:
 $B_{max} = 12 \text{ T}, E = 50 \text{ TeV}$

 50 km:
 $B_{max} = 20 \text{ T}, E = 70 \text{ TeV}$

 70 km:
 $B_{max} = 20 \text{ T}, E = 90 \text{ TeV}$

 $B_{\min} = \frac{2\pi(B\rho)}{C}$

Parameters for CEPC double ring for CDR Goal

 $(wangdou20170426-100km_2mm\beta y)$

	Pre-CDR	Higgs	W		Z
Number of IPs	2	2	2		2
Energy (GeV)	120	120	80	45	5.5
Circumference (km)	54	100	100	10	00
SR loss/turn (GeV)	3.1	1.67	0.33	0.0)34
Half crossing angle (mrad)	0	16.5	16.5	16	5.5
Piwinski angle	0	3.19	5.69	4.29	11.77
N_e /bunch (10 ¹¹)	3.79	0.968	0.365	0.455	0.307
Bunch number	50	412	5534	21300	2770
Beam current (mA)	16.6	19.2	97.1	465.8	408.7
SR power /beam (MW)	51.7	32	32	16.1	1.4
Bending radius (km)	6.1	11	11	11	11
Momentum compaction (10 ⁻⁵)	3.4	1.14	1.14	4.49	1.14
$\beta_{IP} x/y (m)$	0.8/0.0012	0.171/0.002	0.171 /0.002	0.16/0.002	0.171/0.002
Emittance x/y (nm)	6.12/0.018	1.31/0.004	0.57/0.0017	1.48/0.0078	0.18/0.0037
Transverse σ_{IP} (um)	69.97/0.15	15.0/0.089	9.9/0.059	15.4/0.125	5.6/0.086
$\xi_x/\xi_y/\text{IP}$	0.118/0.083	0.013/0.083	0.0055/0.062	0.008/0.054	0.006/0.054
RF Phase (degree)	153.0	128	126.9	165.3	136.2
$V_{RF}(\text{GV})$	6.87	2.1	0.41	0.14	0.05
f_{RF} (MHz) (harmonic)	650	650	650 (217800)	650 (2	17800)
Nature σ_z (mm)	2.14	2.72	3.37	3.97	3.83
Total σ_z (mm)	2.65	2.9	3.4	4.0	4.0
HOM power/cavity (kw)	3.6 (5cell)	0.41(2cell)	0.36(2cell)	1.99(2cell)	0.12(2cell)
Energy spread (%)	0.13	0.098	0.065	0.037	
Energy acceptance (%)	2	1.5			
Energy acceptance by RF (%)	6	2.1	1.1	1.1	0.68
n_{γ}	0.23	0.26	0.15	0.12	0.22
Life time due to	47	52			
beamstrahlung_cal (minute)					
F (hour glass)	0.68	0.96	0.98	0.96	0.99
L_{max}/IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	2.0	5.15	11.9	1.1

Preliminary results shows co-existence of Z/H programs are possible Reconfiguration of CEPC can lead to much better luminosity at the Z pole \rightarrow Z factory

CEPC-SPPC Timeline (preliminary)

- CEPC data-taking starts before the LHC program ends
- Possibly con-current with the ILC program

SppC Design Scope (201701 version)

Baseline design

Tunnel circumference: 100 km

Top priority: reducing cost!

Instead of increasing field

- Dipole magnet field: 12 T, iron-based HTS technology (IBS)
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV

Upgrading phase

- Dipole magnet field: 20 -24T, IBS technology
- Center of Mass energy: >125 TeV
- Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel in the place of the electron ring and booster)

Development of high-field superconducting magnet technology

- Starting to develop required HTS magnet technology before applicable ironbased wire is available
- ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SPPC: stress management, quench protection, field quality control and fabrication methods

Collaboration on HTS

"Applied High Temperature Superconductor Collaboration (AHTSC)" was formed in Oct. 2016. with >13 related institutes & companies and 50 scientists & engineers to advance HTS R&D and Industrialization.

Goal:

- 1) To increase the J_c of IBS by 10 times, reduce the cost to 20 Rmb/kAm @ 12T & 4.2K in 10 years, and realize the industrialization of the conductor;
- 2) To reduce the cost of ReBCO and Bi-2212 conductors to 20 Rmb/kAm @ 12T & 4.2K in 10 years;
- 3) Realization and Industrialization of iron-based SRF technology.
- Working groups: 1) Fundamental science investigation; 2) IBS conductor R&D; 3) ReBCO conductor R&D; 4) Bi2212 conductor R&D; 5) performance evaluation; 6) Magnet and SRF technology.
- Collaboration meetings: every 2~3 months.

Funded by CAS, more expected from MOST

CEPC Detector considerations

ILD-like detector with additional considerations (*incomplete list*):

- Shorter L* (1.5/2.5m) → constraints on space for the Si/TPC tracker
- No power-pulsing → lower granularity of vertex detector and calorimeter
- □ Limited CM (up to 250 GeV) \rightarrow calorimeters of reduced size

• Similar performance requirements to ILC detectors

- Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$ \leftarrow_{3} recoiled Higgs mass
- Impact parameter: $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^2 \theta) \mu m \leftarrow \text{flavor tagging, BR}$

- Jet energy: $\frac{\sigma_E}{E} \approx 3-4\% \qquad \leftarrow W/Z$ di-jet mass separation

Sub-detector groups consider design options, identify challenges, plan R&D 10/16/2017

CEPC simulation & physics - precisions

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H)\times \mathrm{BR}(H\to b\bar{b})$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH)\times \mathrm{BR}$	BR
$H \rightarrow b\bar{b}$		0.28%	0.57%
$H \to c \bar{c}$		2.2%	2.3%
$H \to gg$		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H \to \gamma \gamma$		9.0%	9.0%
$H \to \mu \mu$		17%	17%
$H \to \mathrm{inv}$		—	0.28%

CEPC Combination group:

Model independent result compared to ILC

Model dependent result compared to LHC (LHC: very limited access to model Independent measurement)

IHEP-CEPC-DR-2015-01 IHEP-EP-2015-01 IHEP-TH-2015-01

Can be downloaded from

http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

403 pages, 480 authors

328 pages, 300 authors

The CEPC-SPPC Study Group

March 2015

The CEPC-SPPC Study Group

March 2015

International Review of Pre-CDR

Site Consideration & Civil Engineering

- > Current IHEP campus is too small to accommodate a large facility
- ➢ Is there any well suited site for a large lab (>800 acres) in northern China?
- > Does the local government display strong support for the lab?

IHEP management visited 16 sites in northern China (Hebei, Henan provinces)

Use "Qing Huang Dao" as an example –

CEPC "Qinghuandao Site" Investigation

Design Goal of CEPC/FCC-ee

- Limit SR power to 50 MW per beam
- CEPC: single ring, head-on collision, up to 250 GeV
- FCC-ee: double ring, large crossing angle, up to 350 GeV

- IHEP seed money
 - 12 M RMB/3 years (2015-2017)
- Chinese Ministry of Sci. & Technology

~ 90 M / 6 years (2016-2021) 1st grant of 36M RMB approved; 2nd grant in 2018

- China National Commission on Dev. & Reform
 No funding in 13th 5-year plan
- Other Sources (CAS, MOST, NSFC, ...)

seeking ~0.5 B RMB / 5 years for critical R&D

A New SRF Facility

Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing

Construction: 2017 - 2019 Ground Breaking: May 31, 2017

4500 m² SRF lab

•500M RMB funded by city of Beijing
•Construction: May 2017 – June 2020
•Include RF system & cryogenic systems magnet technology, beam test, etc.

To pull off a mega project

goals of science, design & technologies, funding, team, project management, fiscal discipline, community unity, international collaboration, ...

Face up to the challenges at CEPC

sharp focus on physics objectives, attempt to unify within HEP, channel to top leaders, funding requests, seek support of local government, recruiting & training international collaborations, books and outreach, 10/16/2017

Future prospects

Wonderfully exciting and challenging

Much work to be done