X-Band RF Test Stands at CERN

Jan Paszkiewicz on behalf of the Xbox group
MeVArc, San Juan, 20-24 May 2018
Compact Linear Collider

• Linear e^+e^- collider for precision particle physics measurements.
• Staged implementation up to 3 TeV.
• Linear due to synchrotron losses.
• 100 MV/m accelerating gradient for high energy with reasonable machine length.
RF Accelerating Structures

• X-band (11.994 GHz RF)
• Traveling wave: RF pulse passes through the structure.
• Accelerating gradient (energy gain of particles) = 100 MV/m
• Peak surface field ≥ 200 MV/m, depends on design.
• High fields require high power: 40 - 50 MW without beam.
• CLIC BDR requirement: ≤ 3x10^{-7} bpp/m to limit losses of luminosity.
• Wakefield damping due to beam dynamics requirements.
Test Stands at CERN

- Xbox 1: 50 MW klystron, 50 Hz, connection with CLEAR (e⁻ linac)
- Xbox 2: 50 MW klystron, 50 Hz
- Xbox 3: 4x6 MW klystrons, 400 Hz, 4 structure test slots
- Sbox: 45 MW klystron, 50Hz, S-band (3 GHz)
Generating High RF Power

Modulators

Pulse Compressors

Klystrons
Xbox 3 Block Diagram

- 500 W solid state amplifier
- 6 MW klystron
- Hybrid coupler
- Directional couplers
- Pulse compressor
- Structure under test
- RF Load
Structure Diagnostics Overview

Device under test

RF In From Pulse Compressor

Ion gauge readout

Upstream Faraday cup signal

Downstream Faraday cup signal

60 dB directional coupler

WR90 Waveguide

Input coupler

Output coupler

Beam-pipe

Radiation Monitor

Ion gauge readout

Transmitted Power

RF Load
Structure Diagnostics Overview
Breakdown

Incident RF Pulse

Transmitted RF Pulse

Beam Axis
Incident RF Pulse

Reflected RF Pulse

Beam Axis

Breakdown

Emitted Current
• BD position resolved using timing of RF pulses.
• Low group velocity (~0.02c), 65 ns filling time: very high time resolution not needed.
Conditioning Procedure

- Algorithm controls power based on current BDR (based on last 360000 pulses).
- Typically reach 110 MV/m accelerating gradient.
- Increase pulse length in steps when gradient target reached. (50, 100, 150, 200 ns)

Ramping of gradient by algorithm

Reduction in BDR during flat run

Conditioning history of TD26CCN3 in Xbox 2

Pulse length increased when target gradient reached.

Conditioning algorithm
Conditioning of Different Structures

The conditioning curve can differ from the ‘ideal’ one due to constraints such as:

• Limited available power
• Vacuum level of other line
• Radiation limits
• Breakdowns in test stand itself (esp. pulse compressors)
• Large breakdown clusters
Conditioning Comparison – Normalised Gradient

- Gradient, BDR and pulse width summarised using normalised gradient.
- Based on empirical relationship between E, BDR and τ.
- Higher normalised gradient = low BDR at high field and long pulse length, i.e. well-conditioned.

\[
BDR \propto E_0^{30} \tau^5 \quad \quad E^* = \frac{E_0 \cdot \tau^{1/6}}{BDR^{1/30}}
\]

BDR dependence on field in TD26CCN3 structure in Xbox 2. (Thomas Lucas)
Persistence of Conditioning State

- 3 structures have been moved from one line to another so far to continue conditioning at higher power. During moving, the structures are exposed to air for several hours.
- In each case, the structure needs some time to re-condition but it is significantly faster than the first time.
- Both the PSI structures also spent some amount of time at reduced power due to external factors – normalised gradient did not increase significantly in this period.

![Graphs showing Conditioning Progress](image-url)
Structure Final Performance

- T24-KEK-KEK
- T24-Tsinghua-KEK
- TD24-KEK-KEK
- TD24R05#4-KEK-KEK
- TD26CCN1-CERN-CERN
- T24Open-SLAC-CERN
- TD24R05K1-KEK-KEK
- TD24R05K2-KEK-KEK
- TD26CCN3-CERN-CERN
- TD26CCN2-CERN-CERN
- T24-PSI1-CERN
- T24-PSI2-CERN
- TD24R05S-C2-CERN-CERN

- E_0 measured
- E_0 scaled to 180 ns
- E_0 scaled to 180 ns, BDR = 3×10^{-7}

CLIC BDR Criterion

Unloaded Accelerating Gradient [MV/m]

BDR [1/pulse/m]
120° nominal phase advance per cell: BDs in adjacent cells are 120° apart. Detuning changes this value.
This structure was already partially conditioned in another line before being installed in Xbox 2 – concentration of BDs in start of structure already apparent from the beginning of the test.

Another Example (T24PSI1)
Breakdown Clustering

Similar average slope (breakdown rate) but instantaneous BDR is either very high or very low.
BDR in histogram obtained using a Gaussian window with $\sigma = 50000$ pulses. BDR window for conditioning algorithm is 360000 pulses. An IIR window is essential for high dynamic range.

Power-law fit; data taken with conditioning algorithm ON.
BDR Statistics – T24PSI2

- Full history, slope = -0.95
- 0 to 50M pulses, slope = -0.91
- 100M to 150M pulses, slope = -0.88
BDR statistics – TD26CCN3

- Full history, slope = -1.35
- 450 to 500M pulses, slope = -1.41
- 750M to 800M pulses, slope = -1.25
Future Developments

• Xbox 1: work under way for testing with beam.
• Xbox 2: planning to install a superstructure – currently testing a high power phase shifter and power splitter.

• Radiation diagnostics
 • Cherenkov fibres: used to detect emitted particles from field emission and breakdown. Ongoing work to improve measurement.
 • Calorimetry of emitted particles (already done on Sbox)
 • Pixel detector?
Thank you!

Questions?
Comparison of BDR windows

![Graph showing comparison of BDR windows]

- Blue: Moving average, 50k pulses
- Orange: Moving average, 500k pulses
- Yellow: Gaussian, $\sigma = 50k$ pulses

Pulse count (million)