Updated Results of Breakdown Study for 509-MHz Continuous-Wave Accelerating Cavities based on Direct In-situ Observation

Tetsuo ABE

<tetsuo.abe@kek.jp>

High Energy Accelerator Research Organization (KEK), Japan

MeVArc2018 @ Puerto Rico

2018-05-22

Purposes of This Study

- 1. To elucidate the breakdown-trigger mechanism of normalconducting accelerating structures
 - → Application to accelerating-structure developments with better performance
 - → Application to performance-recovery measures for deteriorated accelerating structures

No.2

Normal-Conducting Accelerating Cavities for <u>SuperKEKB</u> Positron Damping Ring (DR)

← The inside (blue region)
 is ultrahigh vacuum
 during operation.

DR Cavities

No. 1

0. Cavity No.0 (prototype) developed in FY2011

- Surface protection of the endplates: acid cleaning followed by chromating
- 1. Cavity No.1 fabricated in FY2012
 - Surface protection of the endplates: Electropolishing (EP)
- 2. Cavity No.2 fabricated in FY2013
 - Surface protection of the endplates: Electropolishing (EP)
 - Accel. mode: 509 MHz Continuous Wave (CW) TM₀₁₀
 - Made of Oxygen Free Copper (Class1)
 - *Q*₀ = ~30000 (97%IACS)
 - $\blacksquare R_{\rm sh}/Q_0 = 150 \ \Omega$
 - Max. $V_c = 0.95$ MV ($\rightarrow E_{acc} = 3.7$ MV/m \leftarrow Cav. gap: 256 mm)
 - Wall-loss power: 110 to 140 kW for $V_c = 0.7$ to 0.8 MV

For more details, T. Abe, "Completion of the First Production Version of the Accelerating Cavity for the SuperKEKB Positron Damping Ring", KEK Accl. Lab. Topics 2013/10/7 (web article): http://www2.kek.jp/accl/eng/topics/topics131007.html

Setup of the High–Power Test of DR Cavities

(No beam injected into the cavity during the high-power test)

Surface Field of the Accelerating Mode

3 TV cameras for Multi-directional and wide-field observation

MeVArc 2018 (2018-05-22)

Breakdown Detection by using pickup signals

- Candidates selected by reflected-wave interlock.
 Check the decay time of the pickup signal of the accelerating mode:
 - ≻ ~8 µs → Not breakdown
 - << 8 μs → Breakdown</p>

Pickup

Antenna

(TEP)

(Downstream)

FEP)

(Upstream)

t Coupler

ra 3

We observed "Bright Spots".

Upstream Endplate at $V_c = 0.90 \text{ MV}$

✓ Image recorded by TV camera 3
 ✓ During operation with V_c = 0.90 MV
 ➢ E_{acc} = 3.5 MV/m (← Gap: 256 mm)
 ➢ E_{surf} = 4~13 MV/m
 ✓ Non-breakdown status

During the high-power operation, such bright spots:

- Maintained their intensity for hours or longer, and
- > Had no significant effects on the high-power operation as long as they remained stable.

Example of Breakdown Events (1)

A stable bright spot at V_c = 0.95 MV (E_{acc} = 3.7 MV/m)

(a) 1 frame (1/30 s) before this cavity breakdown.

Example of Breakdown Events (1)

(a) 1 frame (1/30 s) before this cavity breakdown.

(b) At the moment of this cavity breakdown.

Example of Breakdown Events (1)

A stable bright spot at $V_c = 0.95$ MV ($E_{acc} = 3.7$ MV/m) exploded at the moment of breakdown, then, disappeared!

(a) 1 frame (1/30 s) before this cavity breakdown.

(b) At the moment of this cavity breakdown.

(c) Shortly after recovering from this cavity breakdown at $V_c = 0.95$ MV.

Statistics on all the 205 breakdown events detected

25% accompanied by a bright-spot (BS) explosion

For more details:

 T. Abe, "Visual Imaging of Radio-Frequency Cavity Breakdown ", KEK Accl. Lab. Topics 2016/10/5 (web article): <u>http://www2.kek.jp/accl/eng/topics/topics161005.html</u>

T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino, "Breakdown Study Based on Direct In-Situ Observation of Inner Surfaces of an RF Accelerating Cavity during a High-Gradient Test", <u>Physical Review Accelerators and Beams 19</u>, 102001 (2016).

MeVArc 2018 (2018-05-22)

Statistics on all the 205 breakdown events detected

25% accompanied by a bright-spot (BS) explosion

40% accompanied by a spot-type explosion not originating from a stable bright spot

For more details:

 T. Abe, "Visual Imaging of Radio-Frequency Cavity Breakdown ", KEK Accl. Lab. Topics 2016/10/5 (web article): <u>http://www2.kek.jp/accl/eng/topics/topics161005.html</u>

T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino, "Breakdown Study Based on Direct In-Situ Observation of Inner Surfaces of an RF Accelerating Cavity during a High-Gradient Test", <u>Physical Review Accelerators and Beams 19</u>, 102001 (2016).

Example of Breakdown Events (2) Spot-type explosion not originating from a stable bright spot

No bright spot in this area $(V_c = 0.65 \text{ MV} (E_{acc} = 2.5 \text{ MV/m}))$

A spot-type explosion at the moment of breakdown

(a) 1 frame (1/30 s) before this cavity breakdown.

(b) At the moment of this cavity breakdown.

Down

(c) 1 frame (1/30 s) after this cavity breakdown.

Tetsuo ABE (KEK)

Statistics on all the 205 breakdown events detected

25% accompanied by a bright-spot (BS) explosion

40% accompanied by a spot-type explosion not originating from a stable bright spot

10% "Pyrotechnic" breakdowns

• Observed only in the initial stage of RF conditioning

For more details:

 T. Abe, "Visual Imaging of Radio-Frequency Cavity Breakdown ", KEK Accl. Lab. Topics 2016/10/5 (web article): <u>http://www2.kek.jp/accl/eng/topics/topics161005.html</u>

T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino, "Breakdown Study Based on Direct In-Situ Observation of Inner Surfaces of an RF Accelerating Cavity during a High-Gradient Test", <u>Physical Review Accelerators and Beams 19</u>, 102001 (2016).

An Example of Pyrotechnic Breakdown Events V_c=0.89 MV (E_{acc} = 3.5 MV/m) Upstream Endplate

Downstream Endplate

Coaxial Line of the Input Coupler

- 1. What are the bright spots?
 - Spectrum?
 - Temperature?
 - Why exploded?
- What is the physical process of the spot-type explosion?
 Generation → Growth → Explosion of a bright spot in a moment?

New!

Defocus Effect

Hyperspectral Imaging

Analyzed image

MeVArc 2018 (2018-05-22)

Hyperspectral camera used in this measurement

Model: NH-KE3 made by EBA JAPAN CO.,LTD. <u>https://ebajapan.jp/spectraltechnology/</u>

ltem	Spec.
Detector	CMOS
Number of pixels	360,000
Max. frame rate	100 fps
ADC bits	10
Range of wavelength	400 to 1000 nm
Enclosure size	H76.0mm x W72.4mm x L213mm
Net weight	1030g

Check of the defocus effect

Measurement Setup

Miniature bulb

Hyperspectral camera

MeVArc 2018 (2018-05-22)

Different spectra at difference points!

Calibration of Pixel Sensitivity of the CMOS Sensor

MeVArc 2018 (2018-05-22)

MeVArc 2018 (2018-05-22)

Calibrated so that any spectrum measured at each pixel should show the reference spectrum.

MeVArc 2018 (2018-05-22)

Reference spectra are different before and after the relevant measurements in this study.

Tetsuo ABE (KEK)

Wavelength Calibration

Using a He-Ne Red Laser (632.8 nm)

MeVArc 2018 (2018-05-22)

Using a He-Ne Laser (632.8 nm)

Tetsuo ABE (KEK)

Measurement of Wavelength Dependence of Transmissivity of the Mirror Chamber

Correction for the Mirror-Chamber Transmissivity

Observed Spectrum

Transmissivity of the Mirror Chamber

Measurement of the Transmissivity of the Mirror Chamber

Measurement of Thermal-Radiation Spectra

MeVArc 2018 (2018-05-22)

Copper Block to be irradiated for heating

Electron-Beam-Welding machine at KEK Mechanical Engineering Center was used.

~580 degC

MeVArc 2018 (2018-05-22)

~680 degC

単波長表示 80 (133,2)=

MeVArc 2018 (2018-05-22)

~930 degC

単波長表示 80 (370,2)=

Correction on the Window Transmissivity of the EBW machine

Observed Spectrum

Measurement of the Transmissivity of the EBW-Machine Window

Window (= Lead glass + TEMPAX)

Measurement of the Transmissivity of the EBW-Machine Window

Correction factor to convert observed spectra to physical spectra

using the thermal-radiation measurement results

and Planck Formula: (Black-body radiation spectrum) \propto

Peak position (λ_p) by fitting the observed spectrum with an <u>asymmetric gaussian</u>

After subtracting background spectrum with

- ✓ No beam irradiation
- ✓ Temperature of the copper block < 100 degC</p>
- ✓ Cathode voltage ON (120 kV)

MeVArc 2018 (2018-05-22)

(Correction factor) = (Planck Formula) / (Observed Spectrum)

- Average to be used in the following analyses

MeVArc 2018 (2018-05-22)

Observation of Bright Spots during High-Power Operation of DR Cavity No.0

This high-power test was performed by SuperKEKB-RF / ARES Cavity group (T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi, and K. Yoshino).

Cavity No.0 was re-tested on its high-power performance.

(1) Reached $V_c = 0.90$ MV (radiation limit) smoothly. (2) Maintained $V_c = 0.90$ MV for six hours..

MeVArc 2018 (2018-05-22)

Measurement Setup

Bright Spots (BSs) during High-Power Operation

Upstream Endplate

Downstream Endplate

MeVArc 2018 (2018-05-22)

Spectra and Temperatures of BS-C1

Downstream Endplate

- Error bars on temperature are determined for $\chi^2/ndf = 1$.
- Significant increase in the temperature with higher cavity voltage (x1.7)
- No significant difference
 between the temperatures
 in 700 800 nm and 800 900 nm

Upstream Endplate

Error bars on temperature are determined for χ^2 /ndf = 1.

- Temperature increase also seen with higher cavity voltage, but about half of that for BS-C1
- Small difference between the temperatures in 700 -800 nm and 800 - 900 nm

MeVArc 2018 (2018-05-22)

Upstream Endplate

Error bars on temperature are determined for χ^2 /ndf = 1.

- Temperature increase also seen with higher cavity voltage
- Small difference between the temperatures in 700 -800 nm and 800 - 900 nm

Measured Temperatures [degC] at $V_c = 0.95$ MV for 700 – 800 nm

Upstream Endplate

Downstream Endplate

MeVArc 2018 (2018-05-22)

Phase Diagram of Copper

List of Elements with High Sublimation Points

At 1x10⁻⁵ Pa

- 1740.1 degC • Graphite 1084.4 degC • Ce • Hf 1610.4 degC 1675.4 degC • Ir 1099.9 degC • La • Lu 1056.7 degC 1671.2 degC • Mo • Nb 1831.1 degC • Os 2003.4 degC
- Pt 1385.6 degC
- Re 2066.9 degC
- Rh 1361.1 degC
- Ru 1598.0 degC
- Si 1055.3 degC
- Ta 2082.4 degC
- Th 1584.8 degC
- Ti 1137.3 degC
- V 1234.1 degC
- W 2215.5 degC
- Y 1036.9 degC
- Zr 1533.3 degC

List of Elements with High Sublimation Points

		<u>At 1x10⁻⁵ Pa</u>
•	Graphite	1740.1 degC
٠	Ce	1084.4 degC
•	Hf	1610.4 degC
•	Ir	1675.4 degC
٠	La	1099.9 degC
٠	Lu	1056.7 degC
•	Мо	1671.2 degC
•	Nb	1831.1 degC
•	Os	2003.4 degC
٠	Pt	1385.6 degC
•	Re	2066.9 degC
٠	Rh	1361.1 degC
•	Ru	1598.0 degC
٠	Si	1055.3 degC
•	Та	2082.4 degC
•	Th	1584.8 degC
٠	Ti	1137.3 degC
٠	V	1234.1 degC
•	W	2215.5 degC
٠	Υ	1036.9 degC
•	Zr	1533.3 degC

Bright spots are high-temperature carbonic particles!? Graphite burns at > 500 degC. No burning since no oxygen in vacuum

Hypothesis

An Example of Carbonic Microparticles on Copper Surface

MeVArc 2018 (2018-05-22)

Another Example: Inspection of a coupler cell of S-band structure

Slides shown in Mechanical Engineering Workshop 2004 at KEK by Hiromitsu TOMIZAWA (JASRI/SPring-8)

Carbon can deposit in accelerating structures, and adhere to copper surfaces.

MeVArc 2018 (2018-05-22)

Answers for the Questions

- 1. What are the bright spots?
 - Spectrum?

 Thermal radiation

 Temperature?

 > 1000 degC (← the 10 bright spots)
 → The bright spots are NOT copper.
 Max.~1500 degC
 Why exploded?

Answers for the Questions

- 1. What are the bright spots?
 - Spectrum?
 - **Thermal radiation**
 - **Temperature?**

> 1000 degC (the 10 bright spots)
The bright spots are NOT copper. ➢Max. ~1500 degC

Why exploded?

> Burning of carbonic particles in a moment with oxygen provided from oxides in the copper surface?

New!

Using the "low-speed" (30 fps) cameras for DR Cavity No.2 3 TV cameras for <u>Multi-directional and wide-field</u> observation

Out of the 205 breakdown events, we found one event with "Flying object → Impact on the copper surface → Breakdown".

Still nothing special

MeVArc 2018 (2018-05-22)

Using 3 high-speed cameras for DR Cavity No.0

3 TV cameras for <u>Multi-directional and wide-field</u> observation High Speed Camera 2 (Coaxial Line of the Input Coupler High Speed Camera 3 Pickup Antenna

With this setup, we found 4 such kind of

events out of 40 breakdown events!

- Model: "HAS-D3M"
 - ✓ Made by DITECT Co. Ltd. (<u>http://www.ditect.co.jp/en/index.html</u>)
 - ✓ Frame rate: 100 to 100,000 fps (1,000 and 2,000 fps used in this observation)
 - ✓ Frame-by-frame synchronization among the 3 cameras available

Tetsuo ABE (KEK)

(Preliminary)

(Frame rate : 1,000 fps)

(Frame rate : 1,000 fps)

F OFF, LED injected

(Frame rate : 1,000 fps)

(Frame rate : 1,000 fps)

MeVArc 2018 (2018-05-22)

(Frame rate : 1,000 fps)

F OFF, LED injected

(Frame rate : 1,000 fps)

(Frame rate : 1,000 fps)

F OFF, LED injected

(Frame rate : 1,000 fps)

F OFF, LED injected

MeVArc 2018 (2018-05-22)

MeVArc 2018 (2018-05-22)

Answers for the Questions

Hypotheses

- 2. What is the physical process of the spot-type explosion?
 - Generation \rightarrow Growth \rightarrow Explosion of a bright spot in a moment?
 - If we use higher-speed cameras, we should observe more this kind of events; however, in this observation, no more events.
 - On the other hand, events with flying objects impacting on the copper surface triggering BD observed more
 - 1 event found out of 205 BD events using the low-speed cameras (30 fps)
 - 4 events found out of 40 BD events using the high-speed cameras (1,000 to 2,000 fps) (Dedicated computer programs are being prepared for detailed analyses.)
 - This "Flying Object" might be an answer.
 - If the temperature of the flying objects is not so high, we cannot see them as visible lights, and just observe them as spot-type explosion events.
New!

Vacuum breakdowns are triggered by the following thermochemical reaction processes:

$$C(s) + O_2(g) = CO_2(g) + 394 kJ$$

 $C(s) + \frac{111}{2}O_2(g) = CO(g) + 111 kJ$

(← thermochemical equations)

Vacuum breakdowns are triggered by the following thermochemical reaction processes:

```
C(s) + O_2(g) = CO_2(g) + 394 kJ
C(s) + \frac{1}{2}O_2(g) = CO(g) + 111 kJ
```

(\leftarrow thermochemical equations)

- 1. Carbonic microparticles:
 - Enter from outside into the cavity, and/or
 - Created from hydrocarbons, etc., by using energies of RF fields, breakdowns, and/or field emissions.

Vacuum breakdowns are triggered by the following thermochemical reaction processes:

```
C(s) + O_2(g) = CO_2(g) + 394 kJ
C(s) + \frac{1}{2}O_2(g) = CO(g) + 111 kJ
```

(\leftarrow thermochemical equations)

- 1. Carbonic microparticles:
 - Enter from outside into the cavity, and/or
 - Created from hydrocarbons, etc., by using energies of RF fields, breakdowns, and/or field emissions.
- 2. Such microparticles adhere to the copper surface of the cavity.

Vacuum breakdowns are triggered by the following thermochemical reaction processes:

```
C(s) + O_2(g) = CO_2(g) + 394 kJ
C(s) + \frac{112}{2}O_2(g) = CO(g) + 111 kJ
```

(\leftarrow thermochemical equations)

- 1. Carbonic microparticles:
 - Enter from outside into the cavity, and/or
 - Created from hydrocarbons, etc., by using energies of RF fields, breakdowns, and/or field emissions.
- 2. Such microparticles adhere to the copper surface of the cavity.
- 3. A part of the microparticle is heated by surface currents and/or field emissions over the ignition temperature of carbon (~500 degC).
 - However, no burning since no oxygen in vacuum

Vacuum breakdowns are triggered by the following thermochemical reaction processes:

```
C(s) + O_2(g) = CO_2(g) + 394 kJ
C(s) + \frac{1}{2}O_2(g) = CO(g) + 111 kJ
```

(\leftarrow thermochemical equations)

- 1. Carbonic microparticles:
 - Enter from outside into the cavity, and/or
 - Created from hydrocarbons, etc., by using energies of RF fields, breakdowns, and/or field emissions.
- 2. Such microparticles adhere to the copper surface of the cavity.
- 3. A part of the microparticle is heated by surface currents and/or field emissions over the ignition temperature of carbon (~500 degC)
 - However, no burning since no oxygen in vacuum
- 4. Enough oxygen is provided to the high-temperature part of the microparticle in a moment
 - → Explosion → Ionization of C and/or Cu, etc., using the above energies → Vacuum breakdown

Speculations

Spot-type explosion not originating from a stable bright spot

A charged-up carbonic microparticle with > 500 degC was extracted by the RF field from the copper surface in one side. → Accelerated by the RF field

- → Impact on the copper surface in the other side
- ➔ Enough oxygen was provided from oxides, including H₂O, in the copper surface at the impact point in a moment.
- → Explosion
- ➔ Vacuum breakdown

Spot-type explosion of a stable bright spot

Enough oxygen was provided to the bright spot (= carbonic microparticle with > 500 degC) by a certain mechanism.

- ➔ Bright-spot explosion
- ➔ Vacuum breakdown

Simple Simulation using CST MPHYSICS STUDIO

116

Consequences and Predictions by This Model

- A) Observed temperatures of bright spots cannot exceed the sublimation point of carbon.
 - \succ ~1740 degC at 1x10⁻⁵ Pa (for graphite)
- B) Breakdowns can occur even with electric fields much lower than those for field evaporation.
- C) Carbons of embers should be detected around breakdown spots more than in other areas by microelement analyses after high-power tests.
- D) Copper surfaces are reduced by breakdowns.
- E) Smaller (larger) amount of oxides, including H₂O, in the copper surface leads to lower (higher) breakdown rates.
- F) Partial vacuum pressures of CO and CO₂ should increase at breakdowns. \rightarrow See the next two pages.

Vacuum-Pressure Rises at Breakdowns of DR Cavity No. 2 (509 MHz, CW cavity)

"Test Results on RF Accelerating Cavities for the Positron Damping Ring at SuperKEKB", in Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, 2014 (SAP050). -4 x 10 [Pa] 0.5 0.4 $\Delta \mathbf{P}$ 0.3 Total vacuum-pressure rise ightarrow0.2 0.1 Stability Test with $V_c = 0.90 \text{ MV}$ 0 0.8 250 RF Conditioning 0.6 200 0.4 150 **RF-ON Time** [hours] 0.2 50 С

(Vacuum pressure during this high-power test: ~1x10⁻⁵ Pa)

Figure 17: Partial vacuum-pressure rises ($\Delta P_{\text{partial}}$) at the cavity breakdowns, measured using the Q-mass spectrometer shown in Fig.5 every one second, for mass numbers of 2, 18, 28, 32, 40, and 44 as a function of the RF-ON time during the stability test.

CO and CO₂ are dominant components of emitted gases at breakdowns!

(H₂ visible only when increasing $V_{\rm c}$)

Extracted from

T. Abe, Y. Takeuchi, T. Kageyama, H. Sakai, and K. Yoshino,

Tetsuo ABE (KEK)

Summary

- Using the hyperspectral camera, we measured temperatures of the 10 bright spots during high-power operation.
 - > 1,000 degC at $V_c = 0.95$ MV ($E_{acc} = 3.7$ MV/m)
 - The bright spots are not copper.
 - Primary candidate of the bright spots is a carbonic microparticle.
- Using the high-speed cameras, we observed flying objects triggered breakdown.
 - All of, or most of, the spot-type explosion events might be accompanied by a flying object triggering breakdown.
- Based on the observation results in this study, the thermochemical vacuum breakdown model has been proposed.
 - It is hypothesized that burning of a hot carbonic microparticle in a moment might trigger vacuum breakdown.

Thank you for your attention!

This work was supported by Grant-in-Aid for Scientific Research (JSPS KAKENHI) (Grant No. 15H03671).

Tetsuo ABE (KEK)