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Higgs Production at Hadron Colliders
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Figures: Particle Data Group

At hadron colliders the Higgs production is dominated by gluon fusion (at the
LHC PDFs further enhance this dominance). At the LHC the second most
important production mechanism is qq — ggH. This is not the case at the
Tevatron (pp).
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Vector Boson Fusion

VBF

@ VBF is an important Higgs discovery
channel and is crucial for the
measurement of the couplings between
the Higgs and the weak vector bosons
(W,2).

@ The next-to-leading order QCD
corrections are quite small ~ 5 — 10% (Han,
Valencia, Willenbrock, Figy, Oleari, Zeppenfeld, Berger, Campbell)
Full EW+QCD corrections (ciccolini, Denner,

Dittmaier)
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pp — H+2

Gluon Fusion + Jets

@ The VBF process has a characteristic
distribution, one very forward jet and one
very backward jet, allowing cuts to
reduce major background ...

@ ...which is gluon fusion plus additional jet
aCthlty (Del Duca, Kilgore, Oleari, Schmidt, Zeppenfeld,

Dawson, Kauffman)

@ By excluding jets from the central region,
one can maximise VBF signal over gluon
fusion baCkgrOUnd. (Figy, Oleari, Zeppenfeld)

@ Semi-numeric calculation at NLO
(Campbell,Eliis,Giele,Zangerighi)
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The Higgs plus Gluon Coupling

The Effective Interaction

Integrating out the top-quark loop introduces a
five dimensional effective operator.

(Wilczek; Shifman, Vainshtein, Zakharov)
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The Higgs plus Gluon Coupling in the Large-  my Limit

Ciaran Williams (IPPP)

The Effective Interaction

Integrating out the top-quark loop introduces a
five dimensional effective operator.

(Wilczek; Shifman, Vainshtein, Zakharov)

1
Lot = 5CH tr(G"Gy,,)

To leading order in as

Qg

C = v = 246 eV
6mv

The approximation is valid over a wide range
of Higgs masses (kramer Laenen,spira) @and is a good
approximation with increased number of jets
prOVidEd Pt < M. (Del DucaKilgore,Oleari,Schmidt, Zeppenfeld)
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Higgs Amplitudes

Motivation: A Tree level Higgs Amplitude

Looking at some simple Higgs + gluon tree level amplitudes there are hints of
underlying substructure

(13) [24]*

AO(H,17,27,37,4") = (12)(23)(34)(41) ' [12][23][34][41]

We see that the "MHV-structure" is similar to that of QCD, the Higgs MHV
amplitude looks like MHV +MHV. Since MHV and MHV amplitudes are
conjugates of each other, perhaps a simplification would occur if we
considered complex rather than real scalars?
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#, o' Splitting

H=¢+¢!
The idea is to split the real scalar field H into two complex scalars such that
the Higgs is given by the sum of the two scalars (pixon, Glover, khoze). WWe want the

gluon field strength to also be in suitable form so we introduce the self-dual
and anti-self dual field strengths

v 1 v * v uv 1 v * v * v I vpo
GISD = E(GN + GM ) GIASD = E(GN - GN ) GN = Eﬁu P Gp(f

Introducing ¢ = 1/2(H + iA) leads to the following breakdown of the effective
Lagrangian

C
Lifa== (H tr(G" Gp) + A tr(G“"*Gw)>

C v v
EﬂA_§(¢MG%G$)+@tM%wG$%>

Due to self-duality ¢ and ¢’ amplitudes are more compact than H amplitudes.
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#, ¢ Tree level Amplitudes and Parity

Parity of ¢ and ¢! amplitudes  (ion, lover, knoze)

Although Higgs amplitudes are made from the sum of ¢ and ¢! amplitudes, in
principle one need only calculate ¢ amplitudes since

Agm)((btgi\l,..., ri\"): (Agm)(quglAl’...’gnAn)) .

Slmple ¢ Am plitudes (Badger, Dixon, Glover, Khoze)

@ MHV ¢ + parton amplitudes have the same structure as QCD MHV amplitude.

@ In addition there are new amplitudes such as the ¢-all minus amplitude, which
also has a simple structure.
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More Complicated ¢ Tree Amplitudes

The four-point ¢-NMHV amplitude

We will also require the following NMHV amplitude which has been derived using

BCFW recursion relations (sadger, Glover, Mastrolia, CW)
0 [
A (¢,1%,27,37,47) =

mg (24) (4py 13 (2lpy |13

S124(12)(14) (21Po [31(ATPo13] 1z (AP [3112023]

and is more compact than the previous known result (pixon, Glover, khoze).

The ¢qq — NMHV amplitude
The ¢qq — NMHV amplitude has a more complicated structure,
AV (6,14,27,37,45) =

m(24)° (4lpy|1]? (2[py|11*(2|ps|4]

p— + p—
$124(14)(2|ps[3](4[ps[3]  (4Ipy[3][12][23]  s134(2|py|3][14](34]
Which has been derived with BCFW recursion relations (sadger, Glover, Mastrolia, CW)

Ciaran Williams (IPPP) H +2j Radcor
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¢ plus four parton amplitudes at one-loop

The helicity amplitudes for ¢ + 4g have been calculated,

H amplitude ¢ amplitude dzT amplitude
A(H,+,+,+,+) | A(é,+,+, +, +) (Berger,Del Duca, Dixon) | A(¢T,+,+, +, +) (Badger,Glover)
H, —, +,+,+) A(p, —, +, +, +) (Berger,Del Duca, Dixon) A(¢T, —, +, +, +) (Badger,Glover,Mastrolia, CW)
AMH, —, —, +,+) Ao, +, +) (Badger,Glover,Risager) A(<z>T , —, —, +, +) (Badger,Glover,Risager)
H,—,+,—,+) Ao, —, + —, +) (Glover,Mastrolia, CW) A(¢T, —, +, —, +) (Glover,Mastrolia, CW)
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¢ plus four parton amplitudes at one-loop

The helicity amplitudes for ¢ + 4g have been calculated,

A(H, Ao,
AMH, —, —, +,+) | A(#, —, —, +, +) (Badger,Glover,Risager)
AMH, —, +, —, +) A(¢, —, +, —, +) (Glover,Mastrolia, CW)

H amplitude ¢ amplitude dzT amplitude
AMH, +, 4+, +, +) A(¢, +, +, +, +) (Berger,Del Duca, Dixon) A(¢T, +,+, +, +) (Badger,Glover)
—,+,+,+) —,+, +, +) (Berger,Del Duca, Dixon) A(eT, —, +, +, +) (Badger,Glover,Mastrolia, CW)

A(¢T, —, —, +, +) (Badger,Glover,Risager)
A(dz‘L, —, +, —, +) (Glover,Mastrolia, CW)

Whilst those with a quark pair and two gluons have also been calculated

(QR=15,9=27)

H amplitude ¢ amplitude

T amplitude

AMH,Q,q,+,+) A(¢,Q,q,+,+) (Berger,Del Duca, Dixon)
AMH,Q,q,—,7) A(¢,Q,q, —, —) (Badger,Campbell Ellis, CW)
AMH,Q,q,+, —) A(¢,Q,q,+, —) (Dixon, Sofiantaos)
AH,Q,9,—,+) A(¢,Q,q, —, +) (Dixon, Sofiantaos)

A(¢7,Q,q, +, +) (Badger,Campbell Ellis, CW)
A(¢T,Q,q, —, —) (Berger,Del Duca, Dixon)
A(¢T,Q,q, +, —) (Dixon, Sofiantaos)
A(¢',Q,4q, —, +) (Dixon, Sofiantaos)
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¢ plus four parton amplitudes at one-loop

The helicity amplitudes for ¢ + 4g have been calculated,

H amplitude ¢ amplitude dzT amplitude

AMH, +, 4+, +, +) A(¢, +, +, +, +) (Berger,Del Duca, Dixon) A(¢T, +,+, +, +) (Badger,Glover)

AMH, —, +, 4+, +) A(¢, —, +, +, +) (Berger,Del Duca, Dixon) A(¢T, —, +, +, +) (Badger,Glover,Mastrolia, CW)
AMH, —, —, +,+) A(¢p, —, —, +, +) (Badger,Glover,Risager) A(<z>T , —, —, +, +) (Badger,Glover,Risager)
AMH, —, +, —,+) A(¢, —, +, —, +) (Glover,Mastrolia, CW) A(¢T, —, +, —, +) (Glover,Mastrolia, CW)

Whilst those with a quark pair and two gluons have also been calculated

(QR=15,9=27)

H amplitude ¢ amplitude ¢T amplitude

AH,Q,q,+,+) A(¢,Q,d,+,+) (Berger,Del Duca, Dixon) A(67,Q,q, +, +) (Badger,Campbell Ellis, CW)
AMH,Q,q,—,7) A(¢,Q,q, —, —) (Badger,Campbell Ellis, CW) A(q&T ,Q,q, —, —) (Berger,Del Duca, Dixon)
A(H,Q,q,+, —) A(¢,Q,q, +, —) (Dixon, Sofiantaos) A(qﬁT,Q, g, +, —) (Dixon, Sofiantaos)
AH,Q,q, —,+) A(¢,Q, q, —, +) (Dixon, Sofiantaos) .A((zﬁT ,Q, q, —, +) (Dixon, Sofiantaos)

The H (d))anﬁ amplitudes have also been calculated, (eiis, Giele, zanderighi; Dixon, Sofiantaos)
Those marked in red are the most complicated NMHV helicity amplitudes and are the
main topic of this talk.
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Rational ¢! amplitudes

¢Taiq+g 7g - amplitudes (Berger,Del Duca, Dixon)
These amplitudes are zero at tree-level and hence are finite at one-loop,
— A1, 17,24,35 . 45) = 2iA(6,1;,2¢,35,45)
1 {<3\(1 +4)12] | [21](14) [24]} _1[24](34)[23]
2| [14][34] [14][34][23] 3 [12][34

—iAF (6",15,24,35 ,45) =

_}[(3|(1+4)\2] [21]<14>[24]}
2| [14][34] [14][34][23]]°

1[24] (34) [23]

—ial(ot, 17,2437, 47) =
400 1g.20:39.4) = 3 [12][34]

A useful relationship

We note that the various pieces satisfy the relation,

A(81,15,2q,3,4) + AR (61, 1g, 24,3, 4) + A (81, 15,24, 3,4) + 2A0 (¢, 15,24, 3,4) = 0

Which will help us later....

.
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The One-loop Basis

The One-loop Basis

We can recast the general form of the n-point (massless) one-loop integral in
the following form

AV =3 Cai(4)Zai + > Cai(4) Tai + Y Cai(4) Ti + R
i i i

Here Z;.; represents a j-point scalar basis integral - the boxes, triangles and
bubbles - with coefficient C;; evaluated in 4-dimensions.
R is a finite piece that is entirely rational.

Higher point functions can always be reduced to this basis at the cost of
Changing R (Bern, Dixon, Dunbar,Kosower).

This breakdown led to a more generalised approach to unitarity involving up
to quadruple cuts to isolate the coefficients rito, cachazo, Feng).

Ciaran Williams (IPPP) H +2j Radcor 14/ 36



Cut constructible pieces; methods

0N
0N
e
0
X

,v,,‘
&
&

o
o
ol
:
&

f
4
\

[

()
O
L

L0
::::’. ey
R

3

1

bl

Box coefficients

Box coefficients are
determined using the four
cut method of Britto,
Cachazo and Feng.

Four cuts result in box
coefficients determined
by algebraic operation.
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Triangle
Coefficients

Triangle coefficients are
calculated using the
Laurent expansion
method of Forde.

See Badger’s talk for
more details.

Ciaran Williams (IPPP)

H+2j

Bubble coefficients

Bubble coefficients are
calculated analytically
using Mastrolia’s Stoke’s
theorem method and
numerically with Forde’s
method. See Mastrolia’s
talk for more details.

Radcor
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The Cut-constructible Pieces: Boxes

The box topologies that appear in ¢ + parton amplitudes.

One-mass (a) and two-mass easy boxes (b) contribute to MHV (§ggg, 9gggg)
and all-minus (gggg) amplitudes.

One-mass (a) and two-mass hard boxes (c) and (d) contribute to NMHV
amplitudes (4999, 9999).

Ciaran Williams (IPPP) H +2j Radcor 16/36



The Cut-constructible Pieces: Triangles

The triangle topologies that appear in ¢+parton amplitudes. One-mass (a)
and two-mass (b) — (e) triangles are pure poles and contribute to all helicities.
The finite three-mass triangle (f) only contributes to NMHV amplitudes.

Ciaran Williams (IPPP) H +2j Radcor 17136



Eliminating Triangles

The Structure of Boxes
A generic box has the structure

2

Tay o Z (_E_i)a (“_y + Liz + log® +O(e)

—G ¢
Si j 1)

i.e. it contains pieces which have ¢ poles in T3am(sij) 2
kinematic invariants and then finite pieces

which consist of dilogs and log squared
terms.

Infrared Safety

The Structure of One- and
Two-mass Triangles

One- and two-mass triangles have
the following form
+(5)

Zzam(S) — Zaam(t)
s—t

Is;zm(S, t) o<

The infrared poles must satisfy the following relation.

4
Z < N%
—Sj(i+1)

1
1 0
A(;i , = A( )

e \ 4
i=1

The only role (one- and two-mass) triangles play is ensuring this relation.

Ciaran Williams (IPPP) H+2j
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The Cut-Constructible Pieces: Bubbles

A A

Each double cut can produce box and triangle contributions, as well as
logarithms.

The bubble topologies which contribute to ¢ + parton bubbles with a single
gluon on either side of the cut vanish since they correspond to logs of
vanishing scales.

In all helicity cases, (a) produces only box and triangle contributions and no
|Og(31234).
In all helicity cases some s;; and s logs appear

Ciaran Williams (IPPP) H +2j Radcor 19/36



The Structure of Bubbles

Checking coefficients

The bubble integral produces a 1/¢

pole
_ 1 (Y
(1—2¢)e\ —s

However, there is no 1/e pole in the
amplitude (gluons) which implies a
relation between the coefficients

Zé(s) X

4

Z (Ca9k + Coipkkr1) = 0.

k=1

Ciaran Williams (IPPP)

H + 2]

Functions of Logs

We use the following functions to
express our result.

log(s/t)
(s—t)

These functions develop unphysical
singularitiesas s — t (fori > 1).

Li(S,t) =

Radcor
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The Structure of Bubbles

Checking coefficients

The bubble integral produces a 1/¢

pole Functions of Logs
1 D\ We use the following functions to
W
T — [ = express our result.
2(s) o« (1—26)6(—3) 2
log(s/t
However, there is no 1/¢ pole in the Li(s,t) = %
amplitude (gluons) which implies a
relation between the coefficients These functions develop unphysical
4 singularitiesas s — t (fori > 1).
Z (Ca9k + Coipkkr1) = 0.
k=1

Completion Terms

To Ls and L, we subtract 5 i

Ze5T=D <§ + %) to ensure correct behaviour as s — t.

Ciaran Williams (IPPP) H +2j Radcor 20/ 36



Rational Pieces: gluon amplitudes

Evaluation by Feynman Diagrams
Previous calculations have shown that

0000@B000C

a00000000¢ looaoooom, @ the homogeneous piece is a simple function
of tree amplitudes for ¢ and vanishes for H
amplitudes.
QQ00MRO000;

@ the rational piece of Higgs + gluon
22 amplitudes is directly proportional to the
i number of flavours N;.

/ — Of the 739 Feynman diagrams, only 136 have a
\ ) fermion loop and the worst contribution is a

second rank box.

Ciaran Williams (IPPP) H+ 2j Radcor 21/36




Colour Ordering: gluon amplitudes

Tree-level: pure gluon amplitudes
Tree level amplitude of gluons can always be reduced to a single colour trace.

APk, Ay a}) =ig"F Y (T Tm) AR (0(17, . ™)),

o€Sn/Zn

Here S\ /Z, represents the group of non-cyclic permutations of n symbols. The
kinematic piece which is left over is called a primitive amplitude.

One-loop; pure gluon amplitudes
At one-loop the situation is similar, now single and double traces occur,

[n/2]+1

APk N, a ) =ig" ST YT Gue(@)AR(e(1M, ..., n™)

c=1 o€Sn/Snc
Gna(1) = Notr(T2 ... T#)
Gnie(1) = tr(T™ ... T3 ) tr(T%* ... T¥™) ¢ > 2.

AW

n:1 is called the primitive amplitude and all others can be obtained from it.

Ciaran Williams (IPPP) H +2j Radcor
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Results

Breakdown of Results
The results are presented in the following way

AN (4,17,27,37,47) =icr(Ca(¢,11,27,37,47) + Ra(¢,11,27,37,47)).

That is, we have chosen to separate the rational and cut-constructible pieces. We
further choose to spilt the cut-constructible pieces into divergent and finite pieces,

C4(¢7 1+7 2_7 3_74_) = V4(¢7 1+7 2_7 3_74_) + F4(¢7 1+7 2_7 3_7 4_)
Here V, is determined by IR safety,

4 €
V4(¢71+72‘,3‘,4‘):—A(°)(¢,1+,2‘,3‘,4‘)§z <Z< Ik ) )

=7 \ ~Si(i+1)

We express our results in terms of W; o< Ls_1 + 2 x Ifsz_nlh, (one and two-mass hard
boxes) and three mass triangle functions 1™ and completed L; functions.

Ciaran Williams (IPPP) H +2j Radcor 23/36



#gTg—g—g~ Cut-constructible

The most complicated helicity amplitude is the ¢-NMHV configuration. (Badger,Glover,Mastrolia, CW)
F4(¢7 l+7 27737747) =

{7 S Wmf( CILYLE G (34)°m{, )m
4(1[p,12)(1lp,, |4][23][34] 25134 (210 131[341[41] 25134 (11p5[2](3p 5 2] (41)

1 ( (@lpg1* N (24)*m, )W(g)
45124 \ (3lpg 21(3Ip |4IRLIMAL]  (12)(14)(2lpg [3](4lPy 3]

< 2mé (K} 2)3(34)3

N ‘

> (~ + M2 V(K2 1) (KP3) (KD 4) (12)
=74 (g1 +P2) (v + m())(Kl’ 1)(Ky3) (K7 4)(12)

LI WA TS _ 4(24)(3|pg |11 4(23)(4lpg |11
+ (1 4Nc> < Sroal2AE Fye (S125 145 S124) ol L1 (s1245812) — ol L
_Np N\ [L2][42]¢3|pg [21(3]Pg 4] Lim _ 25194 (24) (34)%[41)°
+(1 Ne + Nc) (—25124[24]4 FyF (S12, S14:S124) + 32] L3 (124, S12)
LB Beaa B + @ EIpp ) p (25124 (HPALE (24) Blps 111
3422 215124 212 (24)[423 351242
N (3lpg [1](45124(34)[41] + (3|py |1](2514 + S24) 25123(23) (34)2[31]2

Lo (s124,812) — ————————L3(S123,512)
124 (24)[42]3 3[32]

+ 362 L2 (s123, 812) + B2 (s123, s12)> } + {(2 o 4)}

3m, 2
) F3" (Mm%, S12, S34)

1 (123, Slz))

) L1 (s124,512)

-
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#9Tg~g~ g~ Rational terms

The rational pieces are extremely compact,

Ra(¢,17,27,37,47) = 2A0(¢,17,27,37,47)
+{ (1 N 'i) L <<23><34><4|p¢|11[311 (3lps 112

Ne ' Ne/2\ 8s123(12)[21][32]  syou[42]?
(24)(34) (3|py|1][41]  [12]?(23)?
35124512[42] s14[42]?

_ (24)(s23S24 + Sp3S34 + 324534)> } + {(2 - 4)}

3(12)(14)[23][34][42]
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Colour Ordering: quark plus gluon amplitudes

Tree level: quark plus gluon amplitudes

For qqgg amplitudes at tree level the situation is similar to that of the pure gluon
amplitudes, now, however, there are free colour indices associated with the quarks

AEO)(lﬁv ZQ737 ): g2 Z (Ta”[g) )Il AEO)(lﬁv ZQ7U(3)7U(4))

12
TgESy

One-loop: quark plus gluon amplitudes
At one-loop new color structures arise

Afﬂ)(lq72q73, ) = ¢ NCZ (T2 )'?2A4;1(1q,2q,a(3),a(4))

gESy

+ 533 5Iile4;3(1ﬁa 2q; 35 4) .
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Colour structures of one-loop quark + gluon amplitudes

HOH S

These primitives can be split up into more primitive quantities,

1 n
A4;1(1E|’ 2CIa 3a 4) = A‘Ll(lq’ 2CIa 3a 4) - WAE(]'EH 25h 37 4) + N_f Az‘r(lfh 2CI7 33 4) )
[+ {
and
Asa(13,20:3,4) = Ai(lg,20,3,4) + AL (Lg, 29, 3,4) + Ai(15, 3,24, 4)

+  A(1g,2q,4,3) + AF (15, 24,4, 3) + As(15,4,24,3).

Importantly the addition of the Higgs-gluon effective interaction does not change the
colour structure, so one-loop H+ parton amplitudes have exactly the same colour
breakdown as the pure QCD amplitudes.
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Rational Pieces: quark and gluon amplitudes

The rational pieces of the ¢gggg — NMHV amplitude do not have such a
simple breakdown as the ¢ + glue amplitudes, however the following
relationship

R{Ah(gﬁ, 15,24.3,4) + AR(6, 15, 24, 3, 4) + Al (6, 15, 24, 3,4)}
+2A510)(¢Ta 1ﬁ7 ZQ7 3) 4) =0

can be used to simplify the calculation since the R terms are simpler than the
L terms.
Ciaran Williams (IPPP) H+ 2j Radcor 28/ 36



Left(¢, 9 q*Tg—g~) Cut-constructible

4 2 € 2 €
L ot a— =y A0 1 I 13 s 119 O6R
- w1209 40 = w0 (- {ZZ <7s.(.+1>> } o lTm) T
=
St
[14][34] (2[p 3]
(1lpe|2? [
(1lpg 141 [23] [34]

~2mh 2
[L571(S14v S34:S134) + LSZ1 (S12, 1347 S34, My, )]

~<2mh 2
Ls_1(S34, S23:S234) + LsT7 (S12, S234; Saa, M )}

4 2 3
mg (14)° (24) (3lpy 2]
[ - - ¢ ] Ls_1(s12, 514 S124)
(12) (2|py |31¢4[p [8ls124  [12][24] (3|pg |4]S124
[ 232 (4lpy |1 m¢, (13)3 s 1(s12, 57 542)
[12][13]3(4|py [3ls125  (12) (1|py|41(3Ipgl4ls12s '
4 3
(4lpg 121° m, (13) ~ omh 2., ~2mh 2
- LsZ 1 (s34, S1233 S12, My, ) + LT3 (S14, S123: S23, M)
[[121 (23] (4lpy[3ls10s  (12) <1\p¢\41<3\p¢\41slzg] [ ¢ ! gl
4 2 2
mg (14)° (24) (31pg 1217 (3]py (1] ~ ~
[ . - ° " ] [Lsz_mf(ssm S124:512, M%) + L7 (23, S124: 514, mi)]
(12) (2|py |31¢4[p [8ls124  [12][14] (3|pg 4]s124

mé (34)%(1K})?

Y(y — m2)(12)(3K?) (4K )

m? (14)2(3K})? am
2v(v — m2) (1K} )(2K?) *

- Z
N
2(13)2 (34) (4]p413][12] - 34) (31) ((4]py 121 [13] — 3(4|p, 1] [23]) ~

A >3< lPg 311 ]L3(5123a512)—< ) (31) (€ \%\6][[31]] (4lpy|1][23])

3 2
13" (512, Saa, M%) — >
Y=t
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Left(¢, g qTg—g~) Cut-constructible + Rat
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Right( ¢, gTg—g~) Cut-constructible
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Right( ¢, gTg—g~) Rational and ns pieces.

The rational terms for the right moving amplitude have the following form,

2 2 2 2 2 2
RR(6,1=,25, 3= 47) = — (24)°[21] (3]py 2] (4lpgl3° [21]°  (14)7[21]
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And fermion loop,
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Sub-leading pieces

The combination of the various sub-leading pieces is interesting,
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Sub-leading pieces cont

+..
1 mf, (13)% (23) (4lps 12 (41pg11 | ~omn 2
|- LsZ1 (s14; S123, S23, M)
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4 3 3
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4 2 2
1 my (13) 4 2 _
+— |- 2 by 21 Lszl"lh(sM,slzs,slz,mi)
S123 (2lpg [41(2lpg 4] [13][23]

+{a-a},

Since they contain only the finite pieces of boxes! It is more efficient to code up the
total rather than the individual pieces from the colour breakdown. c.f

Ay3(13,2q:3,4) = Aj(lg,2q,3,4) + Af (15, 2q, 3,4) + Af(15,3, 29, 4)

L R L
+  A(15,2q,4,3) + A5 (15,29, 4, 3) + Az(15,4,2q, 3) .
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Conclusions

@ Strong need for fast and efficient evaluation of Higgs phenomenology at
the LHC, best achieved by evaluation of compact formulae.

@ The Higgs is produced dominantly at the LHC through gluon fusion,
which in the standard model proceeds through a top quark loop.
Calculations can be drastically simplified by working in an effective
theory in which the mass of the top tends to infinity.

@ The evaluation of Higgs helicity amplitudes can be further simplified by
considering the Higgs as a real part of a complex scalar field ¢. This
field couples to the self-dual piece of the gluon field strength tensor and
produces compact helicity amplitudes.
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Conclusions cont

@ Amplitudes can be split into two pieces called the cut-constructible and
rational parts. The cut-constructible pieces are calculated from
four-dimensional cuts. By applying multiple cuts one can isolate specific
coefficients of integrals. Rational pieces need additional techniques.

@ The helicity amplitudes for the process pp — H + 2j are now known
analytically and fortran code can be downloaded from mcfm.fnal.gov
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