

Microwave-driven breakdown: from dielectric surface multipactor to ionization discharge[†]

<u>J. P. Verboncoeur</u>¹, J. Booske², R. Gilgenbach³, Y. Y. Lau³, A. Neuber⁴, J. Scharer², R. Temkin⁵

¹Michigan State University/University of California-Berkeley, ²University of Wisconsin, ³University of Michigan, ⁴Texas Tech University, ⁵Massachussets Institute of Technology

+ Research supported by the US AFOSR MURI grant FA9550-18-1-0062, and an MSU Foundation Strategic Partnership Grant

Goals

- Understand basic physics of microwavedriven breakdown
 - Breakdown threshold dependence on pressure, gas composition, geometric features
 - Low Pressure Dielectric Multipactor
 - Transition to Ionization Discharge
 - Compare Experiments and Theory

RF Window Flashover

> MW transmitted power (High Power Microwaves, HPM)
→ Field amplitudes in excess of several 10 kV/cm

Flashover can be initiated <u>with</u> or <u>without</u> the presence of a triple point

UM RelMag: old window

Single-Surface RF Multipactor

Dominates at low pressure

Secondary Electron Model

Energy and angular dependence of secondary emission coefficient

Vaughan et al, IEEE-TED (1989); IEEE-TED (1993)

PIC Multipactor Susceptibility

9

TE₁₀ Multipactor Migration X (cm) X (cm) At the beginning At transient Time Z (um) Z (um) Weak E_{rf} Time Strong E_{rf} ----- $(\tilde{E})_{\times}$ $E_{v}^{0} = 5 MV/m$ At the steady state Weak E_{rf} 2.85 GHz, Vacuum Z (um)

Explanation of Migration

ALL.

Multipactor Power

- ~ 2 % of the input EM power is absorbed
- The phase difference between the discharge power and input EM power means that the electrons are not totally in equilibrium with the local rf electric field.

PIC: Electron Mean Energy

 $E_{rf0} = 2.82 \text{ MV/m}$ at 2.85 GHz, Argon

Transition

• Below 10 Torr, the secondary yield is nearly unity so multipactor is dominant.

• As the pressure increases and hence the volume discharge suppresses the secondary electron emission, it decreases to nearly zero.

Breakdown Scaling Law

Low pressure regime: surface multipactor dominated

$$\tau \sim \frac{1}{\nu_i} \sim \frac{1}{n_g \langle \sigma v \rangle} \sim \frac{1}{p}$$

High pressure regime: collision dominated ($v_c >> \omega$) volumetric discharge

$$\frac{E_{e\!f\!f}}{p}\sim \frac{1}{\sqrt{p\,\tau}}$$

Lau, Verboncoeur, and Kim, APL, <u>89</u>, 261501 (2006)

Plasma Filamentary Arrays

- 1.5 MW, 140 GHz Gyrotron
- 3 shots with slow (B&W) and fast (color) cameras
- Filaments spaced slightly less than λ/4, propagate towards source
- Hypothesis: constructive interference of reflected/diffracted waves, propagation speed limited by diffusion of seed electrons

Pressure Dependence

distinct filaments appear at high pressure

EM Wave Model

* H.C. Kim and J. P. Verboncoeur, *Comp. Phys. Comm.* 177 (2007) 118-121

Fluid Model

Particle Continuity and Electron Energy Equations

$$\begin{split} \frac{\partial n_e}{\partial t} &= -\nabla \cdot J_e + K_{ion} n_e n_{gas}, \ J_e = -D_e \nabla n_e - \mu_e n_e E_{\parallel} \\ E_{\parallel} &= \frac{D_i - D_e}{\mu_i + \mu_e} \frac{\nabla n_e}{n_e} \\ \frac{\partial}{\partial t} \left(\frac{3}{2} n_e T_e\right) &= -\nabla \cdot q_e + P_{abs} - (\varepsilon_{ion} K_{ion} n_e n_{gas} + \varepsilon_{exc} K_{exc} n_e n_{gas} + \tilde{K}_{mom} n_e n_{gas}) \\ q_e &= -\frac{3}{2} D_e \nabla n_e T_e + \frac{5}{2} J_e T_e \\ P_{abs} &= \frac{en_e}{m_e V_m} E_{\perp}^2 = \mu_e n_e E_{\perp}^2 \end{split}$$

S. K. Nam and J. P. Verboncoeur, Phys. Rev. Lett., 103, 055004 (2009)

Filaments: 1D Model

- Filaments propagate slowly toward source
- Explained via 1D fluid-EM model
- Ionization by electrons heated by EM absorption
- Standing waves via reflection
- Filament spacing depends on E, ω, gas

Kim et al., Comput. Phys. Comm. 177 (2007) Nam et al., Phys. Rev. Lett. 103 (2009)

Filament Spacing

Increasing field strength decreases filament spacing as breakdown threshold is exceeded closer to the previous filament.

Conclusions

- Modeling breakdown phenomena across a wide parameter regime
 - Multipactor dominates at low p
 - Susceptibility depends on transverse waveform
 - Time dependent behavior understood
 - Multipactor and ionization discharge compete at intermediate pressure (10-50 Torr)
 - Ionization discharge dominates at atmospheric pressure
- Wave-fluid model reproduces filamentary experiment well
 - Filament distance slightly less than $\lambda/4$
 - Propagation speed ~ ambipolar or free diffusion times

Future Work: Multipactor MURI

- MSU, TT, UM, UNM, UW
- Space device multipactor
- Develop 3 open platforms (model and experiment):
 - Planar
 - Coaxial
 - Stripline

