Using Feynman's Tree Theorem to Evaluate Loop Integrals Numerically

Tobias Kleinschmidt

27.10.09 - Radcor 2009

In collaboration with W. Kilian

Outline

- Introduction
- Cutting Loops
 - Feynman Tree Theorem
 - Renormalization and Regularization
 - Infrared Divergences
 - Threshold Singularities
- Application to Bhabha Scattering
 - Cross Section Integration
 - Event Generation
- Conclusions
 - Summary
 - Outlook

- Ingredients of NLO Calculations
- Tree Graphs (real corrections) with n+1 partons.
 ✓ Fully understood!
 - Several generators for creation of efficient matrix elements.
 - e.g. O'Mega [Ohl et.al.,'01], Alpha [Caravaglios et.al.,'95], MadGraph [Stelzer et.al.,'03], Comix [Gleisberg, Höche '08]
 - Contain infrared soft and collinear divergences.
 - Cancel divergences in real corrections locally
 - ✓ Fully understood!
 - Mainly used: [Catani, Seymour '96; Catani, Seymour, Dittmaier, Trocsanyi '02sanyi '0
 - Virtual Corrections to n-leg process
- Level of Complexity rises due to:
 - Length of Expressions
 - Complexity of Integrals
 - IR divergences, internal singularities

Calculations very time consuming! (Not only computing time!)

- Tree Graphs (real corrections) with n+1 partons.
 - Fully understood!
 - Several generators for creation of efficient matrix elements.
 - e.g. O'Mega [Ohl et.al.,'01], Alpha [Caravaglios et.al.,'95], MadGraph [Stelzer et.al.,'03], Comix [Gleisberg, Höche '08]
 - Contain infrared soft and collinear divergences.
- Subtraction Terms
 - Cancel divergences in real corrections locally.
 - ✓ Fully understood!
 - Mainly used: [Catani, Seymour '96; Catani, Seymour, Dittmaier, Trocsanyi '02]

- Length of Expressions
- Complexity of Integrals
- IR divergences, internal singularities

Aim at fully automated matrix element generation and event generation, 🗐 🗐 💁

- - ✓ Fully understood!
 - Several generators for creation of efficient matrix elements.
 - e.g. O'Mega [Ohl et.al.,'01], Alpha [Caravaglios et.al.,'95], MadGraph [Stelzer et.al.,'03], Comix [Gleisberg, Höche '08]
 - Contain infrared soft and collinear divergences.

Tree Graphs (real corrections) with n+1 partons.

- Subtraction Terms
 - Cancel divergences in real corrections locally.
 - ✓ Fully understood!
 - Mainly used: [Catani, Seymour '96; Catani, Seymour, Dittmaier, Trocsanyi '02]
- Virtual Corrections to n-leg process Contain... Problems!

Level of Complexity rises due to:

- Length of Expressions
- Complexity of Integrals
- IR divergences, internal singularities

→ Aim at fully automated matrix element generation and event generation.

- Tree Graphs (real corrections) with n+1 partons.
 - ✓ Fully understood!

Several generators for creation of efficient matrix elements.

e.g. O'Mega [Ohl et.al.,'01], Alpha [Caravaglios et.al.,'95], MadGraph [Stelzer et.al.,'03], Comix [Gleisberg, Höche '08]

Contain infrared soft and collinear divergences.

Subtraction Terms

Cancel divergences in real corrections locally.

✓ Fully understood!

Mainly used: [Catani, Seymour '96; Catani, Seymour, Dittmaier, Trocsanyi '02]

 Virtual Corrections to n-leg process Contain... Problems!

Level of Complexity rises due to:

- Length of Expressions
- Complexity of Integrals
- IR divergences, internal singularities

Calculations very time consuming! (Not only computing time!)

→ Aim at fully automated matrix element generation and event generation.

Major Tools and Techniques for One Loop Calculations

Feynman Diagram based methods

- \bullet Tensor reduction (PV) \rightarrow set of basis integrals
- ✓ Scalar integrals known analytically
- Yields large expressions for coefficients
- can have delicate numerical stability
- ⇒ use modified reduction schemes, avoiding Gram determinants

GOLEM: Binoth, Guillet, Heinrich, Pilon, Reiter, ...

Denner, Dittmaier, ...

Unitarity based methods

Decompose Amplitude into scalar integrals and coefficients

Coefficients are products of on-shell tree amplitudes, obtained by cutting techniques

- X large expressions for coefficients, but...
- ✓ simpler than coefficients from PV-style reductions?
- ✓ P-algorithm ($\tau \propto N^9$, for N-gluon-amp)

Rocket: Ellis, Giele, Kunszt, Melnikov, Zanderighi

 ${\it BlackHat: Bern, Dixon, Forde, Gleisberg, Kosower, Maitre,...}$

Helac-1Loop: van Hameren, Papadopoulus, Pittau,

Bevilacqua, Czakon, Worek...

- Fully numerical methods: Integrate over loop momentum/Feynman parameter
 - ✓ No large expressions
 - Complicated singularity structure
 - ⇒ Sector Decomposition, Contour Deformation
 - Anastasiou, Beerli, Daleo, Krämer, Nagy, Soper, ...
 - Can again create large expressions

Major Tools and Techniques for One Loop Calculations

Feynman Diagram based methods

- \bullet Tensor reduction (PV) \rightarrow set of basis integrals
- ✓ Scalar integrals known analytically
- X Yields large expressions for coefficients
- x can have delicate numerical stability
- \Rightarrow use modified reduction schemes, avoiding Gram determinants

GOLEM: Binoth, Guillet, Heinrich, Pilon, Reiter, ...

Denner, Dittmaier, ...

Unitarity based methods

Decompose Amplitude into scalar integrals and coefficients

Coefficients are products of on-shell tree amplitudes, obtained by cutting techniques

- ✗ large expressions for coefficients, but...
- ✓ simpler than coefficients from PV-style reductions?
- ✓ P-algorithm ($\tau \propto N^9$, for N-gluon-amp)

Rocket: Ellis, Giele, Kunszt, Melnikov, Zanderighi

BlackHat: Bern, Dixon, Forde, Gleisberg, Kosower, Maitre,...

Helac-1Loop: van Hameren, Papadopoulus, Pittau,

Bevilacqua, Czakon, Worek...

- Fully numerical methods: Integrate over loop momentum/Feynman parameter
 - ✓ No large expressions
 - Complicated singularity structure
 - ⇒ Sector Decomposition, Contour Deformation

Anastasiou, Beerli, Daleo, Krämer, Nagy, Soper, ...

X Can again create large expressions

Outline

- Introduction
- Cutting Loops
 - Feynman Tree Theorem
 - Renormalization and Regularization
 - Infrared Divergences
 - Threshold Singularities
- Application to Bhabha Scattering
 - Cross Section Integration
 - Event Generation
- Conclusions
 - Summary
 - Outlook

• Integrand I(k) of a one-loop graph with loop momentum k:

$$I(k) = N(k) \prod_{i} F_{i}$$

with Feynman Green Functions F_i (t'Hooft-Feynman gauge):

$$F_i \equiv \frac{i}{(k+p_i)^2 - m_i^2 + i\epsilon}$$

Partial fraction decomposition yields

$$\mathbf{F_i} = \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i - i\epsilon)} - \frac{1}{k^0 - (-p_i^0 - E_i + i\epsilon)} \right), \qquad E_i = \sqrt{(\vec{k} + \vec{p_i})^2 + m_i^2}.$$

• Idea: Replace *Feynman* Green functions F_i by *advanced* ones A_i

$$A_{i} = \frac{i}{2E_{i}} \left(\frac{1}{k^{0} - (-p_{i}^{0} + E_{i} + i\epsilon)} - \frac{1}{k^{0} - (-p_{i}^{0} - E_{i} + i\epsilon)} \right)$$

• Integrand I(k) of a one-loop graph with loop momentum k:

$$I(k) = N(k) \prod_{i} F_{i}$$

with Feynman Green Functions F_i (t'Hooft-Feynman gauge):

$$F_i \equiv \frac{i}{(k+p_i)^2 - m_i^2 + i\epsilon}$$

Partial fraction decomposition yields

$$\frac{\pmb{F_i}}{2E_i} = \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i - i\epsilon)} - \frac{1}{k^0 - (-p_i^0 - E_i + i\epsilon)} \right), \qquad E_i = \sqrt{(\vec{k} + \vec{p_i})^2 + m_i^2}.$$

• Idea: Replace *Feynman* Green functions F_i by *advanced* ones A_i :

$$A_i = \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i + i\epsilon)} - \frac{1}{k^0 - (-p_i^0 - E_i + i\epsilon)} \right)$$

6 / 25

 $\bullet \ \, \text{Integrand} \, \, I(k) \, \, \text{of a one-loop graph with} \\ \, \text{loop momentum} \, \, k : \\$

$$I(k) = N(k) \prod_{i} F_{i}$$

with Feynman Green Functions F_i (t'Hooft-Feynman gauge):

$$F_i \equiv \frac{i}{(k+p_i)^2 - m_i^2 + i\epsilon}$$

Partial fraction decomposition yields

• Idea: Replace *Feynman* Green functions F_i by *advanced* ones A_i :

$$A_{i} = \frac{i}{2E_{i}} \left(\frac{1}{k^{0} - (-p_{i}^{0} + E_{i} + i\epsilon)} - \frac{1}{k^{0} - (-p_{i}^{0} - E_{i} + i\epsilon)} \right)$$

6 / 25

• Integrand I(k) of a one-loop graph with loop momentum k:

$$I(k) = N(k) \prod_{i} F_{i}$$

with Feynman Green Functions F_i (t'Hooft-Feynman gauge):

$$F_i \equiv \frac{i}{(k+p_i)^2 - m_i^2 + i\epsilon}$$

Partial fraction decomposition yields

$$\mathbf{F}_i = \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i - i\epsilon)} - \frac{1}{k^0 - (-p_i^0 - E_i + i\epsilon)} \right), \qquad E_i = \sqrt{(\vec{k} + \vec{p_i})^2 + m_i^2}.$$

• Idea: Replace *Feynman* Green functions F_i by *advanced* ones A_i :

$$A_i = \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i + i\epsilon)} - \frac{1}{k^0 - (-p_i^0 - E_i + i\epsilon)} \right)$$

• Difference of Feynman and advanced Green function:

$$\begin{split} \Delta_i^l \equiv \pmb{F_i} - A_i &= \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i) + i\epsilon} - \frac{1}{k^0 - (-p_i^0 + E_i) - i\epsilon} \right) \\ \stackrel{\epsilon \to 0}{=} &\frac{2\pi}{2E_i} \delta(k^0 - (-p_i^0 + E_i)). \end{split}$$

 $\Rightarrow \Delta_i^l$ sets momentum $k+p_i$ on-shell with positive energy component $E_i.$

$$0 = \int N(k) \prod_{i=1}^{n} A_{i}$$

• Replacing A_i with $F_i - \Delta_i^l$ yields:

Feynman Tree Theorem (FTT)

$$0 = \int N(k) \left[F \cdots F - \sum \Delta^l F \cdots + \sum \Delta^l \Delta^l F \cdots - \dots + (-1)^n \sum \Delta^l \cdots \Delta^l \right]$$

Acta. Phys. Polon. **24** (1963) 697

- Recent interest: Brandhuber ea.[hep-th/0510253], Catani ea.[0804.3170
- Possible drawback: FTT still includes $i\epsilon$ terms. Not used in numerical calculations. Role of higher order terms in FTT?

7 / 25

Difference of Feynman and advanced Green function:

$$\begin{split} \Delta_i^l \equiv \pmb{F_i} - A_i &= \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i) + i\epsilon} - \frac{1}{k^0 - (-p_i^0 + E_i) - i\epsilon} \right) \\ \stackrel{\epsilon \to 0}{=} &\frac{2\pi}{2E_i} \delta(k^0 - (-p_i^0 + E_i)). \end{split}$$

 $\Rightarrow \Delta_i^l$ sets momentum $k + p_i$ on-shell with positive energy component E_i .

$$0 = \int N(k) \prod_{i=1}^{n} A_{i}$$

• Replacing A_i with $F_i - \Delta_i^l$ yields:

Feynman Tree Theorem (FTT)

$$0 = \int N(k) \left[F \cdots F - \sum \Delta^l F \cdots + \sum \Delta^l \Delta^l F \cdots - \dots + (-1)^n \sum \Delta^l \cdots \Delta^l \right]$$

Acta. Phys. Polon. **24** (1963) 697

- Recent interest: Brandhuber ea.[hep-th/0510253], Catani ea.[0804.3170
- Possible drawback: FTT still includes $i\epsilon$ terms. Not used in numerical calculations.

Difference of Feynman and advanced Green function:

$$\begin{split} \Delta_i^l \equiv \pmb{F_i} - A_i &= \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i) + i\epsilon} - \frac{1}{k^0 - (-p_i^0 + E_i) - i\epsilon} \right) \\ \stackrel{\epsilon \to 0}{=} &\frac{2\pi}{2E_i} \delta(k^0 - (-p_i^0 + E_i)). \end{split}$$

 $\Rightarrow \Delta_i^l$ sets momentum $k + p_i$ on-shell with positive energy component E_i .

$$0 = \int N(k) \prod_{i}^{n} A_{i}$$

• Replacing A_i with $F_i - \Delta_i^l$ yields:

Feynman Tree Theorem (FTT)

$$0 = \int N(k) \left[F \cdots F - \sum \Delta^l F \cdots + \sum \Delta^l \Delta^l F \cdots - \dots + (-1)^n \sum \Delta^l \cdots \Delta^l \right]$$

Acta. Phys. Polon. **24** (1963) 697

- Recent interest: Brandhuber ea.[hep-th/0510253], Catani ea.[0804.3170]
- Possible drawback: FTT still includes $i\epsilon$ terms. Not used in numerical calculations.

Difference of Feynman and advanced Green function:

$$\begin{split} \Delta_i^l &\equiv \pmb{F_i} - A_i &= \frac{i}{2E_i} \left(\frac{1}{k^0 - (-p_i^0 + E_i) + i\epsilon} - \frac{1}{k^0 - (-p_i^0 + E_i) - i\epsilon} \right) \\ &\stackrel{\epsilon \to 0}{=} \frac{2\pi}{2E_i} \delta(k^0 - (-p_i^0 + E_i)). \end{split}$$

 $\Rightarrow \Delta_i^l$ sets momentum $k + p_i$ on-shell with positive energy component E_i .

$$0 = \int N(k) \prod_{i}^{n} A_{i}$$

• Replacing A_i with $F_i - \Delta_i^l$ yields:

Feynman Tree Theorem (FTT)

$$0 = \int N(k) \left[F \cdots F - \sum \Delta^l F \cdots + \sum \Delta^l \Delta^l F \cdots - \dots + (-1)^n \sum \Delta^l \cdots \Delta^l \right]$$
 Acta. Phys. Polon. **24** (1963) 697

- Recent interest: Brandhuber ea.[hep-th/0510253], Catani ea.[0804.3170]
- Possible drawback: FTT still includes $i\epsilon$ terms. Not used in numerical calculations. Role of higher order terms in FTT?

• Make use of identity:

$$\frac{1}{x-a\pm i\epsilon}=\mathcal{P}\frac{1}{x-a}\mp i\pi\delta(x-a)$$

Rewrite Feynman Green function F_i:

$$\begin{split} \textbf{\textit{F}}_i = P_i + \frac{1}{2}\Delta_i^l + \frac{1}{2}\Delta_i^u \\ \Delta_i^u = \frac{2\pi}{2E_i}\delta(k^0 - (-p_i^0 - E_i)) \end{split}$$

• Replace any F_i in subleading terms of FTT:

$$\int I(k) = \int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$$

$$+ \int N(k) \sum_{\substack{perm. \\ U+L \ge 2}} C_{LUP} \Delta^{lL} \Delta^{uU} P^P,$$

$$C_{LUP} = \frac{1}{2^{L+U}} \left(1 - (-1)^L \right)$$

Make use of identity:

$$\frac{1}{x - a \pm i\epsilon} = \mathcal{P}\frac{1}{x - a} \mp i\pi\delta(x - a)$$

• Rewrite Feynman Green function F_i :

$$\begin{split} \pmb{F_i} &= P_i + \frac{1}{2}\Delta_i^l + \frac{1}{2}\Delta_i^u \\ & \Delta_i^u = \frac{2\pi}{2E_i}\delta(k^0 - (-p_i^0 - E_i)) \end{split}$$

Replace any F_i in subleading terms of FTT:

Feynman Tree Theorem - Improved Version

$$\begin{split} \int I(k) &= \int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \ldots + P_1 \cdots P_{n-1} \Delta_n^l \right] \\ &+ \int N(k) \sum_{\substack{perm. \\ U + L \ \geq \ 2}} C_{LUP} \ \Delta^{l^L} \Delta^{u^U} P^P, \\ &C_{LUP} &= \frac{1}{2^{L+U}} \left(1 - (-1)^L \right) \end{split}$$

$$\int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$$

• Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:

$$(\not k + \not p_i + m) = \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i)$$

$$-g_{\mu\nu} \to \sum_{\sigma} \epsilon_{\mu}^{*}(k+p_{i};\sigma)\epsilon_{\nu}(k+p_{i};\sigma)$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}$$

$$\int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$$

• Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:

Momentum $k + p_i$ is set on-shell

$$(\not k + \not p_i + m) = \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i)$$

$$g_{\mu\nu} \to \sum_{\sigma} \epsilon_{\mu}^{*}(k+p_{i};\sigma)\epsilon_{\nu}(k+p_{i};\sigma)$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}$$

9/25

$$\int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$$

- Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:
- Momentum $k + p_i$ is set on-shell
- Numerator of cut propagator is product of wave functions, summed over all internal states

$$\begin{split} (\not k + \not p_i + m) &= \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i); \\ -g_{\mu\nu} &\to \sum \epsilon_{\mu}^*(k + p_i; \sigma) \epsilon_{\nu}(k + p_i; \sigma) \end{split}$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}.$$

$$\int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$$

- Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:
- Momentum $k + p_i$ is set on-shell
- Numerator of cut propagator is product of wave functions, summed over all internal states
- Loop integral is replaced by phase space integral

$$\begin{split} (\not\! k + \not\! p_i + m) &= \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i); \\ -g_{\mu\nu} &\to \sum \epsilon_{\mu}^*(k + p_i; \sigma) \epsilon_{\nu}(k + p_i; \sigma) \end{split}$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}.$$

 $\int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \dots + P_1 \cdots P_{n-1} \Delta_n^l \right]$ Leading terms:

- Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:
- Momentum $k + p_i$ is set on-shell
- Numerator of cut propagator is product of wave functions, summed over all internal states
- Loop integral is replaced by phase space integral

$$\begin{split} (\not\! k + \not\! p_i + m) &= \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i); \\ -g_{\mu\nu} &\to \sum \epsilon_{\mu}^*(k + p_i; \sigma) \epsilon_{\nu}(k + p_i; \sigma) \end{split}$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}.$$

9/25

 $\text{Leading terms:} \qquad \int N(k) \left[\Delta_1^l P_2 \cdots P_n + P_1 \Delta_2^l P_3 \cdots P_n + \ldots + P_1 \cdots P_{n-1} \Delta_n^l \right]$

- Performing k_0 integration, Δ_i^l act as *opening* or *cutting* the loop:
- Momentum $k + p_i$ is set on-shell
- Numerator of cut propagator is product of wave functions, summed over all internal states
- Loop integral is replaced by phase space integral

$$\begin{split} (\not k + \not p_i + m) &= \sum_{\lambda} u_{\lambda}(k + p_i) \bar{u}_{\lambda}(k + p_i); \\ -g_{\mu\nu} &\to \sum \epsilon_{\mu}^*(k + p_i; \sigma) \epsilon_{\nu}(k + p_i; \sigma) \end{split}$$

$$\int \frac{d^4k}{(2\pi)^4} = \int \frac{d^3k}{(2\pi)^3 2E_i}.$$

Loop corrections for a $2 \to n$ process can be computed by considering all possible $2+1 \to n+1$ tree graphs with an additional incoming and outgoing on-shell particle. A phase space integration over the additional particles' momenta has to be performed.

Advantages

- Tree graphs simple to generate automatically,
- Phase space integrations under control for up to 8 final state particles.
- Phase space integration over additional particles can be performed simultaneously with integrations over external particle momenta.

Make method ideally suited for implementation in existing matrix element and event generator frameworks.

In the following:

- Renormalization and regularization scheme
- Treatment of infrared divergences
- Treatment of threshold singularities

Advantages

- Tree graphs simple to generate automatically,
- Phase space integrations under control for up to 8 final state particles.
- Phase space integration over additional particles can be performed simultaneously with integrations over external particle momenta.

Make method ideally suited for implementation in existing matrix element and event generator frameworks.

In the following:

- Renormalization and regularization scheme
- Treatment of infrared divergences
- Treatment of threshold singularities

1. Renormalization and Regularization

- Born Level ⇒ Loop Level: Relation bare ⇔ physical parameters broken
 - Add renormalization constants to Lagrangian (also absorb UV divergences)
 - ⇒ Additional degrees of freedom
 - Fix by renormalization conditions
- Use on-shell renormalization scheme [Ross and Taylor, '73]:

$$\begin{split} &\text{Re } i\Gamma_{\alpha\beta}^{(2)}(-p,p)\Phi^{\beta}(p)\Big|_{p^2=m^2}=0 & \quad \Gamma^{(3)}(p_i,\lambda)\Big|_{p_i^2=m^2}=\lambda_0^3 \\ &\text{Res } \left(-\Gamma^{(2)}(p)\right)_{p=m,p^2=m^2}^{-1}=1 & \quad \Gamma^{(4)}(p_i,\lambda)\Big|_{p_i^2=m^2}=\lambda_0^4 \end{split}$$

For fully numerical computations: do not introduce artificial regulators.

Separate calculation of loop graphs and counterterms: Assign finite value to regulate
 Subtract large values from each other; Numerical instabilities

1. Renormalization and Regularization

- Born Level ⇒ Loop Level: Relation bare ⇔ physical parameters broken
 - Add renormalization constants to Lagrangian (also absorb UV divergences)
 - ⇒ Additional degrees of freedom
 - Fix by renormalization conditions
- Use on-shell renormalization scheme [Ross and Taylor, '73]:

$$\begin{split} \text{Re } i \Gamma^{(2)}_{\alpha\beta}(-p,p) \Phi^{\beta}(p) \Big|_{p^2=m^2} &= 0 \quad \left. \Gamma^{(3)}(p_i,\lambda) \right|_{p^2_i=m^2} = \lambda_0^3 \\ \text{Res } \left(-\Gamma^{(2)}(p) \right)_{p=m,p^2=m^2}^{-1} &= 1 \quad \left. \Gamma^{(4)}(p_i,\lambda) \right|_{p^2_i=m^2} = \lambda_0^4 \end{split}$$

- For fully numerical computations: do not introduce artificial regulators.
 - Separate calculation of loop graphs and counterterms: Assign finite value to regulate
 Subtract large values from each other: Numerical instabilities

1. Renormalization and Regularization

- Born Level ⇒ Loop Level: Relation bare ⇔ physical parameters broken
 - Add renormalization constants to Lagrangian (also absorb UV divergences)
 - ⇒ Additional degrees of freedom
 - Fix by renormalization conditions
- Use on-shell renormalization scheme [Ross and Taylor, '73]:

$$\begin{split} & \text{Re } i \Gamma^{(2)}_{\alpha\beta}(-p,p) \Phi^{\beta}(p) \Big|_{p^2=m^2} = 0 \quad \left. \Gamma^{(3)}(p_i,\lambda) \right|_{p^2_i=m^2} = \lambda^3_0 \\ & \text{Res } \left(-\Gamma^{(2)}(p) \right)^{-1}_{p=m,p^2=m^2} = 1 \quad \left. \Gamma^{(4)}(p_i,\lambda) \right|_{p^2_i=m^2} = \lambda^4_0 \end{split}$$

- For fully numerical computations: do not introduce artificial regulators.
 - Separate calculation of loop graphs and counterterms: Assign finite value to regulator
 - Subtract large values from each other: Numerical instabilities

- Idea: Define subtraction graphs which can be evaluated under same integral as loop integral/phase space integral and renormalization conditions are fulfilled.
- Use variation of BPHZ regularization prescription: [Bogoliubov, Parasiuk, Hepp, Zimmermann, '57,'70]

1PI n-point function:

$$\hat{\Gamma}^n(p_1,\ldots,p_n) = \Gamma^n(p_1,\ldots,p_n) - T \circ \Gamma^n(p_1,\ldots,p_n)$$

777

$$n-1$$

$$\dots + \frac{1}{d!} \sum_{i_1,\dots,i_d} (p_{i_1} - \bar{p}_{i_1})^{\mu_1}$$

◆ロ > ◆ 個 > ◆ き > ◆ き > ・ き | を の へ ○

- Idea: Define subtraction graphs which can be evaluated under same integral as loop integral/phase space integral and renormalization conditions are fulfilled.
- Use variation of BPHZ regularization prescription: [Bogoliubov, Parasiuk, Hepp, Zimmermann, '57,'70]

1PI n-point function:

$$\hat{\Gamma}^n(p_1,\ldots,p_n) = \Gamma^n(p_1,\ldots,p_n) - T \circ \Gamma^n(p_1,\ldots,p_n)$$

$$T \circ \Gamma^{n}(p_{1}, \dots, p_{n}) = \Gamma^{n}(\bar{p}_{1}, \dots, \bar{p}_{n}) + \sum_{i}^{n-1} (p_{i} - \bar{p}_{i})^{\mu} \frac{\partial \Gamma^{n}}{\partial p_{i}^{\mu}} \Big|_{p_{j} = \bar{p}_{j}} + \dots$$

$$\dots + \frac{1}{d!} \sum_{i_{1}, \dots, i_{d}}^{n-1} (p_{i_{1}} - \bar{p}_{i_{1}})^{\mu_{1}} \dots (p_{i_{d}} - \bar{p}_{i_{d}})^{\mu_{d}} \frac{\partial^{d} \Gamma^{n}}{\partial p_{i_{1}}^{\mu_{1}} \dots \partial p_{i_{d}}^{\mu_{d}}} \Big|_{p_{j} = \bar{p}_{j}}$$

- Idea: Define subtraction graphs which can be evaluated under same integral as loop integral/phase space integral and renormalization conditions are fulfilled.
- Use variation of BPHZ regularization prescription: [Bogoliubov, Parasiuk, Hepp, Zimmermann, '57,'70]

1PI n-point function:

$$\begin{split} \hat{\Gamma}^n(p_1,\ldots,p_n) &= \Gamma^n(p_1,\ldots,p_n) - T \circ \Gamma^n(p_1,\ldots,p_n) \\ T \circ \Gamma^n(p_1,\ldots,p_n) &= \Gamma^n(\bar{p}_1,\ldots,\bar{p}_n) + \sum_i^{n-1} (p_i - \bar{p}_i)^{\mu} \left. \frac{\partial \Gamma^n}{\partial p_i^{\mu}} \right|_{p_j = \bar{p}_j} + \ldots \\ & \ldots + \frac{1}{d!} \sum_{i_1,\ldots,i_d}^{n-1} (p_{i_1} - \bar{p}_{i_1})^{\mu_1} \ldots (p_{i_d} - \bar{p}_{i_d})^{\mu_d} \left. \frac{\partial^d \Gamma^n}{\partial p_{i_1}^{\mu_1} \ldots \partial p_{i_d}^{\mu_d}} \right|_{p_j = \bar{p}_j} \end{split}$$

Example: Electron Self-Energy

- Idea: Define subtraction graphs which can be evaluated under same integral as loop integral/phase space integral and renormalization conditions are fulfilled.
- Use variation of BPHZ regularization prescription: [Bogoliubov, Parasiuk, Hepp, Zimmermann, '57,'70]

 $\hat{\Gamma}^n(p_1,\ldots,p_n) = \Gamma^n(p_1,\ldots,p_n) - T \circ \Gamma^n(p_1,\ldots,p_n)$

1PI n-point function:

$$T \circ \Gamma^{n}(p_{1}, \ldots, p_{n}) = \Gamma^{n}(\bar{p}_{1}, \ldots, \bar{p}_{n}) + \sum_{i}^{n-1} (p_{i} - \bar{p}_{i})^{\mu} \left. \frac{\partial \Gamma^{n}}{\partial p_{i}^{\mu}} \right|_{p_{j} = \bar{p}_{j}} + \ldots$$

$$\ldots + \frac{1}{d!} \sum_{i_1, \ldots, i_d}^{n-1} (p_{i_1} - \bar{p}_{i_1})^{\mu_1} \ldots (p_{i_d} - \bar{p}_{i_d})^{\mu_d} \left. \frac{\partial^d \Gamma^n}{\partial p_{i_1}^{\mu_1} \ldots \partial p_{i_d}^{\mu_d}} \right|_{p_j = \bar{p}_j}$$

Example: Electron Self-Energy

Virtual one loop cross section:

$$\begin{split} \sigma_v^{(1)} & = & \Phi \int d\Pi_n \, 2 \, \mathrm{Re}(\mathcal{M}^{\mathrm{Born}}(\mathcal{M}_n^{\mathrm{loop}} + \mathcal{M}_{n,\mathrm{CT}}^{\mathrm{loop}})^*) \\ & = & \Phi \int d\Pi_n \int \frac{d^3k}{(2\pi)^3} 2 \mathrm{Re}(\mathcal{M}_n^{\mathrm{Born}}(\mathcal{M}_{n+1}^{\mathrm{Tree}} + \mathcal{M}_{n+1,\mathrm{CT}}^{\mathrm{Tree}})^*) \end{split}$$

3-dim integral UV convergent. ✓

② Infrared divergent terms in $\mathcal{M}_{n+1}^{\mathsf{Tree}}$ and $\mathcal{M}_{n+1,\mathsf{CT}}^{\mathsf{Tree}}$. Compensated by addition of real emission graphs [Kinoshita, '63; Lee, Nauenberg, '64]

$$\sigma_{\mathsf{re}}^{(1)} = \Phi \int d\Pi_n \int\!\! rac{d^3k}{(2\pi)^3 2E_k} \, |\mathcal{M}_{n+\gamma}^{\mathsf{Born}}|^2$$

Contains implicit δ-function conserving overall momentum

⇒ Need approximation for soft real emission diagrams

Virtual one loop cross section:

$$\begin{split} \sigma_v^{(1)} & = & \Phi \int d\Pi_n \, 2 \, \mathrm{Re}(\mathcal{M}^{\mathrm{Born}}(\mathcal{M}_n^{\mathrm{loop}} + \mathcal{M}_{n,\mathrm{CT}}^{\mathrm{loop}})^*) \\ & = & \Phi \int d\Pi_n \int \frac{d^3k}{(2\pi)^3} 2 \mathrm{Re}(\mathcal{M}_n^{\mathrm{Born}}(\mathcal{M}_{n+1}^{\mathrm{Tree}} + \mathcal{M}_{n+1,\mathrm{CT}}^{\mathrm{Tree}})^*) \end{split}$$

3-dim integral UV convergent. ✓

2 Infrared divergent terms in $\mathcal{M}_{n+1}^{\text{Tree}}$ and $\mathcal{M}_{n+1}^{\text{Tree}}$ C. Compensated by addition of real emission graphs [Kinoshita, '63; Lee, Nauenberg, '64]

$$\sigma_{\rm re}^{(1)} = \Phi \int d\Pi_n \int\!\! \frac{d^3k}{(2\pi)^3 2E_k} \, |\mathcal{M}_{n+\gamma}^{\rm Born}|^2 \label{eq:sigma_rel}$$

Contains implicit δ -function conserving overall momentum.

⇒ Need approximation for soft real emission diagrams.

2. Infrared Divergences

- Virtual IR-divergence arises solely from cut of massless particle.
- In limit $k \to 0$, expressions for cut loop and real emission compensate each other.
- Two equivalent approaches:
 - Project $n + \gamma$ amplitude on n-particle phase space.
 - Modify tree graph of cut massless propagator.
 - → In the following (2nd approach):

$$\mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} o \mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} \theta(|\vec{k}| - E_s), \quad E_s$$
: soft cut

Infrared convergent

2. Infrared Divergences

- Virtual IR-divergence arises solely from cut of massless particle.
- In limit $k \to 0$, expressions for cut loop and real emission compensate each other.
- Two equivalent approaches:
 - Project $n + \gamma$ amplitude on n-particle phase space.
 - Modify tree graph of cut massless propagator.
 - → In the following (2nd approach):

$$\mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} o \mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} \theta(|\vec{k}| - E_s), \quad E_s$$
: soft cut

Infrared convergent

2. Infrared Divergences

- Virtual IR-divergence arises solely from cut of massless particle.
- In limit $k \to 0$, expressions for cut loop and real emission compensate each other.
- Two equivalent approaches:
 - Project $n + \gamma$ amplitude on n-particle phase space.
 - Modify tree graph of cut massless propagator.
 - → In the following (2nd approach):

$$\mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} o \mathcal{M}_{n,\gamma\text{-cut}}^{\text{Tree}} \theta(|\vec{k}| - E_s), \quad E_s$$
: soft cut

Infrared convergent

3. Threshold Singularities

Propagators of tree graphs can become singular in parts of integration region.

$$P_j = \frac{i}{(k+p_j)^2 - m_j^2} = \frac{i}{\left(k^0 - (-p_j^0 + E_j)\right) \left(k^0 - (-p_j^0 - E_j)\right)}$$

• After cutting propagator P_i , one of the two factors in P_j can get zero:

$$(p_j^0 - p_i^0) + (E_i \mp E_j) = 0$$

- Vanishing of first factor corresponds to coincidence of original poles in lower half plane
 Singularities cancel in the sum of tree graphs
- Vanishing of second factor corresponds to coincidence of poles in lower and upper half plane.
 - ⇒ Singularity not canceled in the sum of tree graphs.
- Terms in FTT with higher number of Δ function get support at these singularities. \Rightarrow For each singular peak in sum of tree graphs, these terms give further imaginary or real contribution to final result.

3. Threshold Singularities

Propagators of tree graphs can become singular in parts of integration region.

$$P_j = \frac{i}{(k+p_j)^2 - m_j^2} = \frac{i}{\left(k^0 - (-p_j^0 + E_j)\right) \left(k^0 - (-p_j^0 - E_j)\right)}$$

• After cutting propagator P_i , one of the two factors in P_i can get zero:

$$(p_j^0 - p_i^0) + (E_i + E_j) = 0$$

- Vanishing of first factor corresponds to coincidence of original poles in lower half plane. ⇒ Singularities cancel in the sum of tree graphs
- Vanishing of second factor corresponds to coincidence of poles in lower and upper half plane.
 - ⇒ Singularity not canceled in the sum of tree graphs.
- Terms in FTT with higher number of △ function get support at these singularities.

3. Threshold Singularities

Propagators of tree graphs can become singular in parts of integration region.

$$P_j = \frac{i}{(k+p_j)^2 - m_j^2} = \frac{i}{\left(k^0 - (-p_j^0 + E_j)\right)\left(k^0 - (-p_j^0 - E_j)\right)}$$

• After cutting propagator P_i , one of the two factors in P_i can get zero:

$$(p_j^0 - p_i^0) + (E_i + E_j) = 0$$

- Vanishing of first factor corresponds to coincidence of original poles in lower half plane. ⇒ Singularities cancel in the sum of tree graphs
- Vanishing of second factor corresponds to coincidence of poles in lower and upper half plane.
 - ⇒ Singularity not canceled in the sum of tree graphs.
- Terms in FTT with higher number of Δ function get support at these singularities.
 - ⇒ For each singular peak in sum of tree graphs, these terms give further imaginary or real contribution to final result.

• In rest frame of p_{ji} , peak of threshold singularity is spherical:

$$I({\bf k}') \propto \frac{1}{{\bf k}' - {\bf k}_s}, ~~ {\bf k}_s = \frac{\lambda^{\frac{1}{2}}({p_{ji}^0}^2, m_i^2, m_j^2)}{2|p_{ii}^0|}$$

- Problematic for integration algorithms.
- Idea: Subtract zero from integrand

$$\frac{\mathsf{Res}(k_s')}{\mathbf{k}' - \mathbf{k}_s}$$

• More precise, in rest frame:

$$\operatorname{Fix}(\mathbf{k}',k_s') \equiv \frac{\mathbf{k}_s R(\Lambda^{-1}k_s'-p_i)}{4p_{ii}^0} \left(\frac{1}{\mathbf{k}'-\mathbf{k}_s} - 2\frac{\mathbf{k}'-\mathbf{k}_s}{c^2} + \frac{(\mathbf{k}'-\mathbf{k}_s)^3}{c^4}\right) \theta(\mathbf{k}',k_s',c)$$

Add to cross section in integration system

$$\sigma_{\mathsf{Fix}} = \Phi \int d\Pi_n \int \frac{\|\Lambda\| d^3k}{\overline{\Lambda(k+p)}^2} \mathsf{Fix}(|\overline{\Lambda(k+p)}|, k_s'(\overline{\Lambda(k+p)}))$$

Simple for numerical algorithms

• In rest frame of p_{ji} , peak of threshold singularity is spherical:

$$I({\bf k}') \propto \frac{1}{{\bf k}' - {\bf k}_s}, ~~ {\bf k}_s = \frac{\lambda^{\frac{1}{2}}({p_{ji}^0}^2, m_i^2, m_j^2)}{2|p_{ii}^0|}$$

- Problematic for integration algorithms.
- Idea: Subtract zero from integrand:

$$\frac{\mathsf{Res}(k_s')}{\mathbf{k}' - \mathbf{k}_s}$$

• More precise, in rest frame:

$$\operatorname{Fix}(\mathbf{k}',k_s') \equiv \frac{\mathbf{k}_s R(\Lambda^{-1}k_s'-p_i)}{4p_{ii}^0} \left(\frac{1}{\mathbf{k}'-\mathbf{k}_s} - 2\frac{\mathbf{k}'-\mathbf{k}_s}{c^2} + \frac{(\mathbf{k}'-\mathbf{k}_s)^3}{c^4}\right) \theta(\mathbf{k}',k_s',c)$$

Add to cross section in integration system

$$\sigma_{\mathsf{Fix}} = \Phi \int d\Pi_n \int \frac{\|\Lambda\| d^3k}{\overline{\Lambda(k+p)}^2} \mathsf{Fix}(|\overline{\Lambda(k+p)}|, k_s'(\overline{\Lambda(k+p)}))$$

Simple for numerical algorithms ✓

• In rest frame of p_{ji} , peak of threshold singularity is spherical:

$$I(\mathbf{k}') \propto \frac{1}{\mathbf{k}' - \mathbf{k}_s}, \quad \ \mathbf{k}_s = \frac{\lambda^{\frac{1}{2}}({p_{ji}^0}^2, m_i^2, m_j^2)}{2|p_{ji}^0|}$$

- Problematic for integration algorithms.
- Idea: Subtract zero from integrand:

$$\frac{\mathsf{Res}(k_s')}{\mathbf{k}' - \mathbf{k}_s}$$

• More precise, in rest frame:

$$\operatorname{Fix}(\mathbf{k}',k_s') \equiv \frac{\mathbf{k}_s R(\Lambda^{-1}k_s'-p_i)}{4p_{ii}^0} \left(\frac{1}{\mathbf{k}'-\mathbf{k}_s} - 2\frac{\mathbf{k}'-\mathbf{k}_s}{c^2} + \frac{(\mathbf{k}'-\mathbf{k}_s)^3}{c^4}\right) \theta(\mathbf{k}',k_s',c)$$

Add to cross section in integration system:

$$\sigma_{\mathrm{Fix}} = \Phi \int d\Pi_n \int \frac{\|\Lambda\| d^3k}{\overline{\Lambda(k+p)}^2} \mathrm{Fix}(|\overline{\Lambda(k+p)}|, k_s'(\overline{\Lambda(k+p)}))$$

Simple for numerical algorithms

• In rest frame of p_{ji} , peak of threshold singularity is spherical:

$$I({\bf k}') \propto \frac{1}{{\bf k}' - {\bf k}_s}, ~~ {\bf k}_s = \frac{\lambda^{\frac{1}{2}}({p_{ji}^0}^2, m_i^2, m_j^2)}{2|p_{ii}^0|}$$

- Problematic for integration algorithms.
- Idea: Subtract zero from integrand:

$$\frac{\mathsf{Res}(k_s')}{\mathbf{k}' - \mathbf{k}_s}$$

• More precise, in rest frame:

$$\operatorname{Fix}(\mathbf{k}',k_s') \equiv \frac{\mathbf{k}_s R(\Lambda^{-1}k_s'-p_i)}{4p_{ji}^0} \left(\frac{1}{\mathbf{k}'-\mathbf{k}_s} - 2\frac{\mathbf{k}'-\mathbf{k}_s}{c^2} + \frac{(\mathbf{k}'-\mathbf{k}_s)^3}{c^4}\right) \theta(\mathbf{k}',k_s',c)$$

• Add to cross section in integration system:

$$\sigma_{\mathsf{Fix}} = \Phi \int d\Pi_n \int \frac{\|\Lambda\| d^3k}{\overline{\Lambda(k+p)}^2} \mathsf{Fix}(|\overline{\Lambda(k+p)}|, k_s'(\overline{\Lambda(k+p)}))$$

• Simple for numerical algorithms

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)}$$

- $\frac{1}{(r-a)(r'(a,\theta,\phi)-b)} \frac{1}{(r-a)(r'(a,\theta,\phi)-b)}$
- → However: terms on right side are non-zero!
 → Trade-off between accuracy and efficiency!

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)(r'(r,\theta,\phi)-b)}$$

$$\frac{f(a,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} + \frac{f(a,\theta,\phi)|_{r'=b}}{(r-a)(r'(r,\theta,\phi)-b)}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\begin{split} &\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'\equiv b}}{(r-a)(\overline{r'(r,\theta,\phi)-b)}} \\ &- \frac{f(a,\theta,\phi)}{\overline{(r-a)}(r'(a,\theta,\phi)-b)} + \frac{f(a,\theta,\phi)|_{r'\equiv b}}{\overline{(r-a)}(\overline{r'(a,\theta,\phi)-b)}} \end{split}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)(r'(r,\theta,\phi)-b)}$$
$$-\frac{f(a,\theta,\phi)}{(r-a)(r'(a,\theta,\phi)-b)} + \frac{f(a,\theta,\phi)|_{r'=b}}{(r-a)(r'(a,\theta,\phi)-b)}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)(r'(r,\theta,\phi)-b)}$$
$$-\frac{f(a,\theta,\phi)}{\overline{(r-a)(r'(a,\theta,\phi)-b)}} + \frac{f(a,\theta,\phi)|_{r'=b}}{\overline{(r-a)(r'(a,\theta,\phi)-b)}}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)}$$

$$-\frac{f(a,\theta,\phi)}{\overline{(r-a)}(r'(a,\theta,\phi)-b)}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\begin{split} &\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)(\overline{r'(r,\theta,\phi)-b)}} \\ &- \frac{f(a,\theta,\phi)}{\overline{(r-a)(r'(a,\theta,\phi)-b)}} + \frac{f(a,\theta,\phi)|_{r'=b}}{\overline{(r-a)(r'(a,\theta,\phi)-b)}} \end{split}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\begin{split} &\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'\equiv b}}{(r-a)(\overline{r'}(r,\theta,\phi)-b)} \\ &- \frac{f(a,\theta,\phi)}{\overline{(r-a)}(r'(a,\theta,\phi)-b)} + \frac{f(a,\theta,\phi)|_{r'\equiv b}}{\overline{(r-a)}(\overline{r'}(a,\theta,\phi)-b)} \end{split}$$

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\begin{split} &\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)(\overline{r'}(r,\theta,\phi)-b)} \\ &- \frac{f(a,\theta,\phi)}{\overline{(r-a)}(r'(a,\theta,\phi)-b)} + \frac{f(a,\theta,\phi)|_{r'=b}}{\overline{(r-a)}(\overline{r'}(a,\theta,\phi)-b)} \end{split}$$

- However: Terms on right side are non-zero!
 - ⇒ Trade-off between accuracy and efficiency!

- Possible for 6-pt functions with on-shell external particles or 3-pt functions with off-shell external particles.
- Addition of fix function gives schematically:

$$\frac{f(r,\theta,\phi) - f(r,\theta,\phi)|_{r'=b}}{(r'(r,\theta,\phi) - b)}$$

- Equals derivative with respect to r' in the limit $r' \to b$.
- 1st term corresponds to original integrand; 2nd resembles fix function.
- Operate again on upper expression:

$$\begin{split} &\frac{f(r,\theta,\phi)}{(r-a)(r'(r,\theta,\phi)-b)} - \frac{f(r,\theta,\phi)|_{r'=b}}{(r-a)\overline{(r'(r,\theta,\phi)-b)}} \\ &- \frac{f(a,\theta,\phi)}{\overline{(r-a)(r'(a,\theta,\phi)-b)}} + \frac{f(a,\theta,\phi)|_{r'=b}}{\overline{(r-a)(r'(a,\theta,\phi)-b)}} \end{split}$$

- However: Terms on right side are non-zero!
 - ⇒ Trade-off between accuracy and efficiency!

Outline

- Introduction
- Cutting Loops
 - Feynman Tree Theorem
 - Renormalization and Regularization
 - Infrared Divergences
 - Threshold Singularities
- Application to Bhabha Scattering
 - Cross Section Integration
 - Event Generation
- Conclusions
 - Summary
 - Outlook

18 / 25

Bhabha Scattering

Application of FTT to QED Bhabha Scattering at NLO as Proof of Principle

- Includes 10 loop graphs, 2pt, 3pt and 4pt functions.
- Test subtration scheme for UV/IR divergences and internal singularities
- Two different scales: $m_e \approx 500\,\mathrm{keV},\,\sqrt{s} \approx 500\,\mathrm{GeV}$
- ⇒ Compare with automated packages; FeynArts/FormCalc [Hahn ea, '98]

Recipe

In Mathematica

- Create loop graphs with FeynArts/FormCalc. No tensor reduction.
- Create subtraction graphs
- Cut loops and add fix functions
- Create Channels for Multi Channel Routine

In Fortrar

Integration/Event Generation using VAMP [Ohl, '98]

Bhabha Scattering

Application of FTT to QED Bhabha Scattering at NLO as Proof of Principle

- Includes 10 loop graphs, 2pt, 3pt and 4pt functions.
- Test subtration scheme for UV/IR divergences and internal singularities
- Two different scales: $m_e \approx 500 \, \text{keV}$, $\sqrt{s} \approx 500 \, \text{GeV}$
- ⇒ Compare with automated packages; FeynArts/FormCalc [Hahn ea, '98]

Recipe

In Mathematica

- Create loop graphs with FeynArts/FormCalc. No tensor reduction.
- Create subtraction graphs
- Cut loops and add fix functions
- Create Channels for Multi Channel Routine

In Fortran

Integration/Event Generation using VAMP [Ohl, '98]

Results

- $\Delta E_s = 0.5 \, \mathrm{GeV}$

20 / 25

Results

- $\Delta E_s = 0.5 \, \mathrm{GeV}$

Monte Carlo Event Generation

Include NLO by using FTT

- ullet Additional 3 inclusive variables k_i from phase space integral over additional particles in tree graphs
- Define event by x_i and k_i . For each set of external momenta an internal momentum is chosen simultaneously.
 - ⇒ Expect gain in computation speed compared to (semi-)analytical methods.

Negative Weights

- Integrand not positive definite
- Need to incorporate events with negative weights
 - Accept event if:

$$r \leq \frac{|w_i|}{w_{\max}^{\pm}} \qquad \qquad w_{\max}^{\pm} = \max(|w_{\max}|, |w_{\min}|)$$

- ullet Assign additional flag (± 1) to event, dependent on sign of w_i
- Expectation value, error:

$$\langle n_i \rangle = \langle n_i^+ \rangle - \langle n_i^- \rangle \quad s_i = \sqrt{\langle n_i^+ \rangle + \langle n_i^- \rangle}$$

Efficiency decreases.

Monte Carlo Event Generation

Include NLO by using FTT

- ullet Additional 3 inclusive variables k_i from phase space integral over additional particles in tree graphs
- Define event by x_i and k_i . For each set of external momenta an internal momentum is chosen simultaneously.
 - ⇒ Expect gain in computation speed compared to (semi-)analytical methods.

Negative Weights

- Integrand not positive definite
- Need to incorporate events with negative weights
 - Accept event if:

$$r \leq \frac{|w_i|}{w_{\max}^{\pm}} \qquad \qquad w_{\max}^{\pm} = \max(|w_{\max}|, |w_{\min}|)$$

- Assign additional flag (± 1) to event, dependent on sign of w_i
- Expectation value, error:

$$\langle n_i \rangle = \langle n_i^+ \rangle - \langle n_i^- \rangle$$
 $s_i = \sqrt{\langle n_i^+ \rangle + \langle n_i^- \rangle}$

• Efficiency decreases.

Results - S Channel

$$\quad \bullet \quad \sigma_{\mathsf{Born}}^{\mathsf{tot}} = 0.34744(29)\mathsf{pb}$$

•
$$eff_{Born} = 66\%$$

•
$$\mathcal{L} = 290 \text{fb}^{-1}$$

$$\sigma_{\rm NLO}^{\rm tot} = 0.03434(91) {
m pb}$$

•
$$eff_{NI,O}^{p+n} = 1.8\%$$

$$\bullet \ \ \mathrm{eff}_{\mathrm{NLO}}^{\mathrm{hist}} = 0.14\%$$

Results - Full Process in Forward Region

•
$$\sigma^{\rm tot}_{\rm Born} = 5981.3(3.3) {\rm pb}$$

$$\bullet$$
 eff_{Born} = 65%

•
$$\sigma_{\rm NLO}^{\rm tot} = 2812(24) {\rm pb}$$

•
$$eff_{NI,O}^{p+n} = 3.0\%$$

$$\bullet \ \operatorname{eff}_{\rm NLO}^{\rm hist} = 0.8\%$$

Conclusions

Summary

- Presented Method for computation of loop diagrams from tree graphs.
 - \Rightarrow allows fully numerical evaluation in matrix element/event generator framework
- Simple prescription for cancellation of UV-, IR-, internal singularities
- Proof of principle: Application to Bhabha scattering
- No further manipulations necessary
 - ⇒ Level of complexity rises solely due to increasing number of terms

Outlook

- Extension to full Standard Model
- Implementation in event generator package
- Far future: Extension to two loops

process	relevant for
$pp ightarrow VV$ jet $pp ightarrow tar{t}bar{b}$ $pp ightarrow tar{t}+2$ jets $pp ightarrow VVbar{b}$ $pp ightarrow VV+2$ jets $pp ightarrow V+3$ jet	$t\bar{t}H$, new physics $t\bar{t}H$ $t\bar{t}H$ $t\bar{t}H$ VBF $\to H \to VV$, $t\bar{t}H$, new physics VBF $\to H \to VV$ various new physics signatures
$pp \to VVV$	SUSY trilepton

The LHC priority wishlist, Les Houches '05. [hep-ph/0604120]

I HC:

- A lot of progress for $2 \rightarrow 3$ processes in past years
- (Very) few $2 \rightarrow 4$ processes at NLO coming in now:
 - $q\bar{q} \rightarrow b\bar{b}t\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
 - $pp \rightarrow b\bar{b}b\bar{b}$ GOLEM (Binoth, Heinrich, ...)
 - $pp \rightarrow W + 3jets$ BlackHat (Dixon, ...), Rocket (Ellis, Kunszt,...)
 - ... 6γ amplitude, 6g amplitude

Trocsanvi. Uwer, van Hameren, Wackeroth, Wieders, Weinzierl, Willenbrock, Zanderighi, Zeppenfeid 🕟 🗸 🗗 🔻 💈 🕨 🔞 📜 🔻 🔘 🤉 🕒

process	relevant for
pp o VV jet	$tar{t}H$, new physics
pp o t ar t b ar b	$tar{t}H$
$pp ightarrow t ar{t} +$ 2 jets	$tar{t}H$
$pp o VVbar{b}$	$VBF \rightarrow H \rightarrow VV, t\bar{t}H, \text{ new physics}$
$pp \rightarrow VV+$ 2 jets	$VBF { oup} H o VV$
$pp \rightarrow V +$ 3 jet	various new physics signatures
$pp \rightarrow VVV$	SUSY trilepton

The LHC priority wishlist, Les Houches '05. [hep-ph/0604120]

I HC:

- A lot of progress for 2 → 3 processes in past years
- (Very) few $2 \rightarrow 4$ processes at NLO coming in now:
 - $q\bar{q} \rightarrow b\bar{b}t\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
 - $pp \rightarrow b\bar{b}b\bar{b}$ GOLEM (Binoth, Heinrich, ...)
 - $pp \rightarrow W + 3jets$ BlackHat (Dixon, ...), Rocket (Ellis, Kunszt,...)
 - ... 6γ- amplitude, 6g amplitude
- ILC: Some $2 \rightarrow 4$ processes

 - $e^+e^- \rightarrow$ 4 jets Dixon, Signer; Weinzierl, Kosower
 - ...

Signer, Trocsanyi, Uwer, van Hameren, Wackeroth, Wieders, Weinzierl, Willenbrock, Zanderighi, Zeppen/eld 🕟 🗸 🖪 🕟 🧸 📜 🦻

process	relevant for
$pp ightarrow VV$ jet $pp ightarrow t\bar{t}b\bar{b}$ $pp ightarrow t\bar{t}+2$ jets $pp ightarrow VVb\bar{b}$ $pp ightarrow VV+2$ jets $pp ightarrow V+3$ jet $pp ightarrow VVV$	$t\bar{t}H$, new physics $t\bar{t}H$ $t\bar{t}H$ $VBF \rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics $VBF \rightarrow H \rightarrow VV$ various new physics signatures SUSY trilepton
rr ,	

The LHC *priority* wishlist, Les Houches '05. [hep-ph/0604120]

I HC:

- A lot of progress for 2 → 3 processes in past years
- (Very) few $2 \rightarrow 4$ processes at NLO coming in now:
 - $q\bar{q} \rightarrow b\bar{b}t\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
 - $pp \rightarrow b\bar{b}b\bar{b}$ GOLEM (Binoth, Heinrich, ...)
 - $pp \rightarrow W + 3jets$ BlackHat (Dixon, ...), Rocket (Ellis, Kunszt,...)
 - ... 6γ- amplitude, 6g amplitude
- ILC: Some $2 \rightarrow 4$ processes
 - $e^+e^- \rightarrow$ 4 fermions Denner, Dittmajer, Roth, Wieders
 - $e^+e^- \rightarrow$ 4 jets Dixon, Signer; Weinzierl, Kosower
 - ...

Signer, Trocsanyi, Uwer, van Hameren, Wackeroth, Wieders, Weinzierl, Willenbrock, Zanderighi, Zeppenfeld, 🕟 🦂 🎮 🕟 🧸 📜 🕟

relevant for
$t\bar{t}H$, new physics $t\bar{t}H$ $t\bar{t}H$ $t\bar{t}H$ $VBF \rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics $VBF \rightarrow H \rightarrow VV$ various new physics signatures
SUSY trilepton

The LHC priority wishlist, Les Houches '05. [hep-ph/0604120]

I HC:

- A lot of progress for 2 → 3 processes in past years
- (Very) few $2 \rightarrow 4$ processes at NLO coming in now:
 - $q\bar{q} \rightarrow b\bar{b}t\bar{t}$ Bredenstein, Denner, Dittmaier, Pozzorini
 - $pp \rightarrow b\bar{b}b\bar{b}$ GOLEM (Binoth, Heinrich, ...)
 - $pp \rightarrow W + 3jets$ BlackHat (Dixon, ...), Rocket (Ellis, Kunszt,...)
 - ... 6γ amplitude, 6g amplitude
- ILC: Some $2 \rightarrow 4$ processes
 - $e^+e^- \rightarrow$ 4 fermions Denner, Dittmajer, Roth, Wieders
 - $e^+e^- \rightarrow$ 4 jets Dixon, Signer; Weinzierl, Kosower
 - ...

Contributions by many people:

..., Binoth, Bozzi, Bredenstein, Campbell, Ciccolini, Cullen, Dawson, Denner, Del Duca, Dittmaier, Dixon, Ellis, Giele, Glover, Hankele, Heinrich, Jackson,

Jäger, Kallweit, Karg, Kauer, Kilgore, Lazopoulos, Maltoni, Mastrolia, Melnikov, Nagy, Oleari, Orr, Petriello, Pozzorini, Rainwater, Reina, Sanguinetti, Schmidt,

26 / 25

- FTT: Find all possible $2+1 \rightarrow n+1$ graphs for a given process
- In infrared limit: One to one correspondence with product of $2 \rightarrow n+1$ real emission graphs.
- However: on-shell renormalization scheme; no one loop corrections to external

- ullet FTT: Find all possible $2+1 \rightarrow n+1$ graphs for a given process
- In infrared limit: One to one correspondence with product of $2 \to n+1$ real emission graphs.
- However: on-shell renormalization scheme; no one loop corrections to external on-shell particles.
- The corresponding infrared divergences of real emission graphs are compensated by subtraction terms of vertex corrections:

→ Additional prescription for BPHZ subtraction graphs for (photonic) vertex corrections: Divide in half and align momentum of (charged) particle with initial incoming and outgoing particle, respectively.

- ullet FTT: Find all possible $2+1 \rightarrow n+1$ graphs for a given process
- In infrared limit: One to one correspondence with product of $2 \to n+1$ real emission graphs.
- However: on-shell renormalization scheme; no one loop corrections to external on-shell particles.
- The corresponding infrared divergences of real emission graphs are compensated by subtraction terms of vertex corrections:

ightharpoonup Additional prescription for BPHZ subtraction graphs for (photonic) vertex corrections: Divide in half and align momentum of (charged) particle with initial incoming and outgoing particle, respectively.

Conditions for Singularities

• Four different regions for $p_{ji}^2 = (p_j - p_i)^2$. Separated by $p_{ji}^2 = 0$ and nodes of kinetic function λ :

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$$

$$\lambda(p_{ji}^2, m_i^2, m_j^2) = 0 \rightarrow p_{ji}^2 = (m_j \pm m_i)^2$$

Region		
		√
	dep. on loop momentum	✓
$ \vee $:

- Singularities appear if $p_{ji}^2 > (m_i + m_j)^2$. Production threshold of the two corresponding real particles.
 - ⇒ Canceled by fix functions
- Amplitude gets imaginary part; covered by higher order terms in FTT.

Conditions for Singularities

• Four different regions for $p_{ji}^2 = (p_j - p_i)^2$. Separated by $p_{ji}^2 = 0$ and nodes of kinetic function λ :

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$$

$$\lambda(p_{ji}^2, m_i^2, m_j^2) = 0 \rightarrow p_{ji}^2 = (m_j \pm m_i)^2$$

		$\lambda(p_{ji}^2,$	$m_i^2, m_j^2)$
1			
	II		IV
		III	p_{ji}^2

Region	Occurrence	Cancellation in Sum
I	always	✓
Ш	dep. on loop momentum	\checkmark
Ш	never	_
IV	always	:

- Singularities appear if $p_{ji}^2 > (m_i + m_j)^2$. Production threshold of the two corresponding real particles.
 - \Rightarrow Canceled by fix functions
- Amplitude gets imaginary part; covered by higher order terms in FTT.

- In Fortran:
 - Use single channel integration routine of VAMP [Ohl, '99]
 - Map spherical coordinates on unit hypercube

$$r = a\left(\frac{1}{1-x_1} - 1\right)$$

$$\cos \theta = b - (b+1)\left(\frac{b-1}{b+1}\right)^{x_2}$$

$$\phi = 2\pi x_3$$

$$(x_1, x_2, x_3) \in [0, 1]^3$$

- Scaling factor a; interesting region spread over wide parts of integration interval
- ullet Jacobian $\left|rac{d\cos heta}{dx_2}
 ight|$ cancels collinear peak:

$$I(k) \propto \frac{1}{(b - \cos \theta)}$$

$$o = \frac{\sqrt{s}}{\sqrt{s - 4m_{\epsilon}^2}}$$

- In Fortran:
 - Use single channel integration routine of VAMP [Ohl, '99]
 - Map spherical coordinates on unit hypercube:

$$r = a\left(\frac{1}{1-x_1} - 1\right)$$

$$\cos \theta = b - (b+1)\left(\frac{b-1}{b+1}\right)^{x_2}$$

$$\phi = 2\pi x_3$$

$$(x_1, x_2, x_3) \in [0, 1]^3$$

- Scaling factor a; interesting region spread over wide parts of integration interval
- ullet Jacobian $\left|rac{d\cos heta}{dx_2}
 ight|$ cancels collinear peak:

$$I(k) \propto \frac{1}{(b - \cos \theta)}$$

$$b = \frac{\sqrt{s}}{\sqrt{s - 4m_e^2}}$$

- In Fortran:
 - Use single channel integration routine of VAMP [Ohl, '99]
 - Map spherical coordinates on unit hypercube:

$$r = a\left(\frac{1}{1-x_1} - 1\right)$$

$$\cos \theta = b - (b+1)\left(\frac{b-1}{b+1}\right)^{x_2}$$

$$\phi = 2\pi x_3$$

$$(x_1, x_2, x_3) \in [0, 1]^3$$

- Scaling factor a; interesting region spread over wide parts of integration interval
- Jacobian $\left| \frac{d\cos\theta}{dx_2} \right|$ cancels collinear peak:

$$I(k) \propto \frac{1}{(b - \cos \theta)}$$

$$b = \frac{\sqrt{s}}{\sqrt{s - 4m_e^2}}$$

- In Fortran:
 - Use single channel integration routine of VAMP [Ohl, '99]
 - Map spherical coordinates on unit hypercube:

$$r = a\left(\frac{1}{1-x_1} - 1\right)$$

$$\cos \theta = b - (b+1)\left(\frac{b-1}{b+1}\right)^{x_2}$$

$$\phi = 2\pi x_3$$

$$(x_1, x_2, x_3) \in [0, 1]^3$$

- Scaling factor a; interesting region spread over wide parts of integration interval
- Jacobian $\left| \frac{d\cos\theta}{dx_2} \right|$ cancels collinear peak:

$$I(k) \propto \frac{1}{(b - \cos \theta)}$$
 $b = \frac{\sqrt{s}}{\sqrt{s - 4m_e^2}}$

WHIZARD: Phase Space Integration

- Matrix elements are complicated and vary over orders of magnitude
 - ⇒ Uniform phase space sampling yields no result
 - ⇒ No single parameterization allows for mapping the function into a constant
- Solution: Multi-channel parameterization with mappings and parameterizations adapted to Feynman diagram structure
 - * WHIZARD: Improve by VEGAS adaptation within each channel
- What does this mean in practice?
 - WHIZARD has to find the important channels: The Feynman diagrams which have the strongest peaks ⇒
 - WHIZARD has many degrees of freedom to adapt:
 - The optimal binning of each integration dimension (10 50)
 This is needed for each integration dimension (10 20)
 The optimal relative weight of each channel (10 1000)
 - $\Rightarrow 10^3 10^6$ degrees of freedom have to self-optimize
 - * Apparently, this works and at least as good as other methods

WHIZARD: Phase Space Integration

- Matrix elements are complicated and vary over orders of magnitude
 - ⇒ Uniform phase space sampling yields no result
 - ⇒ No single parameterization allows for mapping the function into a constant
- Solution: Multi-channel parameterization with mappings and parameterizations adapted to Feynman diagram structure
 - * WHIZARD: Improve by VEGAS adaptation within each channel
- What does this mean in practice?
 - WHIZARD has to find the *important* channels: The Feynman diagrams which have the strongest peaks ⇒ correspond to good parameterizations
 - WHIZARD has many degrees of freedom to adapt:
 - The optimal binning of each integration dimension (10 50)
 This is needed for each integration dimension (10 20)
 - This is needed for each integration dimension (10 20)
 The optimal relative weight of each channel (10 1000)
 - 103 106 degrees of freedom have to self entimize
 - $\Rightarrow 10^3$ 10^6 degrees of freedom have to self-optimize
 - * Apparently, this works and at least as good as other methods

