Computing properties of Pt surfaces for understanding electron emission

Peter A. Schultz (paschul@sandia.gov)
Harold Hjalmarson, Ezra Bussmann, Matthew Hopkins, Sean Smith, Paul Clem, David Scrymgeour, Morgann Berg, Taisuke Ohta, Chris Moore

- Sandia National Laboratories, Albuquerque NM USA -

MeVArc 2018, San Juan, Puerto Rico, USA, May 19-24
Fowler-Nordheim picture

- **Fowler-Nordheim emission** (empirical)

\[J = \frac{A \beta^2 E^2}{\phi} \exp \left(- \frac{B \phi^{3/2}}{\beta E} \right) \]

- Current density \(J(E, \phi, A, \beta) \)
- \(E \) field
- \(\phi \) work function
- Empirical fitting parameters: \(\beta \)
- \(\beta \) varies from 10-1000 inside exponential

Work function has spatial variability
Structure folded into empirical \(\beta \)-factor

Our goals ...

(1) understand local structure on Pt surfaces
(2) correlate local structure with local work function
(3) and augment empiricism with finer understanding
(4) add adsorbates and contaminants, and repeat
Pt thin films – structure to emission

Structure to work function spatial variation

Sputtered thin films
Polycrystalline
(111)-oriented grains
Few-100's nm sized

topography (AFM)

photoemission electron microscopy (PEEM)

(a)

(b)

(c)

Clean Pt(111): $\Phi = 6.1 \text{ eV}$
Pt thin film: $\Phi = 5.7 \text{ eV}$?
Simple Pt surfaces ... are not simple

- All low-Miller-index Pt surfaces reconstruct
 - Pt(100) reconstructs to dense, close-packed hexagonal surface
 - Pt(110) reconstructs to (2x1) or (3x1) missing row
 - Pt(111) into 8% denser incommensurate hexagonal (high-T, or high-Pt)
 - “Simple surfaces” are complicated

- Our surfaces are polycrystalline! (though 111-oriented)

- Growth on real Pt(111) surfaces is not planar (111)!

Fig. 1. STM topographs of Pt/Pt(111) after growth at 440 K with \(A= 7 \times 10^{-3} \) ML s\(^{-1}\). (a) 0.3 ML, (b) 3 ML, (c) 12 ML, (d) 90 ML. The scan size in (a)–(d) is 2550×3450 Å\(^2\)

Heterogeneity in structure \(\rightarrow\) variations in \(\Phi\)

The goal of DFT are to augment empiricism with finer understanding

- Characterize surface structure of clean Pt
 - what are the common surface structures on “real” Pt surfaces?

- Correlate local structure with local work function
 - how does local structure affect local work function?

- Establish baseline understanding between theory and STM/PEEM

- How do features and structure affect emission and arc initiation?
 - band structure for device simulations, field enhancement at features?

- How do adsorbates/contaminants affect these?
Basic process for surface DFT calculations

1. Choose DFT code, functional, pseudopotential
 - SEQQUEST – Sandia-developed pseudopotential DFT code
 - local orbital “LCAO” basis – need “floating orbitals” for surfaces
 - LDA, PBE, PW91, and AM05 functionals

2. Optimize bulk fcc properties: a_0 and B
 - verify convergence

3. Create surface models – thin flim “slab”
 - thickness of N layers – test convergence
 - define surface k-sampling, real space grids, etc – verify sufficiency

4. Compute slab energy: $E_{\text{surface}} = \frac{(E_{\text{slab}} - N*E_{\text{bulk}})}{2}$

5. Extract surface properties, esp. work function Φ_{surface}
Some DFT surface calculation issues

 - “non-convergence” of surface energy from bulk-referenced slabs.

- Fiorentini and Methfessel JPCM 8, 6525 (1996).
 - use extrapolation/fits to increasing thick slab to get surface E

- Fall, Binggeli & Baldereschi, JPCM 11, 2689 (1999).
 - work functions from extrapolations (Al to 14 layers)

- Da Silva, Stampfl, & Scheffler, SS 600, 703 (2006).
 - “direct method” with bulk and slab with “Same high accuracy”

- Singh-Miller and Marzari, PRB 80, 235407 (2009).
 - compare “Boettger”, extrapolation, and “direct” methods

 - functionals for accurate surface E (EXX+RPA) – only up to 8 layers!
Non-convergence issues

FIG. 2. (Color online) Surface energy versus slab thickness for the Pd(100) surface calculated with the methods of Boettger (Ref. 8), Fiorentini and Methfessel (Ref. 64), and directly from Eq. (1) with two different values for E_{bulk}.

Layer by layer ("Boettger")
- simple additive
- what is possible for large cells

"Direct" method \rightarrow divergence
- if use naïve E_{bulk}, get divergence of E_{surf}
- good iff both slab and bulk very converged
- impractical for large surface cells

Extrapolated fit of E_{bulk}
- thick slabs to establish convergence, fit E_{bulk}
- impractical for large surface cells

And then functional/methods accurate enough?
- LDA - (mostly) correct numbers, but wrong physics
- PBE - better physics, but wrong numbers
- AM05 – targeted for surface properties (Mattsson/SNL)
- EXX+RPA computationally impractical
Refined method for DFT surface calculations

- AM05 functional – tailored to surfaces (but also PBE and LDA)
- Use converged fcc bulk a_0
- Developed “surface-consistent” bulk reference $E_{bulk\{k;surf\}}$

$$E_{surface} = \frac{E_{slab} - N*E_{bulk}}{2}$$
Side excursion: Al(100) – Bulk reference energy

Use large k_z-limit average of slab-consistent bulk reference cell energy
Al(111) surface energy

Coarse $k=8\times8$ and dense high-accuracy $k=21\times21$ all converge quickly

"Direct" slab-consistent bulk reference energy solves convergence
Al(100) surface energy - cautions

Good convergence for dense k-sample

Convergence > 25 for coarse k=8x8

Divergence if bulk reference faulty

Must monitor “bulk reference”! In k=8x8xk_z bulk a_0 changes!
Al surfaces properties: verification/validation

<table>
<thead>
<tr>
<th></th>
<th>Al(100)</th>
<th></th>
<th>Al(111)</th>
<th></th>
<th>Al(110)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ</td>
<td>Φ</td>
<td>σ</td>
<td>Φ</td>
<td>σ</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
<td></td>
<td>Experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDA</td>
<td></td>
<td></td>
<td>LDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrelaxedc</td>
<td>0.54</td>
<td>4.53</td>
<td>0.41</td>
<td>4.27</td>
<td>0.82</td>
</tr>
<tr>
<td>Relaxedc</td>
<td>0.54</td>
<td>4.49</td>
<td>0.41</td>
<td>4.26</td>
<td>0.81</td>
</tr>
<tr>
<td>Fall (1998)d</td>
<td>$-$</td>
<td>4.38</td>
<td>$-$</td>
<td>4.25</td>
<td>$-$</td>
</tr>
<tr>
<td>Da Silva (2006)e</td>
<td>$-$</td>
<td>$-$</td>
<td>0.39</td>
<td>4.21</td>
<td>$-$</td>
</tr>
<tr>
<td>PBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrelaxedc</td>
<td>0.47</td>
<td>4.34</td>
<td>0.35</td>
<td>4.12</td>
<td>0.71</td>
</tr>
<tr>
<td>Relaxedc</td>
<td>0.46</td>
<td>4.34</td>
<td>0.35</td>
<td>4.11</td>
<td>0.70</td>
</tr>
<tr>
<td>Da Silva (2005)f</td>
<td>0.48</td>
<td>4.24</td>
<td>0.36</td>
<td>4.06</td>
<td>0.72</td>
</tr>
<tr>
<td>Da Silva (2006)c</td>
<td>$-$</td>
<td>$-$</td>
<td>0.33</td>
<td>4.04</td>
<td>$-$</td>
</tr>
<tr>
<td>Singh-Miller (2009)c</td>
<td>0.45</td>
<td>4.30</td>
<td>0.30</td>
<td>4.02</td>
<td>0.70</td>
</tr>
<tr>
<td>AM05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrelaxedc</td>
<td>0.54</td>
<td>4.34</td>
<td>0.42</td>
<td>4.10</td>
<td>0.83</td>
</tr>
<tr>
<td>Relaxedc</td>
<td>0.54</td>
<td>4.33</td>
<td>0.41</td>
<td>4.10</td>
<td>0.82</td>
</tr>
<tr>
<td>PW91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unrelaxedc</td>
<td>0.44</td>
<td>4.38</td>
<td>0.34</td>
<td>4.14</td>
<td>0.67</td>
</tr>
<tr>
<td>Relaxedc</td>
<td>0.44</td>
<td>4.35</td>
<td>0.33</td>
<td>4.12</td>
<td>0.66</td>
</tr>
</tbody>
</table>

(a). Ref. 9, converted from quoted 1.14 J/m^2 to eV/atom using $a_0(293K)=4.05 \text{ Å}$.
(b). Ref. 10.
(c) This work, quoting large k_\parallel and slab thickness (17-35 layers) average.
(d) Ref. 11 using a norm-conserving pseudopotential code with 9 (for 111) or 8 (100,110) layers.
(e) Ref. 7, using a full-potential code with 7 layers (for the Al(111) surface).
(f) Ref. ?, using a full potential code with from 15 (for 111), to 23 (110) layers.
(g) Ref. 8, using a norm-conserving pseudopotential plane wave method code with 13 layers.

Local orbital methods with “floating orbitals” verified (cf. plane wave)
Sense of expected accuracy (validation) of DFT on known surfaces
Pt ideal surface convergence

Surface energy for ideal surface converges quickly
So does the work function Φ

Passes verification checks – better behaved than Al

As usual for fcc:
- (111) most stable
- (110) least stable

... but
(110) missing row reconstruction

(side view)
(110) – (2x1) missing row

Top view
(110) – (3x1) missing row
(110)-(8x1) missing row - (111) nano-terraces

- (110) - (N x 1) missing row reconstruction ...
 - directly maps to (111) terraces separated by ridges
 - if including counting the first **two** (110) layers in atom count
To guarantee 9 layers (111), need $2 \times 9 = 18$ layers of (110)
(N x 1)-Pt(110) missing row reconstructions

Graph: Pt(110)-(Nx1) energy (meV/atom)

- 1x1
- 2x13x1
- (111) facets
- 12x

Surface energy (meV/atom)

Expt sees 2x1, 3x1

Stepped facets more stable than infinite 111-facets

Thermodynamics/kinetics vs. internal energy

There is a step-creation cost on the flat (111)

Thermodynamic tendency to form (111) stepped regions - pyramids
Work functions of Pt surfaces

<table>
<thead>
<tr>
<th></th>
<th>(110)</th>
<th>(111)</th>
<th>(100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>— / 5.35</td>
<td>1.03/6.08</td>
<td>— / 5.82</td>
</tr>
<tr>
<td>Singh-Miller’09</td>
<td>1.30/5.26</td>
<td>0.65/5.69</td>
<td>0.90/5.66</td>
</tr>
<tr>
<td>Da Silva’06</td>
<td>— / —</td>
<td>0.71/5.69</td>
<td>— / —</td>
</tr>
<tr>
<td></td>
<td>— / —</td>
<td>0.91/6.06</td>
<td></td>
</tr>
<tr>
<td>Our work</td>
<td>0.88/5.71</td>
<td>0.86/6.14</td>
<td>1.20/5.74</td>
</tr>
<tr>
<td>(LDA)</td>
<td>0.69/5.35</td>
<td>0.67/5.79</td>
<td>0.95/5.74</td>
</tr>
<tr>
<td>(PBE)</td>
<td>0.79/5.36</td>
<td>0.77/5.79</td>
<td>1.09/5.75</td>
</tr>
<tr>
<td>(AM05)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pt(110): (2x1) (3x1) (4x1) (5x1) (6x1) (8x1) (10x1) (12x1) ... Pt(111)
\(\Phi \) (eV): 5.49 5.55 5.59 5.63 5.65 5.66 5.69 5.69 ... 5.79

Distances between steps/ridges tunes work function
Summary

• New "slab-consistent" bulk reference approach is robust

• Pt(110) (2x1) and (3x1) correctly predict reconstructions
 - per atom energy lower than Pt(111)

• Pt(110)-like ridges/Pt(111) terraces are likely common features
 - explaining non-uniform growth, pyramids

• Work function tuned by step/ridge density, terrace widths

• Even AM05 surface functional strangely has trouble with Pt(111)